
Representations for Problem Solving: On the Benefits of Integrated Structure

Rossano Barone, Peter C-H Cheng
Department of Informatics, University of Sussex, Falmer, BN1 9RN, UK.

r.barone@sussex.ac.uk, p.c.h.cheng@sussex.ac.uk

Abstract

How should problem-solving representations for
complex knowledge domains be designed? Traditional
approaches typically address the problem of semantic
complexity by designing systems that offer multiple and
often heterogonous forms of representation. The REEP
approach advocates structure preserving integration of
the different classes and perspectives of a domain within
a single representation. This paper reports on a novel
representational system for nurse rostering that was
designed under the REEP approach. An empirical
evaluation suggests the kinds of knowledge support
provided by the representation and demonstrates that
participants prefer fully integrated over selective views of
information even though the former increases visual
complexity. This knowledge support is explained in terms
of more abstract domain independent cognitive benefits
that we present as reasons for adopting the REEP
approach.

1. Introduction

How should interfaces be designed to support problem
solving in semantically rich domains? Traditional
approaches typically address this issue by designing
interfaces that provide multiple representations, each of
which express different perspectives or classes of
information. In commercial scheduling applications this
is typically the norm. State of the art scheduling systems
may provide an array of display options using domain
independent representations such as graphs, tables and
charts.

One of reason for justifying the use of multiple
representational systems is to avoid the problem of visual
complexity [1]. Taking a multiple representation
approach also makes the design task significantly easier
to undertake. Designing semantically complex diagrams
is difficult. There are limitations on the number of visual
dimensions that can be exploited in a two-dimensional
representation [3] and this together with well known
limitations of the expressive capabilities of diagrams [10]

appears to be reasonable case for designers to consider
systems composed of multiple and heterogeneous forms
of representation.

The approach that we have termed representational
epistemology (REEP) holds a somewhat contrary
position. The central aim of this approach is to design
“domain specific” problem solving representations that
optimally encode the task relevant structure of the
domain. We advocate the design of such systems using a
single representation that integrates the different classes
of information, perspectives and levels of abstraction that
characterise a domain. These arguments are concerned
exclusively with the representation of a problem situation
and not other kinds of information that may be associated
with a problem (e.g., learning instructions). Our studies
have shown that such representations provide greater
cognitive support in learning and problem solving
compared to conventional representations that typically
fail to sufficiently integrate the structure of a domain.
Novel diagrammatic representations have been designed
for domains in physics, mathematics and real world
scheduling problems [4, 5].

This paper provides a further demonstration of the
REEP approach with a prototype graphical interface for
the semantically complex domain of nurse rostering
named STARK-Roster – a new family member of
STARK scheduling interfaces (Semantically Transparent
Approach to Representing Knowledge). An evaluation
study was conducted to assess the knowledge support
provided by the STARK-Roster interface and investigate
the trade-off between knowledge support and visual
complexity. The knowledge support was assessed
through the kinds of problem solving procedures
participants adopted. In the discussion this knowledge
support is explained in terms of more abstract domain
independent cognitive benefits that we present as reasons
for adopting a REEP approach to the design of problem
solving representations. The next section will briefly
outline a number of different ways in which a
representation can preserve the structure of its
represented domain and provide the reader with a flavour
of the kinds of structure preserving issues important in
the REEP approach to design.

2. Diagrammatic structure preservation

The kinds of representations that preserve the structure
of what they represent are broadly diagrammatic in
nature. This is why diagrams have been referred to as
homomorphic or analogical representations [3]. Many of
the cognitive advantages of diagrams seem to be
dependent on the structural similarity they have to the
situations they represent [3, 5, 9, 11]. There are many
ways in which diagrams preserve structure. This section
identifies three different perspectives of structure
preservation that we have termed: (1) instance structure,
(2) dependency structure; and, (3) derivation structure.

