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Abstract.  This paper considers the acquisition of knowledge that experts
would naturally express in the form of diagrams — diagrammatic knowledge
acquisition, DKA.  The implications for DKA of previous research on
diagrammatic representations and reasoning are considered.  Examples of
knowledge elicitation and knowledge analysis, with two different diagrammatic
representations, are given.  They demonstrate the feasibility of DKA.  Issues
raised by the analysis of the examples are discussed and consideration is given
to the development of DKA tools and methodologies.  DKA is distinguished
from knowledge visualization, which attempts to design effective visual
presentations of given information that is already expressed as propositions.

1  Introduction
What are the potential roles for diagrammatic knowledge representations in
knowledge acquisition (KA)?  What are the problems to be addressed when
attempting to use diagrams in eliciting and analysing expert knowledge for use in
knowledge based systems, KBSs?  The desire of experts to draw diagrams whilst
solving problems or explaining some aspect of their specialist domain will be a
familiar phenomenon to knowledge engineers.  Similarly, figures, charts, flow
diagrams and a host of other diagrammatic forms are found in the documents of most
domains, such as text books, instruction manuals, working sketches.  However, use of
diagrammatic representations for KA has been rather neglected in this field.  By
overlooking diagrams we may not only be missing important knowledge and powerful
problem solving methods, in some domains, but also missing efficient methods for
eliciting, analysing and implementing knowledge.

Diagrammatic representations have an established place in knowledge en-
gineering, but this has mainly been in the form of data visualization aids, rather than
in processes to acquire knowledge (see Jones, 1988 for a review).  In cognitive
science much is known about how humans reason with particular diagrams and what
makes effective diagrammatic representations.  Several AI systems have demonstrated
the feasibility and benefits of using diagrammatic representations, which could be
potentially incorporated into KBSs.

Diagrammatic representations are being considered rather than visual rep-
resentations.  Diagrammatic representations are a subset of all visually perceived
representations, and are graphical notational systems that involve artificial, symbolic



or simplified visual depiction, which are not organised in the form of a linear
verbalisable or propositional structures (Kulpa, 1994).  In this view, most KA
techniques are not diagrammatic, although some exploit visual features, including
some implementations of repertory grids and concept laddering.  The graphical
aspects of these techniques aids the visualization of the information rather than deeply
encoding the knowledge.  Propositional representations will to refer to conventional
knowledge representational formalisms, such a logic, semantic networks and
frames/schema.

Shaw and Woodward (1990) present a framework describing knowledge
acquisition as modelling expert knowledge.  The adequacy of their model will not be
discussed here, but it is merely adopted as a framework that provides a convenient
context and consistent terminology, for the purposes of the present analysis.  Central
to the framework are the processes involved in the production of (i) intermediate
knowledge bases and (ii) computer knowledge bases from (a) mental models, (b)
conceptual models and (c) semi-formal conceptual models1.  A computer knowledge
base is essentially a KBS and intermediate knowledge base is an organized and
refined, but unimplemented, body of knowledge.  Mental models are internal to
experts and conceptual models are informal externalizations of the mental models,
which are communicated to others.  Semi-formal conceptual models are final working
models or operational models.  Elicitation and analysis procedures are involved in the
production of intermediate knowledge bases.  Elicitation follows introspection of
mental models and conceptual models.  Analysis procedures draw upon com-
munication processes with conceptual models and the semi-formal conceptual models.
Analysis procedures are also required for the production of computer knowledge
bases, in conjunction with implementation procedures that use formalisations of semi-
formal conceptual models.  The development of intermediate knowledge bases and
computer knowledge bases inform each other by means of the analysis procedures.
Shaw and Woodward view the processes and procedures as bi-directional; the
development of the knowledge bases and the various levels of models mutually aid
each others’ development.  The image of acquisition presented has multiple layers of
knowledge, which are closely interconnected by cognitive processes and acquisition
procedures.

Now, for the considerations of diagrammatic KA (DKA) it is a matter of
identifying diagrammatic versions for each of the knowledge and procedural com-
ponents of Shaw and Woodward’s framework.  What are the diagrammatic forms of
mental models, conceptual models and semi-formal conceptual models?  How can
knowledge elicitation, analysis and implementation procedures be conducted with
diagrams?  Are diagrammatic representations suitable formalisms for building, or
incorporating into, intermediate knowledge bases and computer knowledge bases?
The focus of this paper will be on elicitation and analysis procedures from conceptual
models and semi-formal conceptual models.

