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Scientific Discovery, Computational

Models of

Scientific discovery is the process by which novel,
empirically valid, general, and rational knowledge
about phenomena is created. It is, arguably, the
pinnacle of human creative endeavors. Many aca-
demic and popular accounts of great discoveries
surround the process with mystery, ascribing them to
a combination of serendipity and the special talents of
geniuses. Work in Artificial Intelligence on computa-
tional models of scientific reasoning since the 1970s
shows that such accounts of the process of science are
largely mythical. Computational models of scientific
discovery are computer programs that make discover-

ies in particular scientific domains. Many of these
systems model discoveries from the history of science
or simulate the behavior of participants solving
scientific problems in the psychology laboratory.
Other systems attempt to make genuinely novel
discoveries in particular scientific domains. Some have
produced new findings of sufficient worth that the
discoveries have been published in mainstream scien-
tific journals. The success of these models provides
some insights into the nature of human cognitive
processes in scientific discovery and addresses some
interesting issues about the nature of scientific dis-
covery itself (see Scientific Reasoning and Disco�ery,
Cogniti�e Psychology of ).

1. Computational Models of Scientific Disco�ery

Most computational models of discovery can be
conceptualized as performing a recursive search of a
space of possible states, or expressions, defined by the
representation of the problem. Procedures are used to
search the space of legal states by manipulating the
expressions and using tests of when the goal or
subgoals have been met. To manage the search, which
is typically subject to potential combinatorial ex-
plosion, heuristics are used to guide the selection of
appropriate operators. This is essentially an ap-
plication of the theory of human problem solving as
heuristic search within a symbol processing system
(Newell and Simon 1972).

For example, consider BACON (Langley et al.
1987) an early discovery programwhich finds algebraic
formulas as parsimonious descriptions of quantitative
data. States in the problem search space of BACON
include simple algebraic formulas; such as P}D or
P#}D, where, for instance, P is the period of revolution
of planets around the sun and D is their distance from
the sun. Tests in BACON attempt to find how closely
potential expressions match the given quantitative
data. Given quantitative data for the planets of the
solar system, one step in BACON’s discovery path
finds that neither P#}D nor P}D are constant and that
the first expression is monotonically increasing with
respect to the second. Given this relation between the
expressions BACON applies its  operator
to give the product of the terms, i.e., P$}D#. This time
the test of whether the expression is constant, within a
given margin of error, is true. P$}D#¯ constant is one
of Kepler’s planetary motion laws. For more complex
cases with larger numbers of variables, BACON uses
discovery heuristics based on notions of symmetry and
the conservation of higher order terms to pare down
the search space. The heuristics use the underlying
regularities within the domain to obviate the need to
explore parts of the search space that are structurally
similar to previously explored states.

Following such an approach, computational models
have been developed to perform tasks spanning a full
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spectrum of theoretical activities including the forma-
tion of taxonomies, discovering qualitative and quan-
titative laws, creation of structural models and the
development of process models (Langley et al 1987,
Shrager and Langley 1990, Cheng 1992). The range of
scientific domains covered is also impressive, ranging
from physics and astronomy, to chemistry and metal-
lurgy, to biology, medicine, and genetics. Some sys-
tems have produced findings that are sufficiently novel
to be worthy of publication in major journals of the
relevant discipline (Valdes-Perez 1995).

2. Scope of the Models

Computational models of scientific discovery have
almost exclusively addressed theory formation tasks.
However, the modeling of experiments has not been
completely neglected as models have been built that
design experiments, to a limited extent, by using
procedures to specify what properties should be
manipulated and measured in an experiment and the
range of magnitudes over which the properties should
be varied (Kulkarni and Simon 1988, Cheng 1992).
For these systems, the actual experimental results are
either provided by the user of the system or generated
by a simulated experiment in the software. Discovery
systems have also been directly connected to a robot
which manipulates a simple experimental setup so that
data collected from the instruments can be fed to the
systemdirectly, so eliminating any human intervention
(Huang and Zytkow 1997). Nevertheless, few systems
have simulated or supported substantial experimental
activities, such as observing or creating new
phenomena, designing experiments, inventing new ex-
perimental apparatus, developing new experimental
paradigms, establishing the reliability of experiments,
or turning raw data into evidence. This perhaps reflects
a fundamental difference between the theoretical and
experimental sides of science. While both clearly
involve abstract conceptual entities, experimentation
is also grounded in the construction and manipulation
of physical apparatus, which involves a mixture of
sophisticated perceptual abilities and motor skills.
Developing models of discovery that include such
capabilities would necessarily require other areas
within AI beyond problem solving, such as image
processing and robotics.

The majority of discovery systems model a single
theory formation task. The predominance of such
systems might be taken as the basis for a general
criticism of computational scientific discovery. The
models are typically poor imitations of the diversity of
activities in which human scientists are engaged and,
perhaps, it is from this variety that scientific creativity
arises.Researchers in this area counter such arguments
by claiming that the success of such single task systems
is a manifestation of the underlying nature of the

process of discovery, that it is composed of subpro-
cesses or tasks that are relatively autonomous. More
complex activity can be modeled by assembling sys-
tems that perform one task into a larger system, with
the inputs to a particular component subsystem being
the outputs of other systems. The handful of models
that do perform multiple tasks demonstrate the plausi-
bility of this claim (e.g., Kulkarni and Simon 1988,
Cheng 1992). The organization of knowledge struc-
tures and procedures in those systems exploits the
hierarchical decomposition of the overall process into
tasks and subtasks.

