
In, L.Wang, K. Tan,  C. Furuhashi., J-H  Kim, and X. Yao (Eds.), Proceedings of the 4th Asia-Pacific Conference on
Simulated Evolution And Learning (SEAL2002), Singapore; (pp 662-666). (2002) (ISBN 981-04-7523-3)

COMBINING HUMAN AND MACHINE INTELLIGENCE TO PRODUCE
EFFECTIVE EXAMINATION TIMETABLES*

Peter Cowling1, Samad Ahmadi2,1,3, Peter Cheng3 and Rossano Barone3,2,1

1 MOSAIC research group, Dept. of Computing, Univ. of Bradford, Bradford BD7 1DP, UK
2 ASAP research group, Sch. of Comp. Sci. & IT, Univ. of Nottingham, Nottingham NG8 1BB,UK,

3 CREDIT research group, Sch. of Psychology, University of Nottingham, Nottingham NG7 2RD, UK,
Peter.Cowling@scm.brad.ac.uk, S.Ahmadi@cs.nott.ac.uk, rb@psychology.nott.ac.uk, Peter.Cheng@nottingham.ac.uk

                                                
* Research supported by ESRC/EPSRC grant L32853012 under the PACCIT programme, in collaboration with OPTIME.

ABSTRACT

In this paper we present a system for producing good
examination timetables, by integrating the search
capabilities of computer heuristics and the cognitive
capabilities of timetabling users. We allow users to view
and easily edit a cognitively manageable representation of
each timetable, using the STARK (Semantically
Transparent Approach to Representing Knowledge)
approach. Further, we allow users to directly control the
heuristics which are used to automatically generate
solutions, using the HuSSH (Human Selection of
Scheduling Heuristics) approach. We present experiments
which show that using these two approaches in
combination can lead to a very effective system for
examination timetabling, even in cases where model
inaccuracies mean that simply optimizing the objective
function does not provide adequate solutions. Our
approach may be generalized across other domains where
optimization decision support is used.

1. INTRODUCTION

Heuristics have proven to be effective at producing good
solutions to a wide range of problems in planning,
scheduling and optimization, especially where solutions
must be generated quickly, or computational complexity
results suggest that optimal solutions may be difficult or
impossible to find in practice [5]. However, since it is
difficult or impossible to capture all problem details, it is
often the case that solutions may need considerable
editing before they may be used in practice, and many
decision support systems support this solution editing
process [4]. This editing process is nearly always at the
level of final solution, or initial model. It is rare that
users are given the tools to interrupt the solution process
and edit the heuristics which are then used to produce an
improved solution. We believe, from past experience [7],

that users, due to their extensive knowledge of the
problem being solved, can quickly build a surprising level
of competence in handling complex parameters of the
solution process. Indeed, many legacy systems are used in
exactly this way in practice, since the original model for
which these systems was designed is no longer directly
applicable. As the size and complexity of problems and
systems increases, it becomes impractical for a user to
manually “edit out” all of the problems at the level of
solution, and it would be useful if the user could instead
“steer” the heuristic process towards desirable outcomes.

In this paper we present a system which allows this
type of user intervention. It provides a STARK interface
which has been developed using principles of
representational design from the cognitive science
community [6] and supports solution-level editing using
this interface. In addition to this, our system provides a
HuSSH interface which allows users to directly interact
with the heuristics used to produce solutions, by
modifying parameters and choosing heuristics which are
used to build timetables and dismantle areas of the
solution where users wish to find improvements. We
present experiments which show that our system is
effective, both when the model is assumed to completely
reflect the preferences of the user, and when the model
misses important user preferences.

2. EXAMINATION TIMETABLING

The Examination timetabling problem is a difficult
problem in practice, which must be solved at least once a
year in every school and university. It is usually modeled
as an NP-hard combinatorial optimization problem [5].
The problem demands that a given number of exams are
scheduled in a limited number of periods and venues in
such a way that no student will have more than one exam
at a time and other constraints are satisfied. The objective
is generally to allocate timeslots, rooms and other
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resources to examinations so as to minimize some
measure of constraint violation. Different institutions have
a wide variety  of different types of constraints and goals
with different levels of importance.  

Conflicting objectives and the changing set of
constraints in different institutions makes the examination
timetabling  problem very challenging. A simplified
model of this problem considered in the literature is the
graph coloring problem [10]. Nevertheless, capturing all
user preferences in an exact model for the problem is
difficult (if not impossible). Even when a computerized
scheduling system is available, it is normally necessary
for the examinations officer to modify the automatically
generated solution in order to produce and adequate
solution. It is thus useful that the automated scheduler has
some level of flexibility to handle new constraints and to
incorporate user knowledge.

