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ABSTRACT 

Understanding science involves the mastery of complex networks of concepts.  To design 
effective computer based systems for learning science it is essential to adequately 
characterize the nature of those conceptual networks, so that clear and appropriate 
instructional goals can be defined and fed into the design process.  This paper considers a 
novel class of representations for science instruction — Law Encoding Diagrams (LEDs) 
— and describes the nature of scientific understanding based on these representations.  A 
framework of four classes of schemas has been proposed to characterizes problem 
solving and learning with LEDs.  How the framework encompasses complex networks of 
concepts is discussed and the implications for the design of computer based learning 
environments based on LEDs are considered.    
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INTRODUCTION 

Visual representations may be effective for problem solving and learning.  With new 
computer based technologies the variety of visual representation systems has dramatically 
increased with support for new forms of visualization and dynamic interactions (Kaput, 
1992).  The work described here is part of a research programming studying an 
interesting class of diagrammatic representations that can promote science learning — 
Law Encoding Diagrams (LEDs).  For a given domain a LED captures the laws 
governing a particular class of phenomena using the internal geometrical, topological or 
spatial structure of its diagrams, such that each instantiation of a diagram represents an 
instance of the phenomena or one case of the laws.   

 LEDs had a role in some major discoveries in the history of physics and chemistry 
(Cheng, 1996a).  Their advantage for the making of discoveries compared to 
conventional propositional representations is in part due to their computationally 
efficiency (Cheng and Simon, 1995).  A computer based discovery learning environment 
for particle collisions in physics has been built that exploits particular classes of LEDs.  
Figures 1 and 2 shows screen images of the system — ReMIS-CL (Representations: 
Multiple, Interactive, Structural for Conservation Laws).  The system deals with head-on 
collisions between two elastic bodies moving in a straight line and may be used to 
introduce the important laws of energy conservation and momentum conservation.  At the 
bottom of the screen there is an animated simulation of the collisions.  In Figures 1 and 2 
two LEDs are shown: the One-dimension property (1DP) diagram (left) and the Velocity-
velocity (VV) graph (right).  Both LEDs represent the masses of the bodies by the length 
of the lines m1 and m2.  The velocities before and after impact are represented as pairs of 
arrows (U1 U2) and (V1 V2).  In Figure 1 the situation is one of equal bodies 
approaching from opposite directions with equal speed, and departing with the same 
speed but in opposite directions.  Figure 2 shows a different configuration, with the two 
diagrams representing unequal bodies with unequal approach speeds colliding and then 
both going left at different speeds.  The LEDs are linked in ReMIS-CL so that changes in 
the configuration of one diagram will automatically be reflected in the other.  

Figure 1 

Figure 2 

 Diagrammatic constraints govern the structure of LEDs. An example of one in the 
1DP diagram is the rectangle rule, which specifies that the tails or heads of the pairs of 
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velocity arrows lie at the corners of a rectangle and run parallel to the top or bottom of 
the rectangle (Figures 1 and 2, left).  An example of a constraint of the VV graph is the 
intersection of the circle/ellipse and diagonal line  (Figures 1 and 2, right).  These 
constraints capture the laws governing the domain using the internal structure of the 
diagrams.  In the experimental studies of learning with LEDs, subjects comprehended 
such constraints and were able to adopt a novel diagrammatic approaches when solving 
quantitative problems, which they previously answered poorly (Cheng, 1996b).  An 
evaluation of ReMIS-CL has shown that subjects qualitative understanding of the domain 
improves, whilst a group using a matching learning environment with conventional 
representations did not (Cheng, 1996c).   

 A disadvantage of using LEDs in conjunction with conventional representations is 
the overhead associated with learning a new representation, but the potential advantages 
may out weigh this difficulty.  There are various ways to characterize the possible 
benefits of LEDs.  Like diagrammatic representations in general they can support more 
efficient inferences and searches for information (Larkin and Simon, 1987).  They are 
specialized computational devices for reasoning about particular domains (Cheng, 1996b) 
and may be considered as effective tools for thinking (Kindfield, 1994).  By combining 
diagrammatic rules that encode the laws of a domain with particular diagrams 
representing specific examples of phenomena, LEDs integrate levels of abstraction 
(Cheng, 1996b) and may help learners bridge the conceptual gulf between abstract 
general laws and concrete examples (White, 1989).  LEDs may be considered as limited 
abstraction representations systems and possess the cognitive benefits conferred by the 
specificity of such representations (Stenning and Oberlander, 1995).   