One of the most common traits of diagrams is that
they instantiate their representing referents (i.e. objects,
properties, relations) such that any instance being
represented is represented by a single diagrammatic
instance. Diagrams also preserve referential connectivity
between individual instances of objects, their properties
and relations. This pattern of references between the set
of represented instances is a form of structure preserved
in diagrams.

We use the term dependency structure to refer to
systems of interdependent relations. Broadly speaking
there appears to be three main classes of dependency
structures that may be preserved in diagrammatic
representations: taxonomic, logical and arithmetic
dependencies.

The capacity of diagrams to encode class relations,
have been noted by a number of authors [3,5]. The REEP
approach has emphasised the role of designing
representations that organise represented objects,
properties and relations according to over-arching classes
or dimensions of the knowledge domain. We refer to such
interpretive schemes as globally homogeneous [2, 4, 5].

Another class of complex dependency structures that
may be preserved in a representation are logical
dependencies. Consider temporal relations for instance
(e.g., before/after). These relations are transitive, anti-
symmetrical and anti-reflexive. Diagrammatic systems
that have these properties (e.g., left of/right of) will
preserve this logical structure. Arithmetic dependencies
of a represented situation can also be preserved in a
diagrammatic representation through geometrical
configurations. Preserving logical/arithmetic structure in
a diagrammatic system ensures that it is incapable of
generating logical/arithmetic inconsistent expressions [4,
9]. Cheng refers to such classes of diagrams as Law
encoding because these diagrammatic constraints have
been used to express principal laws that govern a
represented system [4].

Given a specification of the mappings of the primitive
represented objects, properties and relations in a
representation, emergent expressions representing higher-
order relations can be derived from diagrams.

Cognitively speaking this is a case of selectively
attending to the representing referents and appears to be
supported to the extent that the expressions exploit
mechanisms of perceptual organisation. Shimojima refers
to these phenomena as derivative meaning [8]. The
pattern of relations between the represented things that
enter into a higher-order derivative expressions have a
particular structure themselves. Following Palmer we use
the term derivate structure to refer to the composite
structure of particular expressions [7]. The derivative
structures of an expression may have different degrees of
correspondence to the way the same meaning is derived
in the represented situation. Cheng has demonstrated that
complex diagrammatic representation can be designed to
simultaneously express alternative perspectives or
different levels of abstraction of a domain through
interdependent derivative structures. Research under the
REEP approach suggests that integrating alternative
perspectives and levels of abstraction within a single
representation, provides substantial support to leaning
and problem solving.

3. Nurse Rostering

Nurse rostering is a combinatorial optimization
problem that requires the assignment of a set of nurses to
a set of shifts over the course of some planning period
under varied constraints. Nurse rosters may be generated
by hand using tabular style representations or though
automated rostering systems. As with other scheduling
systems we have investigated [2, 3] conventional
interfaces represent different perspectives or classes of
information through separate windows using domain
independent representations such as tables and charts.
Whether the scheduler generates the roster from scratch
or edits a computer generated solution, these interfaces
typically fail to provide good cognitive support.

There are a variety of different constraints that may
vary across different organisations. For this research we
have considered four main classes of constraints. (1)
Working-hours . Each nurse has a minimum and
maximum number of working hours they may work each
week or month. The constraint on working hours is
violated if a nurse is assigned too few or too many hours.
(2) Staff-requirements. For each shift a ward requires a
specific number of nurses with the right mix of skills
based on attributes such as qualifications, training and
rank. Constraints on staff requirements are violated for a
particular shift if a ward has been assigned to many or too
few staff with the correct mix of skills. (3) Rest-period.
Nurses must have an adequate period of rest between
consecutive working shifts. The constraint is violated if a
nurse has not been given sufficient rest-period between
assigned consecutive shifts. (4) Nurse-Preferences.
Nurses specify preferred shifts and preferred days off

before the final roster is created. The scheduler must try
to match these preferences. Violations of preference
constraints occur when nurse preferences have not been
met.