This problem has been tackled with different heuristic,
optimisation and metaheuristic algorithms. Burke et.al. [3]
used a multicriteria approach to solve the problem in
several phases. Thompson and Dowsland [9] used
simulated annealing with Kempe chain neighbourhoods to
preserve the feasibility of the solutions in terms of first
order clashes during local moves.  Ross et.al. [8] analysed
the behaviour of genetic algorithm on different instances
of the problem. Arani and Lotfi [1] investigated a three
phase process using the quadratic assignment problem, the
set covering problem and the travelling salesman problem
in different phases respectively. Further references and a
general survey of the problem are in [5].

3. EXAMINATION TIMETABLING HEURISTICS

Sequential heuristics and clustering heuristics are the two
major categories of constructive heuristics for examination
timetabling. The order in which exams are scheduled, and
the order in which periods and rooms are chosen for each
exam, has a highly significant effect on the characteristics
and quality of the resulting timetable. We propose the
following heuristics for ordering exams, periods and
rooms:

3.1.  Exam selection heuristics

1 .  Intersections: The unscheduled exam with the
highest number of students in common with other
scheduled and unscheduled exams will be scheduled
next. We use a modified version of the largest degree
first heuristic for graph colouring.

2 .  Restrictions: Some of exams are restricted to be
held at pre-specified periods or venues. Dealing with
such exams in the later stages of the scheduling process
may create problems due to usage of their

corresponding rooms and periods for other exams. In
this heuristic we prioritise restricted exams to be
scheduled first.

3.  Available Periods: This heuristic dynamically finds
the number of available periods where an exam can be
scheduled without penalty each time another
examination is scheduled. Each iteration, the
unscheduled exam with the smallest number of
available periods is selected to be scheduled next. This
is a generalisation of least saturation degree for the
graph colouring problem [2] where we consider
constraints other than clashes for checking the
availability of each period.

4 .  Available resources:  This heuristic is similar to
3. above, but considers the number of periods and
rooms  where an exam may be scheduled without
penalty.

5 .  Combination: This heuristic combines the previous
four heuristics in two ways. First, the four above
heuristics are prioritised and where two exams are tied
using one of the heuristics, this tie will be broken
using the next lower priority heuristic. Second, to deal
with complex coincidence and concurrency constraints
where a group of exams needs to be scheduled at the
same time and/or place, an extra priority value is added
to the other related exams after each member of a
coincident/concurrent group is scheduled. In this way
we aim to schedule all members of a group together
before other scheduled exams make this impossible.

6. Random: A random heuristic is placed in the pool of
heuristics to examine the ability of the user to identify
heuristics of low quality, and to provide a mechanism
for diversification.

3.2.  Period selection heuristics

After selection of an exam e for scheduling, we select a
period which minimises the penalties associated with
violations of constraints with e. Our approach uses a
general penalty function which finds a period to minimize
the sum of weighted combination of clashes, consecutive
exams, order constraint violations, size violations,
duration excesses, pre-specified rooms violations and
period violations.
1.  Penalty-based: In this heuristic for a given  exam e,

the potential penalty of assigning e to each period is
calculated and the period with the minimum penalty is
selected. Ties are broken arbitrarily, with the sorting
algorithm in use tending to allocate exams to periods
early and late in the schedule, which empirical evidence
shows to be more effective than random allocation.

2.  Random selection of period.

3.3. Room selection heuristics
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After selection of an exam, different periods are examined
for availability of rooms in the order induced by the
period heuristic.  For each period, an ordered list of
permitted rooms for this exam is created, based on  the
following heuristics:

1 .  Best fit: this heuristic will find the room with the
smallest amount of remaining capacity into which the
exam will fit.

2 .  Largest-first: in this heuristic priority is given to
fill the largest spaces available (sports halls, large
lecture theatres). This policy is reasonable in the
context of optimising usage of large spaces to
minimise the number of venues and invigilators.

3.  Random selection of room.

3.4. Unscheduling heuristics

In order to remove specific “problems” from a timetable,
or partial timetable, the user can choose to automatically
unscheduled exams using two heuristics, so that they can
be rescheduled using manual approaches or using any of
the heuristics above:

1 .  Penalty values: Exams in an order based on the
weighted sum of their penalty value are unscheduled.
The user specifies the percentage of exams to be
unscheduled. By adjusting weights, the user has a
useful tool to remove specific types of violations.

2.  Exams in a Period: Here all the exams in a specific
period will be unscheduled. This, in conjunction with a
constructive scheduling heuristic is a useful tool for
shuffling exams in a period to find a better fit and
removing capacity violations.