 However, these general explanations do not fully capture the character LEDs and 
they only provide relatively weak constraints on the design of learning environments for 
LEDs.  Similarly, the empirical evaluations of ReMIS-CL only demonstrate the benefit of 
computer based LEDs for a single limited domain, but knowing how best to apply the 
system to other domains, or to extend it beyond idealised elastic impacts between two 
bodies moving in one dimension, is problematic.  Further, the studies have focused upon 
discovery learning in which subjects interactively manipulate the diagrams on screen to 
learn the rules governing the LEDs, but other forms of reasoning and learning are 
possible with LEDs.  Thus, this research could benefit from a conceptual framework to 
help characterise the full spectrum of cognition with LEDs, so that the empirical 
evaluations can be placed on a more solid theoretical footing, and to provide a basis for 
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the systematic exploration of the design space of effective instructional systems that 
exploit LEDs.   

 Fortunately, such a framework is has been formulated and is now being evaluated.  
Cheng (1997) used it to characterize Galileo's discoveries in kinematics and in another 
study (to be reported elsewhere) the framework was used to explain protocols of problem 
solving in electricity.  Here, the nature of conceptual understanding in scientific domains 
will first be considered, to provide a map of the terrain that must be explored by learners.  
Such a map will be essential for defining instructional goals as targets for the design of 
effective learning systems.  Second, the framework will be introduced and shown to 
adequately cover the landscape of scientific understanding, so that it can then be 
legitimately be applied to the design of systems.  Finally, the general implications of the 
framework for computer based LEDs for science are explored by examining the benefits 
and limitations of ReMIS-CL and considering how it may be extended.   

UNDERSTANDING SCIENTIFIC DOMAINS 

The nature of scientific understanding is a question philosophers of science have wrestled 
with for centuries.  For our purpose here, it will be sufficient to consider the more 
focused and concrete question of what constitutes a good conceptual understanding of a 
scientific domain with LEDs.  The answer describes the terrain that learners must explore 
when learning science and which the framework must adequately characterize.  Four 
different but related aspects of are considered in turn.   

Diagrammatic Elements and LED Structure  

A good understanding of a scientific domain with LEDs must be grounded on a good 
comprehension of the structure of the relevant LEDs.  Basic aspects of this include what 
diagrammatic elements stand for which properties of the domain and how they represent 
the magnitudes of those properties.  For example, the relative lengths of mass lines (m1 
and m2) in the 1DP diagram and the VV graph, Figures 1 and 2, stand for the relative 
masses of bodies.  The geometrical, topological and spatial structure of the LEDs encode 
the laws of the domain, so knowing how the diagrammatic elements are interrelated is 
essential.  For example, the rectangle rule governing structure of 1DP diagrams is an 
important constraint of that LED.   

 Knowing typical examples of diagrams that represent common situations will 
facilitate problem solving, because chunks of information will be made readily available 
through recognition of the situation (or diagram) followed by the simple recall of the 
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diagram (or situation).  For example, the chunk that incorporates 1DP diagram in Figure 
3a is concerned with collisions between equal bodies, with the one initially moving body 
giving up all its motion (U1) to another that is initially stationary (V2).  How this chunk 
can be used for problem solving will be seen below.  Similarly, knowing examples of 
diagrams that have interesting patterns, such as symmetries, or that correspond to extreme 
cases of the domain, can aid comprehension of the underlying nature and scope of the 
laws, and also make more concrete the constraints on the structure of the diagram.  For 
example, Figures 3b shows what happens when one body is very much bigger than the 
other, say a perfectly elastic planet (m1) colliding with a perfectly elastic pea (m2).  This 
extreme case has the pea rebounding at no more than three times its initial speed (U2) in 
the opposite direction (V2), because the dashed diagonal line is not permitted to intersect 
the central mass line outside the rectangle.  For most scientific domains there will be a 
many examples of phenomena with corresponding diagrams. 