                                                                        
1Shaw and Woodward’s term is models of the conceptual models, but semi-formal
conceptual models is used as it is less cumbersome and somewhat more descriptive.



In the paper research on diagrammatic representations and reasoning that is
relevant to DKA is first considered.  The main body of the paper will consider the
potential of two forms of diagrammatic representations for KA, as a means to being to
identify some of the issues for DKA.  Conventional Cartesian graphs and a special
class of diagrams, called Law Encoding Diagrams (Cheng, 1994, 1995a, in press),
will be considered.  They are both well suited to expressing qualitative and quan-
titative relations among multiple variables.  A discussion of the issues raised by the
examples then follows, with brief consideration of how to develop methodologies and
tools for DKA.

2  Diagrammatic Knowledge Representations and Reasoning
There has been substantial interest in reasoning and problem solving with
diagrammatic representations in Artificial Intelligence, cognitive science and
cognitive psychology.  There have been various attempts to produce generative
taxonomies of visual representations (e.g., Lohse et al., 1994; Bertin, 1983), but these
are too general to be useful for examining DKA.  Work that can address components
of Shaw and Woodward’s (1990) framework will be briefly reviewed to provide some
insights about the benefits of diagrams for KA and to flag some potential difficulties.

To begin, consider the nature of expert mental models.  Although there has
been much work on expertise (e.g., Chi et al., 1988) and diagrammatic reasoning
(e.g., Narayanan 1992), only a few studies of expert reasoning with diagrams have
been conducted.  Most notable is Koedinger and Anderson’s (1990) work on
diagrammatic configuration schemas (DCSs).  DCSs are diagrammatic perceptual
chunks.  By comparing novice and expert geometry problem solvers, they found that
structural constraints in the form of diagrammatic whole-part relations were used by
experts as an efficient knowledge representations.  Experts performed better, because
they have schemas that combine diagrams with information relevant to common
problem states (configurations).  They solve problems by searching for DCSs that are
applicable to the problem situation, matching parts of the given situation with the
diagrams in DCSs.  The information in the slots of active DCSs becomes available for
inferences.  Some implications for DKA flow from the existence of DCSs.  By
assuming that knowledge in a domain is encoded in DCS-like representations, this can
guide and productively constrain knowledge elicitation, analysis and implementation.
When an expert draws a diagram during elicitation, the general form of DCSs may be
taken as a template within which to try to organise the expert’s knowledge.  During
analysis DCS-like templates may suggests how to maximize the completeness of the
knowledge, by explicitly identifying empty slots and seeking information to fill them.
Given representations in the form of DCSs, the implementation of a KBS should be
largely based around the search of the space of DCSs for those that are applicable to
the target problem.  These are fairly strong recommendations, but it should be noted
that the applicability of Koedinger & Anderson’s theory beyond geometry problem
solving is yet to be fully demonstrated.

Moving from mental models to conceptual models and semi-formal conceptual
models, consider the seminal paper on diagrammatic representations by Larkin &



Simon (1987), entitled ‘Why a diagram is (sometimes) worth 10,000 words’.  By
building and comparing computational models of problem solving with diagrammatic
and sentential representations, they demonstrated that there are benefits in the
processes of search and recognition in problem solving with diagrams.  In diagrams
information needed for particular inferences is often found at the same location.  This
locational indexing makes the search for pieces of relevant data easier and reduces the
effort to recognise what rules (productions) are applicable, by limiting the amount of
symbolic matching that is required.  This work is important to DKA, because it
implies that consideration must be give to the way information is indexed within
diagrams.  Locational indexing is important, but this may not be apparent from
experts’ own descriptions of their diagrams or from observations of diagrams in use.
Thus, during elicitation in which diagrams are drawn, care must be taken to
understand how and where the experts’ focus of attention resides in the diagram, at
different stages in problem solutions.

On the machine side of the KA process, there are various lines of related work.
There has been much work on graphical interfaces for knowledge engineering (see,
Jones, 1988, for a review).  Eisenstadt and colleagues (Eisenstadt et al., 1990) use the
term visual knowledge engineering (VKE) to refer to the synthesis of visual
programming tools, program visualization tools, a sound knowledge engineering
methodology, and AI programming support tools.  The difference between DKA and
these approaches to visual knowledge engineering is that DKA is attempting to obtain
knowledge from experts that would normally be expressed in diagrams, and that may
necessarily require diagrams.  VKE, on the other hand, aims to re-present information,
which is already expressed in a conventional propositional notation, in a graphical or
visual format, to aid KBS development.  Thus tables, abstract labelled networks and
flow charts are common representations in VKE, but (Cartesian) graphs and structural
or configurational diagrams will be used in DKA.