4. The STARK-Roster diagram

This section provides a brief overview of the STARK-
Roster diagram (see Figure 1). Each shift is represented
by burgundy coloured column and each collection of
three columns represents a day. Shifts, days and weeks
are ordered along the horizontal axes. Nurses are ordered
along the vertical axes based on their qualifications and
skills. Each horizontal line represents a timeline of a
single nurse over the course of the planning period. An
assignment of a nurse to a shift is represented by a green
rectangle; the location and width of the rectangle
expresses the date and duration.

Staff-requirements. In the STARK-roster diagram a set
of requirements associated with a particular shift is
represented as a collection of columns nested in a shift.
Each column of the collection represents a particular
requirement condition. When a cell in a requirement
column is highlighted the nurse indexed by the vertical
position of the cell indicates that the nurse is a member of
the set specified by the requirement condition. If a cell is
transparent then the corresponding nurse is not a member
of the set specified by the requirement condition. A
requirement can be over-assigned, under-assigned or
satisfied. When a requirement is under-assigned the cell
will be shaded white, when satisfied grey and when over-
assigned black. Specific numerical values about
requirements are currently expressed through the status
bar when a requirement condition is selected.

Working hours. The violation states of the nurses
working hours are represented in two ways. A short
horizontally structure extending beneath the left of the
timeline expresses the existing consumption and
constraints on working hours. The length of the green line
represents what is consumed. If the end of this line falls
in the surrounding white region the nurse’s hours are
under-assigned, if in or on the threshold of the grey
region the nurse’s hours are satisfactory, if beyond the
grey region the nurses hours are over-assigned. Violation
states are also represented by the shade of the outer-
casing of the nurse timeline. When a nurse is under-
assigned the timeline will be shaded white, when satisfied
grey and when over-assigned black.

Preference constraints. Nurse preferences to work or
to take a day off are represented by plain or crossed icons
located on the nurse’s timeline. Preferences to work that
are not assigned will have their icons shaded white
showing that the constraint is under-assigned and grey if
assigned showing that the preference is satisfied.
Preferences to be off on a day that are assigned will have

their icons shaded black expressing the preference is
over-assigned and grey if not assigned showing that the
preference is satisfied. The height of the preference icon
represents how serious this constraint should be
considered. Preference icons can also represent more
specific types such as annual leave, study days etc. with
the addition of iconic symbols located on the preference
icons.

A

Nurse timeline (tube)

Assignment (rectangle)

Shifts (columns)

Working hours (OK)

B

Requirements (over)

Off Preference (over)

On Preference (under)

Figure 1. The STARK-Roster Interface with all
constraints hidden (A) and all showing (B)

4.1. Global homogenous scheme

One of the important design principles of the REEP
approach concerns the structuring of a representation
according to the over-arching dimensions or classes of
information present in the domain. We use the term

global homogeneity to refer to this semantic trait of
representations. One example of a globally homogeneous
interpretive scheme in the STARK-Roster interface can
be observed in the representation of violation states for
the different types of constraints. The triple scheme maps
white, grey and black to under–assigned, satisfied and
over-assigned states for all types of constraints. The
referential juxtaposition of the different constraints and
their states provide perceptually salient emergent
expressions. For example the predominance of white or
black constraint icons at a slot will reveal a place where
appropriate changes to a slot satisfy the most constraints.

4.2. Problem solving procedures

This section considers basic problem solving
procedures for editing schedules: (1) forward-checking,
(2) weighted-selection and (3) recursive strategies.

Forward-checking refers to a look-ahead procedure in
which the user checks what constraint violations will
arise before a change to an assignment is made. Our
research suggests that whether a user decides to check
dependencies is to some extent determined by the amount
of effort required to access the information. If accessing
this information is cognitively expensive users may be
more inclined to resort to trial and error behaviour [2].
Forward-checking in conventional style interfaces can be
difficult as different types of constraint information, if
present, is typically represented in one or more different
frames of reference.