Figure 3 

Encoding Laws and Global Conceptual Relations 

Laws are the underlying relations that govern the nature of the phenomena in a domain, 
specifying permitted relations among variables in some formal representational system 
(e.g., algebra).  Knowing what laws a LED encodes is obviously an important part of 
understanding a domain with LEDs.   

 There are also global conceptual relations to be considered.  Idealizations play a 
central role in scientific knowledge, but knowing how laws apply to the real world is also 
a big part of scientific understanding.  The (elastic-)1DP diagram and (elastic-)VV graph 
are idealizations (Figures 1-3), because they represent perfect collisions in which no 
energy is lost.  In real collisions energy is lost through the distortion of the bodies and as 
sound, but modified versions of the conservation laws still hold for these phenomena.  
LEDs for such plastic collisions and their underlying laws take into account the energy 
that is lost from the system.  Figures 4 and 5 are examples of the plastic-1DP diagram 
and the plastic-VV-graph, for such collisions.  The precise way these LEDs work is not 
important for the present discussions, but it should be noted that compared to their elastic 
counterparts: (i) they are more complex, requiring extra diagrammatic features and rules 
(e.g., the addition of a second inner circle in plastic-VV graph, Figure 5); (ii) their 
structure becomes the same as that of the non-plastic (elastic) LEDs when no energy is 
lost (e.g., the inner circle expands to overlap the outer circle).  Knowing the relation 
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between the different versions of the LEDs and laws is necessary for a complete 
understanding. 

Figure 4 

Figure 5 

 Simplifications are also important in learning about science, because they omit 
details that are not essential for an initial appreciation of the domain.  The 1DP diagram 
is a good way to introduce the topic of particle collisions, because it simplifies the 
phenomena to one-dimensional motion.  The 2DP diagram can be introduced later to deal 
with motion in two-dimensions, Figure 6.  The pairs of initial and final velocities are 
represented by U1, U2, V1 and V2, respectively.  This LED treats the velocities as 
components parallel and perpendicular to the plane of impact (x and y directions).  The 
precise details of the structure of the LED does not need to be considered, except to note 
there is a (vertical) 1DP diagram embedded at the centre of the 2DP diagram and that the 
2DP diagram reduces to the 1DP diagram when the motions are all in one direction, 
vertical in Figure 6. 

Figure 6 

 The framework for LEDs will need to cope with such idealizations and 
simplifications, plus their interrelations; for example, the plastic-1DP diagrams and the 
2DP diagrams can be combined to model plastic two dimensional collisions, plastic-2DP 
diagrams.   

Modelling Complex Interactions of Components 

Scientific phenomena are complex in different ways.  Relations among the properties of 
the basic phenomena may be complex.  For particle collisions both momentum and 
energy conservation laws, holding simultaneously, are needed to account for the 
phenomena, and their algebraic expressions involve multiple symbols and many 
mathematical operators.   

 Another type of complexity comes in the form of interactions among the basic 
units or components of a domain.  These interactions may be governed by different laws 
that are largely independent of the laws governing the relations of variables for basic 
units.  The basic intra-component relations of particle collisions deal with single impacts 
between two bodies and the inter-component interactions are collisions among multiple 
bodies.  LEDs can model such interactions; for example, Figure 7 shows a sequences of 
multiple collisions between several elastic bodies moving in one dimension, as seen in 
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Newton’s Cradle (the executive toy with suspended balls).  Because the bodies are elastic 
the impulse travels through the bodies as a shock wave at the speed of sound, so complex 
collisions can be decomposed into to pair-wise collisions (interaction law).  In terms of 
the 1DP diagram, this means that the individual diagrams like Figure 3a can be 
assembled to model complex situations, such as one moving ball hitting four stationary 
balls of the same mass, Figure 7.  The same principle can be used to model interactions 
between bodies of unequal masses (see Cheng 1996b).   