Of interest to DKA are techniques for parsing diagrams.  Individual techniques
exist for particular classes of diagrams, mostly network or node-link diagrams (e.g.,
Lutz, 1986).  The development of techniques for parsing graphs and configurational
diagrams would enhance diagrammatic elicitation, analysis and implementation
procedures.  However, the prospect of effective engines that would translate diagrams
into standard propositional representations is remote, because of the high information
content of diagrams and the wide variety of forms of problem solving they support,
especially those that exploit perceptual inferences.  An alternative is to directly
incorporate diagrams in intermediate or computer knowledge bases.  For intermediate
knowledge bases a partial solution is to store diagrams alongside related knowledge
from the target domain (perhaps as bit maps).

For computer KBSs there is work that suggests that systems may in the future
use diagrammatic representations.  For example, Koedinger & Anderson (1990) have
built a simulation model that uses diagrammatic configuration schemas for geometry
problem solving, to demonstrate the sufficiency of DCS.  In addition to processes to
search its space of schemas, the model also possesses the capability to parse a limited
set of geometrical objects.  Furnas (1992) has built a rule based system, with an
architecture similar to a standard production system, that reasons with bitmaps.  Rule



conditions identify small bitmap patterns
and rule actions specify changes to those
patterns.  Other problem solving systems
t h a t  p o s s e s s  d i a g r a m m a t i c
representations are described by Funt
(1977), Novak (1977) and Shrager
(1990).  Unlike Furnas’s system, which
reasons with diagrams only, these other
systems integrate propositional
representations with the diagrams.  This
raises the important issue of multiple
representations in expert reasoning,
which was directly addressed by
Tabachneck et al. (1994).  They found that an expert uses the unique features of each
representation for different purposes.  Diagrams are used as place holders and to
summarise information, whereas verbal expression are used to give semantic meaning
and for making causal explanations.

Diagrammatic representations and reasoning has been studied in some detail,
but the problem here is to understand the possible uses of diagrams in the processes of
KA.  Some of the research has direct implications for DKA, but this section has been
somewhat speculative.  In the remainder of the paper, the focus will be on concrete
examples of diagrammatic representations and how they may be used for KA.

3  Elicitation with Cartesian Graphs
Cartesian graphs are a common form of diagrammatic representation, which can be
found in a wide variety of domains.  In Shaw and Woodward’s terms, graphs are often
used as conceptual models but are also commonly found as semi-formal conceptual
models.  For example, an expert’s pencil sketch graph on the back of an enveloped to
explain a process to colleague would be a conceptual model, but a printed graph in an
plant operating manual is a semi-formal conceptual model.  We will consider how the
knowledge in such graphs can be elicited for the development of intermediate
knowledge bases.

Typical Cartesian graphs define at set of axes so that points in a co-ordinate
space can be identified.  Figure 1 shows a P-V co-ordinate space (say pressure and
volume).  The magnitudes of a point in the graph is obtained by reading values off the
appropriate axes; for example, for case C1 the values are (V1, P1), as shown by dashed
lines in the Figure 1.  Families of points can be identified by the curves in the space;
for example, the curve in Figure 1 is a contour for a particular value of another
variable T.  Similarly, families of curves can be shown by multiple lines in the graph;
in Figure 2, three curves for different values of U are shown.

Simple graphs may be used in various ways for KA.  Because the axes define a
co-ordinate space, it is possible to distinguish different states.  For example, suppose
an expert sketches Figure 1 during a knowledge elicitation session.  It is apparent that
the space can be divided into two regions either side of the central curve, and that

Fig. 1.  A simple Cartesian Graph



cases C1 and C2 fall in different
regions.  By further questioning
the expert, it may be possible to
find distinguishing characteris-
tics for the regions, for instance,
that points above the curve rep-
resent “critical” cases but those
below are “normal” cases.
There is information in the
graph which may help to refine
the distinction between critical
and normal cases, by consider-
ing the shape and location of the
curve in the co-ordinate space.
Thus, critical cases are likely
when both V and P are large, but unlikely when both P and V are small.  Further,
when either V or P is large but the other is small, there is a moderate possibility that
the cases will be critical.