Weighted-selection refers to a procedure in which the
users are able to visually pick out assignments or slots
that are causing the most problem. Assignments/slots that
have dependent constraints that are largely under-
assigned or over-assigned are salient in the STARK-
Roster. Changes to these assignments/slots satisfy the
most constraints. Weighted-selection allows users to
adopt strategies at a more global level of consideration.

Previous research with human scheduling identified
exploratory strategies for rescheduling which we refer to
as recursive strategies [2, 4]. In recursive strategies, users
make a sequence of changes to a solution to solve some
goal that involves one or a set of interconnected
constraint violations. Recursive strategies occur when
constraint violations cannot be resolved by a single step.
A simple example of this in nurse rostering may occur
when a preference to work is violated but assigning the
nurse to the preference would cause a staff requirement
violation. A recursive strategy would involve making this
assignment with a view to removing a different
assignment to resolve the requirement violation.

5. Method

A pilot evaluation was conducted for two reasons: (1)
to establish the level of knowledge support provided by
the STARK-Roster as measured by the use of problem
solving procedures such as weighted-selection and
recursive strategies and (2) to assess whether information
complexity would be preferred at the cost of visual
complexity as measured by the use of tools to hide or
reveal selected classes of information.

5.1. Design

A total of six postgraduate students of the Department
of Informatics at the University of Sussex took part in the
evaluation. None of the participants had previous
experience with the nurse rostering problem. All
participants were paid for their involvement

The evaluation task required participants to manually
improve a roster by reducing violations of constraints. In
addition to the main diagram the interface toolbar also
had zoom controls to view the STARK-Roster at different
levels of granularity. There were also four view controls
each of which corresponded to one of the four different
classes of constraints. The view controls allowed the
users to hide any combination of these constraints. There
were three types of edit operations for changing the
STARK-Roster. Participants could add assignments,
remove assignments and switch assignments from one
slot to another (note that switch is composed of a remove
and an add operation). All edit operations were generated
through simple mouse actions

The novice participants first completed a short tutorial
on the rostering problem and interface. This was
followed by a twenty minute practice session at
improving a roster before the evaluation session began. In
the evaluation session participants were given one hour to
improve a roster to the best of their ability and were
provided with a simple weighting scheme for the
constraints. The weighting scheme was: one point per
shift a nurse was over or under-assigned (working-hours);
one point per nurse that was over or under-assigned to a
requirement condition; one point per preference violation;
one point per instance of a rest-period violation. Interface
operations were logged throughout the evaluation
session.

The two nurse rosters used in the practice and
evaluation sessions were modifications of real data sets
taken from a hospital. The modifications were made to
resolve various inconsistencies and to simplify the
problem that the novice participants had to learn. The
problem involved a roster with nineteen nurses and
planning period of twenty-eight days. There were three
shifts in each day.

5.2 Results

This section discusses the results of the evaluation
task. The percentage of weighted violations reduced by
participants was substantial and variability between
subjects performance was small (M=61%, SD=4)
suggesting that participants' strategies were effective and
consistent between subjects. A large number of edit
operations were made over the one hour evaluation
session (M= 496, SD =133) which amounts to an average
of one operation approximately every seven seconds.

The zoom and view controls were analysed to asses
whether visual complexity was perceived as a problem by
participants. Log files reveal that participants did not use
the view controls. There was only one instance of hiding
a view and this was refreshed a second after. Zoom-
controls on the other hand were used by all of the
subjects. Two subjects zoomed out to an intermediate
scale for the whole of the session, others zoomed in and
out although the frequency of using the zoom controls is
small (M=4.3. SD=3.1). This data suggests a preference
to use global as well as local interpretations of the roster
although global perspectives were more common.