Figure 7 

 As with LEDs for the basic phenomenon, understanding the domain at this level 
involves knowledge of: the constraints for drawing composite diagrams; the laws 
governing the interactions; prototypical cases and their corresponding diagrammatic 
configurations; special examples for interesting diagrammatic patterns or extreme 
phenomena.  The framework will need to cope with all these aspects of composite LEDs 
for complex interactions.   

Multiple LEDs 

There are usually different ways laws of a particular domain may be captured in 
diagrammatic form in an LED.  The 1DP diagram and the VV graph are two examples 
for the same domain that use quite different geometric and spatial constraints to encode 
the same two conservation laws.  To what extent multiple representations of the same 
domain may help learning and understanding in science is an open question.  For 
example, Kaput (1992) argues that multiple representations may give a deeper 
understanding by allowing learners to identify the invariants of a domain independently 
of any particular representations.   

 Whatever the potential benefit, multiple LEDs for a single domain can exist, so 
the framework must be able to embody them.  Further, some domains in science are 
governed by laws with the same underlying formal relations, even though their 
phenomena are quite different.  For example, in dynamics the law 
'force=mass*acceleration' has the same algebraic structure as the law 
'voltage=current*resistance' in electricity.  The LEDs for such laws will have the same 
diagrammatic structure but will apply to quite different phenomena.  This is another 
aspect of understanding science the framework must cover.   

 In summary, a good understanding of a domain based on LEDs must, at a 
minimum, encompass ten things:  

(1) knowledge about elements and structure of LEDs;  
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(2) relate the laws of the domain to the structure of the diagrams;  
(3) associate particular phenomenon with specific LED configurations;  
(4) interrelate theoretical considerations with examples of phenomena;  
(5) show how variants of laws (idealizations, specializations) are interrelated;  
(6) classify phenomena and group them into related classes; 
(7) distinguish relations within components from complex interactions among 

components; 
(8) allow comprehension of the mutual constraints between inter-component 

interactions and intra-components relations;  
(9) provide the means to interrelated different LEDs for the same domain; 
(10) distinguish different domains that happen to have the same underlying relations 

and hence LEDs with the same diagrammatic structure.  

A FRAMEWORK OF SCHEMAS 

Various models or characterizations of the structure of mathematical and scientific 
knowledge have been formulated: Michener’s (1978) ingredients and processes of 
understanding mathematics; Reif’s (1987) types of inferences in physics; White and 
Frederiksen’s (1990) progressions of qualitative causal models; Giere’s (1994) model 
maps; the studies of expert/novice differences in physics problem solving by Larkin, 
McDermott, Simon & Simon (1980) and Chi, Feltovich, & Glaser (1981).  The 
framework for LEDs shares many aspects of these analyses, but a significant difference is 
its focus on a diagrammatic representation rather than propositional or mathematical 
representations.   

 Cheng (1997) proposes four classes of schemas as (internal mental) memory 
structures for thinking with LEDs and uses them to explain how Galileo made kinematics 
discoveries with diagrams.  Various criteria were used in the formulation of the schemas, 
including: general compatibility with schema theories (e.g., Ellis and Hunt, 1993); 
parsimony in the number and types of structures proposed; coverage of all the forms of 
knowledge and information processing central to LEDs, as presented in the previous 
section.  The acceptability of framework has also been tested by using it to analyse 
problem solving protocols of experimental subjects learning about electricity with LEDs 
(to be reported elsewhere). 

 The four classes of schemas are: LED schemas (LS), Meta-LED schemas (MLS), 
composite-LED schemas (CLS) and meta-composite-LED schemas (MCLS).  They can 
be distinguished on two dimensions, as shown in Table 1.  The first dimension concerns 
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the level of abstraction: LSs and CLSs hold information on examples of phenomena or 
classes of phenomena; MLSs and MCLSs hold general theoretical information on the 
laws governing the domain, the diagrammatic constraints of the representations, and how 
they interrelated.  The second dimension distinguishes the loci of applicability of the 
schemas: LSs and MLSs cover individual components, the basic conceptual units of the 
domain; CLSs and MCLSs cover interactions among multiple components.   