The purpose of a graph like Figure 1 may not be to distinguish different state
spaces or regions, but could be to specify the relation between the variables P and V.
If the graph is only a rough sketch, it is possible to infer that the P appears to be a
monotonically decreasing function of V.  If the graph is drawn more accurately, with
scales to the axes, it may be possible use a curve fitting technique to find a equation
describing the relation.  Guidance about the appropriateness of different techniques
can come by further questioning the expert.  For example, a simple linear approxima-
tion may be sufficient when the curvature of the line is low and the expert is uncertain
about its precise shape.  Fitting polynomials to curves is a somewhat more sophisti-
cated option for graphs that experts can draw more accurately.  With further
elicitation, it may be possible to select a suitable order for the polynomial, using the
expert’s knowledge of the number of characteristic operating modes of the target
system, which might correspond to the number expected roots.  If the expert says that
the relation is periodic, then Fourier analysis may be used.  The usefulness of the
outputs of such analytical techniques for the eventual KBS will depend on the nature
and tasks of the domain.

A greater variety of knowledge can be obtained from more complex graphs,
like Figure 2, which an expert may have carefully drawn or that might be found in the
documentation for a domain.  In Figure 2 three curves for particular values of U are
shown in a W-R co-ordinate space.  The values on the axes permit quantitative facts to
be inferred from the graph; for example, when W=100, it happens that R and U are
linearly related.  Although the graph’s axes indicates that R and U continue to infinity,
we may take the values on the axes as delimiting likely ranges of values that are of
interest in the domain, unless otherwise specified.  The graph not only gives the
relations among variables but also the ranges over which the relations are known to
hold.  For example, the graph shows that there is a limiting minimum value of

Fig. 2.  A more complex graph



W(=10), when R is large.  It may be the case that there is a relation for R and W to the
left of the asymptote, but this cannot be inferred from the graph.

Suppose that the line for U=20, in Figure 2, is a boundary between critical and
normal cases, as in the previous graph.  In this graph the contours for values of U
provides useful information about the proximity of particular states to the boundary.
For example, an expert may indicate that the area between curves for U=10 and U=20
should be treated as a warning zone.  A rule may be formulated which states that if the
R and W are such that the warning zone is entered, then corrective action should be
taken to prevent the system moving nearer criticality.  Further, given the shape of the
warning zone it is possible to infer, when R is constant and U=10, that a small change
in W is more dangerous at point A than it is at B, as shown by the arrows in Figure 2.
For case B action must be taken promptly, even for small increases of W.

The examples illustrates some of the forms of knowledge that are encoded in
graphs and that may be elicited using them.  These include: qualitative relations
among variables; rates of change of variables with respect to each other; algebraic
approximations to relations; different systems states or cases of phenomena, plus
boundary conditions for them; and, sensible ranges over which to consider the
variables, for which the relations are valid.  Although all these forms of information
can be obtained by conventional propositional KA techniques, there are benefits in
using a graph.  In graphs, as with most diagrams, information that is often needed for
particular inferences is often found at the same location in the diagram (Larkin and
Simon, 1987).  Typically information is neatly integrated within a diagram, so it is
likely to be easier to obtain related information from a graph or diagram than from
propositional knowledge structures.  Experts can effectively use the conventions for
constructing graphs as constraints to produce such compact and coherent packages of
knowledge.  Some properties of diagrams are perceptually obvious and require little
effort to identify, such as the gradients at different points on a curve.  Further,
important information in diagrams often appears as emergent features (Koedinger,
1992), such as the set of curves tending towards an asymptote in Figure 2.  This
means acquisition of derived or inferred knowledge can be easier with diagrams than
propositional representations, which may require more cognitive effort.

We now move from considerations of elicitation with single graphs to deal
with knowledge analysis with multiple graphs.

4  Analysis with Cartesian Graphs
Cartesian graphs are a flexible yet formal form of knowledge representation, so they
can also be used in knowledge analysis procedures.  Such procedures are used for the
refinement of intermediate knowledge bases and for the development of computer
knowledge bases.  An example is examined in which graphs are used for consistency
and completeness checking.