3. EXPERIMENTAL FRAMEWORK

Two experiments were performed. In the first experiment,
we made the assumption that the model was entirely
correct, and so the users’ goal was to use STARK and
HuSSH to provide a solution which yielded the best
possible objective function value. In the second of
experiment, we tried to assess the ability of the user and
the system in incorporating un-modeled constraints. The
four subjects of the experiment were from optimisation
and cognitive science backgrounds. Each experiment used
a data set of the University of Nottingham with 800
exams, 33998 enrolments and 7896 students, available
from ftp://ftp.cs.nott.ac.uk/ttp/Data/Nott94-1.

After an introduction to the system, each subject was
asked to generate a solution using any combination of
heuristics in HuSSH with user interventions at any point
using the unscheduling facilities of HuSSH or manual
modifications using STARK. A total of 90 minutes was
allowed for this experiment. Then each subject took a

break before continuing with the second experiment,
where, six exams were to be scheduled in the early part of
the week, without having any two of them scheduled in
the same day. This corresponds to the situation, which is
considered in some Universities, where the scheduler has
knowledge about the difficulty of certain exams based on
students’ performance in previous years and plans to hold
the exams after a weekend. A maximum of 30 minutes
was allowed for each subject to perform the second
experiment.

We report quantitative and qualitative results for each
subject in the first experiment. We report qualitative
results only for each subject in the second experiment,
where we do not have a numerical performance measure.

4. COMPUTATIONAL RESULTS

Graphs 1a to 4b summarize the results of experiment one
for each of the four subjects. To clarify later changes to
the solution, which cannot be seen at the original scale,
the second graph of each pair zooms in on the most
“interesting” section of the experiment. The total number
of timetabled exams and objective function value are
plotted against time, expressed as a percentage of the total
experiment time of around 90 minutes.

The graphs show that the four subjects used widely
different strategies. Figs. 1a, and 2a show a strategy where
the subjects used an automated approach to produce a first
“draft” schedule of all exams. Figs. 3a and 4a show a
combination of automatic and manual approaches to
produce the first complete timetable. In terms of objective
function and CPU time it is clear that the first strategy is
more effective. However, analysis of comments made by
the subjects illustrated in figs. 3a and 4a show a high
level of “engagement” with the solution process and a
modification of mental models to satisfy the experimental
goal of objective minimization, to propose modifications
to add to model realism, and in response to the perceived
priority and difficulty of constraints. For example, manual
fixing of consecutive exams was perceived as a very high
priority by the subject illustrated in fig. 3a. This subject’s
comments show that upon further investigation and
probing using STARK and HuSSH tools, it was accepted
that a number of consecutivity constraints were
impossible to remove for this problem instance, which
greatly improved the subject’s confidence in the solution
finally produced. Feedback from users shows a steep
learning curve of behaviour of the heuristics and the
model as time proceeds.

Figs. 1b, 2b, 3b and 4b illustrate the methods
employed by the subjects to improve on the “draft”
timetable. Again we see a variety of strategies. User
adjustment of penalty weights, especially when
unscheduling to fix a particular set of constraint
violations, was shown to be useful by all subjects.
However, adjustment of penalty weights when
rescheduling gave rise to a relatively poor solution in
figure 3b. Fig. 2b shows a very sophisticated use of the
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STARK and HuSSH approaches. Further investigation of
the final timetable found in this case show that the
solution produced is optimal, and the nonzero penalty is
due to inconsistent constraints. In all cases an acceptable
solution was produced. Generally the figures show that
unscheduling-rescheduling was effective when applied to
small sets of exams, with manual enhancement where
necessary.

In the second experiment all the subjects succeeded in
scheduling the six selected exams in the first periods of
the week without having two of them at the same day.
The subjects’ comments reveal a high level of satisfaction
with the solutions produced. Subjects were again able to
critically evaluate the model as solutions were produced.
For example, one subject created a solution with a
preference for the second week over the first, to allow
students an extra week’s revision. All subjects expressed a
high level of confidence in the quality of the solution
created.

One of the additional benefits of giving expert users
access to such a wide range of solution tools is that model
improvements, and new heuristics may be identified. One
subject observed that the relative importance of clashes
and consecutive exams were incorrect in the model, and
that the unscheduling approach ought to consider the ease
of rescheduling of exams when deciding the order for
unscheduling. Another observed the effectiveness of the
heuristic which unscheduled whole periods and then
rescheduled them using a combination of automatic and
manual approaches.

5. CONCLUSIONS

In this paper we have presented a combination of a tool
for effective representation and editing of examination
timetables (STARK), and a tool to allow users to directly
control the heuristic solution process (HuSSH).
Experiments showed that this approach was very effective
at producing timetables which satisfied the objective and
subjective criteria of users, and provided the user with an
effective means of dealing with inaccuracies and
oversimplifications in the model used. In addition, our
experiments show that the combination of these two
approaches allow users to consider possible enhancements
to the model, and to suggest possible new heuristic
approaches which might be partially or completely
automated. This last point is one which we are actively
pursuing in this project.
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