Recursive strategies were assessed by extracting the
number of cases where the following conditions where
true between consecutive edited operations. The first edit
operation Ei: (1) improved one or more constraint
violations and (2) simultaneously made one or more
dependent constraint violations worse. The subsequent
edit operation Ei+1 (3) improved a constraint violation
made worse by operations Ei and (4) did not involve
undoing Ei. Analysis reveals that the mean percentage of
edit operations where the stated conditions were true for
Ei was substantial (M=24%, SD=5%) suggesting
recursive strategies were commonplace amongst all
participants.

To assess the amount of weighted-selection we
computed for each type of operation the number of
occasions that participants added or removed assignments
that satisfied one, two or three of the types of constraint
violations (excluding rest-period). There is a chance level
of making weighted-selections which is dependent on the
number of weighted selection opportunities available in a
given roster. To estimate the chance level, we computed
from the initial roster, the number of assigned slots that
had one, two and three types of constraints that were
over-unassigned (add estimate) and the number of
unassigned slots that had one, two or three types of
constraints that were under-assigned (remove estimate).
Note that this is a conservative estimate because it
excludes from consideration cases where individual
constraint violations require more than one assignment
change to be resolved.

Table 1 shows the percentage of weighted-selections
for each participant, the group means and baseline

estimates. Note the baseline add estimates are greater
than the baseline remove estimates revealing a
disproportionate number of weighted-selection
opportunities for under-assigned slots. One can observe
that on average more than twice as many add and switch
operations (the add part) involved in reducing under-
assigned violations (59%) satisfied two or three types of
under-assigned constraints which is more than twice the
value of the baseline estimate (25%). The mean
percentage is less prominent for remove and switch
operations (remove part) where only about 12% of these
operations involved reducing two or more types of
constraints with over-assignment violations, although this
is still greater than the baseline estimate (7%).

Table 1. Percentage of add and remove operations
that satisfied one, two or three types of constraint.
(Add / remove parts of switch operations included).

Subject Add (Under) Remove (Over)
3 2 1 3 2 1

1 8 48 44 1 15 84
2 16 37 48 0 12 88
3 8 52 40 0 9 91
4 9 50 41 0 14 86
5 15 51 35 0 8 92
6 16 47 37 0 11 89

Mean 12 47 41 0 12 88
Baseline 2 23 75 0 7 93

6 Structure Preserving Integration

Despite the visual complexity of the STARK-Roster
interface, the view controls were not used by participants
in the test session. Given the choice of viewing all the
classes of information together or selecting tailored views
of specific classes of information, participants opted for
the former despite the increase in visual complexity.
Zoom-controls on the other hand were used by all of the
subjects. The data suggests a preference to use global as
well as local interpretations of the roster, although global
perspectives were more common despite the increase in
visual complexity. Participants edit operations also
suggests that the representation supports problem solving
procedures such as weighted-selection and recursive
strategies. These procedures allow rostering to be
significantly more efficient but are clearly dependent on
the simultaneous presentation of the different classes of
information. It seems reasonable to suggest that
participants sacrificed any negative costs of visual
complexity to gain problem solving efficiency.

 At a more abstract level the problem solving
advantages implicated by integrated structure

preservation can be understood in terms of more generic
notions of cognitive support.

In section 2 we discussed the preservation of instance
structure. Instantiating representing referents and the
connection between them within a single representation
supports referential coherence – the capacity of the
cognitive system to bind token objects and their relations
in derived expressions [6]. When the situation being
represented comprises of many different types and
instances and the information requirements in problem
solving is complex, the impact of this support increases
substantially. Having multiple representations, where
replications of the same represented instances are made
over different presentations of information, makes the
task of establishing correspondences between different
instances difficult.