Consider a simple hypothetical example of KA for the dynamic control of a
fermentation process, in which the yield rate, Y, of the process is proportional to the
product of three variables, say, temperature deviation from some optimum, dT,
nutrient concentration, C, and oxygen concentration, G.  Suppose the expert has



during an initial elicitation phase identified Y, dT and C as pertinent variables, and has
drawn different graphs to show the relations among the variables under various
conditions.  During an analysis phase the consistency of the knowledge may be tested
by examining the form of the graphs.  If the expert had drawn Figure 3a and 3b for the
process then there is no problem, because the graphs are consistent; both show that
YµC.dT.  However, if Figures 3a and 3c were drawn, then comparing these graphs
reveals a difficulty, because Y and dT do not both increase together (with C constant).
There are at least three possible reasons for the inconsistency.  First, one of the graphs
could be wrong.  On telling the expert about the problem, the expert may simply
recognise that one of the graphs is in error.  Second, the model of the process may be
incomplete, perhaps a hidden variable is influencing the process.  For example, under
Figure 1c the oxygen concentration, G, may be to high, so causing temperature
dependent aerobic degeneration of the product to occur.  Finally, the graphs may not
apply over a consistent range of one of the variables, but by extending that range the
incompatibility might be resolved.  For example, all three graphs in Figure 3 would be
consistent, if Figures 3b and 3c apply disjointly to low and high value ranges of dT,
respectively.  This would imply that Figure 3a is only showing the left hand side, low
dT values, of a larger U-shaped curve.  More direct inferences could be made about
the ranges given information regarding the values on axes of the graphs.

Analysis in DKA is feasible with Cartesian graphs.  The potential benefits are
similar to the benefits noted for knowledge elicitation.  Graphs allow powerful per-
ceptual inferences to be made, such as visually joining Figure 3c to the right of Figure
3b and imagining that the sets of lines form inverted ‘U’ shaped curves.  Equivalent
inferences can be made with algebraic representations of the processes, but it is not
simple to generate a formula that will have the correct form (shape) for the full range
of all three variables.  Similar, it is likely that inconsistencies will be more readily
spotted in a set of graphs than in a set of abstract equations or other propositional
representations.  Graphs are a common form of representation, that most experts may
find more natural to use than existing propositional representations in KA.

Graphs are not the only form of diagrams.  The next two sections consider a
class of diagrams that may provide other benefits to KA.
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Fig. 3.  Different perspectives in multiple graphs



5  Law Encoding Diagrams
This is a class of diagrammatic representa-
tions with some interesting properties and is
used for various forms of expert problem
solving.  Problem solving and learning with
Law Encoding Diagrams (LEDs) has been
studied empirically (Cheng 1994, 1995a).
The role of LEDs in some important discov-
eries in the history of science has been
investigated and computationally modelled
(Cheng, in press; Cheng and Simon, 1995).
Interactive computer based discovery learn-
ing environments have been built using
LEDs for various domains (Cheng 1995a,
1995b).  This section describes LEDs and
considers some of the forms of problem sol-
ving that may be done with a particular
LED.  The next section considers how LEDs
may be used for KA.

A Law Encoding Diagram is a repre-
sentation that encodes the underlying relations of a law, or a system of simultaneous
laws, in the structure of a diagram by the means of geometric, topological and spatial
constraints, such that each instantiation of a single diagram represents an instance of
the phenomenon or one case of the law(s).

LEDs are effective for various forms of reasoning and problem solving,
because they are representations at an intermediate level abstractions, which bridge
the conceptual gulf between abstract general laws and descriptions of the behaviour of
phenomena.  LEDs are specialized computational devices for particular domains, that
exploit the benefits of reasoning with diagrams, whilst ensuring that problem solving
is grounded in the correct laws of a domain.

Figure 4 shows three examples of a LED, call the One-dimensional property
diagram, 1DP diagram.  Each 1DP diagram represents a single one-dimension head-
on collision between two elastic bodies.  In this domain there are six variables of
interest, which are represented by diagrammatic elements in 1DP diagrams.  The lines
(vectors) u1 and u2 are the velocities of the two bodies before impact, and the lines v1
and v2 are the velocities afterwards.  The subscripts indicate the two bodies, body-1
and body-2.  The masses of the bodies are shown by the lines m1 and m2.  Their
relative sizes show the magnitudes of the variables.  Each instantiation of a LED, a
single diagram, represents one instance of the phenomenon; the 1DP diagrams in
Figure 4 depict three collisions.  For example, in Figure 4a the two bodies have the
same mass and bounce off each other with the same speeds but in opposite directions.

The collisions domain is not one that we would attempt to learn about by doing
KA, as it is already well understood in physics.  However, it is a good domain to
introduce LEDs, to show some of their properties and demonstrate the kinds of

Fig. 4 . 1DP Diagrams



reasoning that can be done, and thus to see some of their potential for DKA.  The
underlying laws of the domain are momentum conservation and energy conservation.
An impression of the complexity of relations that may encoded in LEDs can be seen
by inspecting the algebraic forms of the laws;

m1u1 + m2 u2 = m1v1 + m2 v2  ,  . . . 1
and

1
2 m1u1

2 + 1
2 m2u2

2 = 1
2 m1v1

2 + 1
2 m2v2

2  , . . . 2
respectively.