This in turn raises the general question about the
number and variety of different tasks that constitute
scientific discovery and the nature of their interactions.
What distinct search spaces are involved and how is
information shared among them? Computational
models of scientific discovery provide some insight
into this issue. At a general level, many models can be
characterized in terms of two spaces, one for potential
hypotheses and the other a space of instances or sets of
data (Simon and Lea 1974). Scientific discovery is then
viewed as the search of each space mutually con-
strained by the search of the other. Inferring a
hypothesis dictates the form of the data needed to test
the hypothesis, while the data itself will determine
whether the hypothesis is correct and suggest in what
ways it should be amended (Kulkarni and Simon
1988). This is an image of scientific discovery that
places equal importance on theory and experiment,
portraying the overall process as a dynamic interaction
between both components. This approach is appli-
cable both to disciplines in which individual scientists
do the theorizing and experimenting and to disciplines
in which these activities are distributed among dif-
ferent individuals or research groups. The search of
the theoretical and experimental spaces can be further
decomposed into additional subspaces; for example,
Cheng (1992) suggests three subspaces for hypotheses,
models, and cases under the theory component, and
spaces of experimental classes, setups, and tests under
the experimental component.

3. De�eloping Computational Models of
Disco�ery

One major advantage of building computational
models over other approaches to the study of scientific
discovery is the precision that is imposed by writing a
running computer program. Ambiguities and incon-
sistencies in the concepts used to describe discovery
processes become apparentwhen attempting to encode
them in a programming language. Another advantage
of modeling is the ability to investigate alternative
methods or hypothetical situations. Different versions
of a system may be constructed embodying, say,
competing representations to investigate the difficulty
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of making the discovery with the alternatives. The
same system can be run with different sets of data, for
example, to explore whether a discovery could have
been made had there been less data, or had different
data been available.

Many stages are involved in the development of the
models, including: formulation of the problem, en-
gineering appropriate problem representations, select-
ing and organizing data, design and redesign of the
algorithm, actual invocation of the algorithm, and
filtering and interpretation of the findings of the system
(Langley 1998). Considering the nature and relative
importance of these activities in the development of
systems provides further insight into the nature of
scientific discovery. In particular, the design of the
representation appears to be especially critical to the
success of the systems. This implies that generally in
scientific discovery finding an effective representation
may be fundamental to the making of discoveries. This
issue has been directly addressed by computational
models that contrast the efficacy of different represen-
tations for modeling the same historical episode
(Cheng 1996). Consistent with work in cognitive
science, diagrammatic representations may in some
cases be preferable to informationally equivalent
propositional representations. Although computa-
tional models argue against any special abilities of
great scientists beyond the scope of conventional
theories of problem solving, the models suggest that
the ability of some scientists to modify or create new
representations may be an explanation, at least in part,
of why they were the ones to succeed.

4. Conclusions and Future Directions

Given the extent of the development work necessary
on a discovery system, it seems appropriate to attribute
discoveries as much to the developer as to the system
itself, although without the system many of the novel
discoveries would not have been possible. This does
not imply that machine discovery is impossible, but
that care must be taken in delimiting the capabilities of
discovery systems. Further, the ability of the
KEKEDA system (Kulkarni and Simon 1988) to
change its goals to investigate any surprising phenom-
enon it discovers suggests that systems can be de-
veloped that would filter and interpret the output of
existing systems, by constraining the search of the
space defined by the outputs of those systems using
metrics based on notions of novelty. Developing such
a system, or other systems that find problems or that
select appropriate representations, will require the
system to possess a substantially more extensive
knowledge of the target domain. Such knowledge
based systems are costly and time consuming to build,
so it appears that the future of discovery systems will
be more as collaborative support systems for domain

scientists rather than fully autonomous systems
(Valdes-Perez 1995). Such systems will exploit the
respective strengths of domain experts and the com-
putational power of the models to compensate for
each others’ limitations.

See also: Artificial Intelligence: Connectionist and
Symbolic Approaches; Artificial Intelligence in
Cognitive Science; Artificial Intelligence: Search;
Deductive Reasoning Systems; Discovery Learning,
Cognitive Psychology of; Intelligence: History of
the Concept; Problem Solving and Reasoning, Psy-
chology of; Problem Solving: Deduction, Induction,
and Analogical Reasoning; Scientific Reasoning and
Discovery, Cognitive Psychology of
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Scientific Evidence: Legal Aspects

Expertise, scientific and otherwise, has been part of the
legal landscape for centuries (Hand 1901). Over the
last decades of the twentieth century the role of
scientific evidence in the law has expanded rapidly, in
both regulatory settings and in litigation. Statutes and
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