The structural form of a representation can determine
what knowledge and procedures become activated [2,
11]. As diagrams are analogical representations they have
a default interpretation independent of what they
represent. The more meaning/structure preserved in the
default interpretation of a diagrammatic expression the
more influence it should have on knowledge construction.
For example, recognizing whether an assignment to
resolve some requirement will or will not have effects on
the states of other requirements in the same shift is almost
unavoidable. This is a result of the set relations present
between requirement conditions and nurses.

Conceptual integration involves selectively mapping
distinct packets of knowledge from different sources to
understand and reason about a situation. The capacity to
support it with an external representation is dependent on
a number of different forms of structure preservation as
discussed in section 2. Generally speaking the richer the
structure preservation the greater the kinds of derivative
meaning the representation will provide. Both weighted-
selection and recursive strategies involve significant
conceptual integration. Such strategies would not be well
supported under a multiple representation systems,
especially one that employs relatively arbitrary forms of
representation.

7. Conclusion

The REEP approach advocates the design of
representations that integrate the underlying structure of
the domain relevant to the task. The paper provided an
example of such a representation for the semantically
complex domain of nurse rostering. An empirical
evaluation reveals the kinds of knowledge support
provided by the novel representation and shows that users
prefer full integration of classes of information over
selective views of information despite the visual
complexity associated with the former. These preliminary

results provide additional support to the REEP approach
to representational design.

Acknowledgements

The research was supported by an ESRC/EPSRC
research grant (L328253012) under the PACCIT
programme

References

[1] Ainsworth, S. E. (1999). The functions of multiple
representations. Computers & Education, 33, 131-152.

[2] Barone, R., Cheng, P. C.-H., Ahmadi, S., & Cowling, P.
I., (2003). The strategic influence of conceptual structure
in graphical interfaces for scheduling. In P. G. T. Healey
(Eds.),. Interactive Graphical Communication Workshop
2003 . Working Papers. Queen Mary: University of
London, 7-20.

[3] Barwise, J., & Etchemendy, J. (1995). Heterogonous
logic. In: Glasgow, J., Narayanan, N. H., & B.
Chandrasekaran, B., (Eds.): Diagrammatic Reasoning:
Cognitive and Computational Perspectives. AAAI Press
Menlo Park, CA, 211-234.

[4] Cheng, P. C.-H., Barone, R., Cowling, P. I., & Ahmadi,
S. (2002). Opening the information bottleneck in complex
scheduling problems with a novel representation: STARK
diagrams. In M. Hegarty, B. Meyer, & N. H. Narayanan
(Eds.), Diagrammatic representations and inference:
Second International Conference, Diagrams 2002.
Berlin: Springer, 264-278.

[5] Cheng, P. C-H. (2002). Electrifying diagrams for
learning: principles of complex representational systems.
Cognitive Science, 26, 685-736.

[6] Larkin, J. H., & Simon, H. A: (1987) Why a diagram is
(sometimes) worth ten thousand words. Cognitive
Science, 11, 65-99.

[7] Palmer, S. E.: (1978). Fundamental aspects of cognitive
representation. In: Rosch, E., & B. B. Lloyd, B. B. (Eds.),
Cognition and Categorization. Hillsdale, N.J.: Lawrence
Erlbaum, 259-303.

[8] Shimojima, A. (1999). Derivative meaning in graphical
representations. Proceedings of 1999 IEEE Symposium
on Visual Languages, 212-219.

[9] Stenning, K., Inder, R. & Neilson, I. (1995). Applying
semantic concepts to analyzing media and modalities. In:
Glasgow, J., Narayanan, N. H., & B. Chandrasekaran, B.,
(Eds.): Diagrammatic Reasoning: Cognitive and
Computational Perspectives. AAAI Press Menlo Park,
CA, 303-338.

[10] Stenning, K. & Oberlander, J. (1995). A cognitive theory
of graphical and linguistic reasoning: Logic and
implementation. Cognitive Science, 95, 97-140.

[11] Zhang, J. (1997). The nature of external representations
in problem solving. Cognitive Science, 21, 179-217.