Laws are captured in LEDs by rules that constrain the geometric, spatial or
topological structure of the diagrams.  There are three such law-encoding constraints
for the 1DP diagram.  (i) The tails of the initial velocity arrows and the tips of the
corresponding final velocity arrows must be in line vertically, so the total length of
the u1—u2 line equals the total length of the v1—v2  line.  (ii) The total length of the
mass line, m1—m2, equals the length of the velocity lines.  (iii) The small circles
indicate the ends of the lines that are not fixed by the previous two constraints; the
circles must lie in a straight vertical or diagonal line.

Cheng (1995a) describes the forms of reasoning and problem solving that are
feasible with LEDs.  These include: quantitative calculations; qualitative reasoning;
configurational reasoning; debugging and trouble shooting; reasoning about extreme
cases; analysis of complex interactions; extending LEDs to incorporate wider ranges
of phenomena; and, high level conceptual explanations, which use notions of physical
and temporal symmetry.  Two examples of problem solving with 1DP diagrams are
considered to give an impression of the capabilities of LEDs.

A common problem, especially in text books, is to find values of dependent
variables (unknowns) given the values of independent variables (knowns).  For
example, what are the final velocities of two bodies in an impact, given that they
approach from opposite directions with the same speed, but one is ten times heavier
than the other (m1/m2=10)?  Quantitative problems are relatively easy to solve with
1DP diagram, by drawing a diagram to scale, using the constraints given above, and
measuring the required values.  Figure 4c shows the diagram for the given problem,
with the mass line divided in the ratio 10:1, showing the final velocities are v1=0.6
and v2=2.6.  Given the simple geometric constraints that define 1DP diagrams, it is
possible to compute precise answers using simple geometry.  It is as easy to solve
quantitative problems for other combinations of unknown variables, such as m1 and
m2 given the 4 velocities.

For a representation to be generally useful in the present domain it should cope
with collisions involving three or more bodies.  For example, how can the behaviour
of the balls in Newton's Cradle be explained (the executive toy with five suspended
balls).  What will happen when two balls hit three coming in the opposite direction?
1DP diagrams apply only to pairs of colliding bodies, so it initially seems that they
cannot be used to explain complex interactions in Newton's cradle.  However, the idea
of pairs of impacts suggests that 1DP diagrams might be used in a (de)compositional
manner, by treating the whole as a series of independent pair-wise collisions.  This is



possible because a single diagrammatic element may be shared in more than one 1DP
diagram.  Figure 5 is a diagram for the given problem composed of six 1DP diagrams
from Figure 4a.  The first row shows ball b hitting ball c, and rebounding equally.
The second row shows balls a and b colliding and similarly balls c and d .  The
collisions propagate until finally balls a, b and c go in the opposite direction to balls d
and e.  This is a good example of the compositionality of LEDs, a property that will
be useful in DKA.

The two examples of problem solving with 1DP diagrams illustrate how LEDs
can be the basis for some types of expert problem solving.  A partial explanation of
the effectiveness of LEDs, which is somewhat different to those mentioned above, is
to view LEDs as perceptual chucks, similar but not identical to Koedinger &
Anderson’s diagrammatic configuration schemas.  Although the DCS have only, so
far, been found in geometry problem solving, it seems that much of Koedinger &
Anderson’s findings are applicable to LEDs, as they employ significant geometric
constraints.  Given the similarity between LEDs and DCSs, the observation in section
2, that it might be appropriate to use DCSs for DKA, may also be valid for LEDs.
The next section considers DKA with LEDs.

6  LEDs for KA
The 1DP diagram is a highly specialised LED for a particular set of relations
(Equations 1 and 2), so it is not suitable for general use in KA.  There are other
classes of LEDs that may be used, although one will be considered here — Algebra
Triangle, AT, diagrams.  (A specialised subset of AT diagrams have been used in a
computer based tutoring system for electrical circuits, which allows the user to
interactively manipulate the diagrams on screen, Cheng, 1995b.)

Figures 6a and 6b show the basic form of AT diagrams, using the fermentation
example introduced in section 4 above.  The height of the triangle is the value of dT
and the length of the base is Y.  The bold line beginning at the apex is a unit line and
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Fig. 5.  Explaining Newton’s Cradle



at its other end is a perpen-
d i c u l a r  l i n e ,  u n i t
perpendicular, whose length is
C.  These AT diagrams encode
the relation Y=dT.C.  Thus as C
or dT independently increase Y
will increase.  Each diagram
represents one set of values of
the variables; in Figure 6a dT is
greater than unity but in Figure 6b it is less than unity.  Though mathematically
equivalent, it is possible to conceptualize these AT triangles as encoding the relation
C=Y/dT.  Thus, we would consider that C  will increase as Y increases with dT held
constant, but C will decrease as dT increases with Y constant.

DKA with this class of LEDs could progress by the identification or
construction of AT diagrams, to find structures in which the changes to the variables
are consistent with the expert's expectations.  It is assumed that the AT diagrams are
directly manipulable objects on a computer screen.  For the fermentation process
example, an expert would initially identify the relevant variables and attempt to map
them into AT triangles.  Knowing how AT triangles encode qualitative relations
among the variables, such as those mentioned in the previous paragraph, this would
suggest which variables should be mapped onto the height, base and the unit
perpendicular.  The acceptability of the mapping can be checked by generating
different cases, particularly extreme ones, to see whether they match the expert’s
predictions.  Given an acceptable AT diagram, it is possible to infer a variety of rules
to be added to an intermediate or computer knowledge base.  A rule could be quan-
titative/algebraic, if the expert is able to make a close numerical match between the
AT diagram and the process (e.g., If the process is fermentation and dT=<u> and
C=<v>, then Y=<u>*<v>).  Alternatively, if the AT diagram is only an approximation
to the behaviour of the process, qualitative rules could be inferred (e.g., If the process
is fermentation and Y is increasing and dT is decreasing, then C is rapidly increasing).

Like the 1DP diagrams, AT diagrams can be used in a compositional fashion to
deal with complex interactions or relations.  As the lines in the AT diagrams represent
variables, it is possible for a line to be shared by more than one AT triangle.  Suppose
an expert introduces a new variable, G, to be incorporated into the model, Figure 7

Fig. 6.  AT diagrams

Fig. 7.  Composite AT diagrams



shows three examples of composite AT diagrams that include G.  Algebraically the
relations that they encode are (a) Y=dT.C+G; (b) Y=dT(C+G); and, (c) Y=dT.C.G.
This is a small sample of the possible AT diagram structures for four variables, but
the examples give an impression of the expressive power of this class of LEDs for
encoding relations.  Again, by interactive manipulation of the diagrams, experts
would be able to judge whether the changes among the variables are consistent with
their knowledge of the target process.  Quantitative or qualitative rules may be
inferred directly from the structural form of the composite AT diagrams.  

The examples demonstrate the feasibility of KA with LEDs, but the full
potential for elicitation and analysis with AT diagrams, and LEDs in general, is yet to
be investigated.  However, it is possible to make some predications of how and why
LEDs may be effective for KA based on the existing research with LEDs for problem
solving and learning.  The fundamental purpose of LEDs is to make the important
relations of a domain readily accessible using the structure of diagrams.  The potential
uses and benefits of LEDs flow from this.  LEDs may be effective for: (i) finding
qualitative relations among variables; (ii) building algebraic models of systems; (iii)
examining extreme and special cases; (iv) identifying general constraints among
variables; (v) exploring rates of change among variables; and, (vi) if scales are
provided for their elements, LED may be used for quantitative problem solving.  As
the relations among the variables are apparent from the structure of the diagram, it is
likely that LEDs will be good for eliciting and analysing the forms of knowledge just
listed.  The cognitive effort required to generate and make inferences with LEDs is
less than that of other representations, because they are diagrammatic and are at an
intermediate level of abstraction.  They are models that bridge the gap between
abstract relations and concrete instances.  The rules governing the structure of
composite AT diagrams are simply defined and can be translated into algebraic
formulas in a routine and straightforward manner.  Particular instances can be
examined by manipulating the shape of a LED within its diagrammatic constraints
and unusual cases spotted as they appear as distinctive patterns.

7  Discussion:  Research Issues for DKA
The possibility of DKA has been demonstrated using graphs and AT diagrams and
some of the potential benefits have been discussed.  Research on DKA is in its
infancy, but the examples and the review of research on diagrammatic reasoning
highlights various research issues for the field.  This section deals with five of them.

The first issue concerns the need for tools to support DKA.  KA can be greatly
facilitated by computer based tools, which may improve the effectiveness of
construction and revision of knowledge bases.  In the case of DKA, tools will be
particularly important, because diagrams are external representations that require a
physical medium in which to be drawn.  Tools will greatly reduce the effort needed
for the drawing and re-drawing many different versions of graphs or composite AT
diagrams.  Direct on screen manipulation of LEDs will be essential to enable experts
to simply examine and refine the diagrams.  DKA tools are quite feasible with modern
computers and can draw upon the same technology used in existing discovery



environments that deploy interactive LEDs for learning (Cheng, 1995a, 1995b).  For
example, in a graph based DKA tool, should the users be (i) allowed to sketch curves
on screen, or (ii) should they select curves from an on-line library?  The first option
gives the user greater flexibility, but requires computational machinery to interpret
and encode the shape of the curves.  In the second option, pre-coded descriptions of
the curves could circumvent some of the problems of on line parsing of the graphs.
However, this option relies on the library containing all the conceivable forms that a
user might require.

Following DKA tools is the issue of devising effective ways to use the tools.
Sketches of possible procedures were given in the above examples, but theoretically
and empirically founded methodologies are needed.  A systematic approach to the
analysis of graphs is required and could be loosely based on the guidelines for
structured interviews (mentioned by Shadbolt & Burton, 1989).  These guidelines or
protocols might consist of series of queries to the expert, to ensure the correctness and
completeness of the information needed to interpret graphs.  The protocols will need
to consider the nature of the axes, the form of the curves, the role of other features in
the co-ordinate space (e.g., asymptotes), and typical cases of reasoning with the
graph.  For example, take the axes, it is necessary to know whether the expert has
assumed that they are linear or logarithmic, whether the origin coincides with zero
values of the variables, and whether positive changes map onto upward and rightward
movements along the axes.

A general protocol for DKA would be useful, but the diversity of diagrammatic
representations makes this a remote possibility.  An alternative is to decompose
diagrams into separate problem solving functions and develop protocols associated
with each function.  A set of such functional roles of diagrams has been devised by
Cheng (1996b).  Previous work on reasoning with diagrammatic representations, see
section 2, will also help to guide the development of methodologies.  For example,
perceptual schemas may be used as templates to encode knowledge associated with
emergent features at particularly in locations in a diagram.

The third issue is the need for procedures to generate propositional rules from
diagrammatic representations for use in existing KBSs.  The translations will need to
maintain the accuracy, completeness and consistency of the expressions generated,
with respect to the original diagram.  Some of the kinds of information that are
available from graphs was considered in sections 3 and 4 above, but there are others,
including: areas “under” the curve to the abscissa or ordinate (integration);
interpolation to points between curves; possible extrapolation beyond the given
ranges; and, the existence of symmetries which are often useful in reasoning.
Achieving an appropriate balance the breadth of information and economy of
knowledge in the translation is hard problem.  Methods to match particular kinds of
information in diagrams to specific forms of problem solving will have to be
considered.

The fourth issue concerns the use of special representations for DKA, such as
AT diagrams.  The cost of learning to conceptualizing relations in terms of unfamiliar
representations, implemented as contrived (rather than natural) elicitation techniques,
may outweigh the potential benefits of having DKA tools in the first place.  However,



the diversity of kinds of diagrams suggests the possibility of marrying particular
diagrams to different forms of knowledge or problem domains, or even to cope with
the preferences of different experts.  For example, a knowledge engineer might use
AT diagrams with experts who are familiar with geometric reasoning, but adopt a
graph based DKA tool for those who are not.

The final issue is mentioned to acknowledge its importance in the long term,
but it is not considered in detail.  This is the role of role of multiple representations in
expertise.  In particular, the integration of diagrams and propositional knowledge will
be necessary for complete diagrammatic KBSs.  Investigating DKA in relative
isolation is the first step towards the more complex issue of integrating
representations.

8  Conclusion
Diagrammatic knowledge acquisition has been somewhat neglected in KA.  Here the
feasibility of DKA has been shown, with some support from previous work on
diagrammatic representations and reasoning.  The identification and discussion of
issues for study provides a context for future research.  The development of graph and
LED based KA tools, to investigate the issues discussed in the paper, has just been
awarded funding.  The construction of graph and LED based tools will involve the
modifications to existing mechanisms used in interactive graphical learning
environments.  The work will be mainly focused on procedures for knowledge
elicitation and knowledge analysis (to use Shaw and Woodward's conceptualization
for the last time).
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