 Justification of the framework, and its relation to schema theories in general, will 
be considered following the description of the structure of the schemas themselves.   

LED schemas (LS) and Composite-LED schemas (CLS) 

Table 2 

Table 3 

These classes of schemas are for particular phenomenon or classes of phenomena, with 
the LSs dealing with intra-component relations and the CLSs dealing with inter-
component interactions.  The slots of the two classes of schemas are comparable in that 
matching slots contain information of the same general type, but they are different in that 
the information pertains to either individual components or interactions among 
components.   

 Table 2 gives examples of LSs for the particle collisions domain.  The Diagram 
slot stores an image(s) of the configuration of the LED for the schema's particular 
phenomenon (in whatever form that images are held in memory).  The Diagram-
configuration slot specifies the notable features that distinguish this diagrammatic 
configuration from the configurations for other phenomena.  Domain-conditions give 
the particular circumstances that can be used to identify this phenomenon, which may be 
in the form of specific values of properties or as relations among them.  Interpretation is 
a propositional description of what distinguished the particular phenomenon of the 
schema in domain relevant terms.   

 The slots of the CLSs are similar, but deal with interactions among components.  
Table 3 gives examples for multiple collisions in one dimension.  For instance, the 
Composite-configurations slot defines the structure of the diagram as arrangements of 
LEDs for single components.  Each slot of a CLS will have tests to check that the 
information applies to interactions among components, whereas a LS's slots will have 
tests to ensure that only information pertaining to an individual component can be held.   
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 From the applications of the framework so far, it appears that the part LSs and 
CLSs have in reasoning is similar to the role that Koedinger and Anderson (1990) 
attribute to Diagrammatic Configuration Schemas, DCSs, in expert geometry problem 
solving.  DCSs are perceptual chunks that store information for a particular geometry 
problem configurations.  When the configuration of a diagram in a DCS matches a part of 
an external problem diagram, new information about the configuration can be asserted, if 
sufficient facts are available about the configuration.  Like DCSs, when part of an 
external diagram matches the diagram in a LS or CLS, the rest of the information about 
the particular phenomenon represented by the diagram is made available for reasoning.  
However, unlike DCSs, information from a description of some phenomenon that 
matches the Domain-conditions or the Interpretation of a schema will make the 
Diagram (and the Diagram-constraints information) available, so that an external 
drawing can be made (or completed).  This "two way" use of LSs and CLSs occurs 
because scientific problem solving is more diverse than the relatively unidirectional 
geometry proof problem solving studied by Koedinger and Anderson (1990). 

 LSs and CLSs can also be considered like schemas in standard schema theories 
(e.g., Ellis and Hunt, 1993).  An existing schema may be specialized or generalised into 
new one when a when a new phenomenon is met.  For example, the Zero-momentum LS 
(Table 2) is a generalization of the Default LS.  The General-Newton's-Cradle for any 
number of pair-wise collisions can be specialized into the Simple-Newton's-Cradle for a 
specific number of collisions.  Given a LED for a known phenomenon, say the VV graph 
in Figure 1, a new schema can be generated that inherits the contents of the Domain-
conditions and Interpretation slots, say from a 1DP diagram LS, but that uses the VV 
graph as a new Diagram.   

Meta-LED schemas (MLS) and meta-composite-LED schemas (MCLS) 

Table 4 

Table 5 

Meta-LED schemas and meta-composite-LED schemas store information on: (i) the 
abstract general laws of a domain; (ii) the structure of LEDs for the domain; (iii) the 
relations between (i) and (ii).  Like the LSs and CLSs, the slots of the schemas are 
similar, with the meta-LED schema covering relations within components and the meta-
composite-LED schemas covering interactions among components.   

 The structure of meta-LED schemas is illustrated with examples in Table 4.  
There are seven slots: Diagram-features specify the diagrammatic elements of a 
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particular class of LEDs for certain classes of phenomena.  Diagram-constraints are 
rules defining the structure of the diagrams in geometric, spatial or topological terms.  
The local constraints are specific relations between elements and the global constraints 
determine the overall form an LED.  For example, a global constraint is the rectangle rule 
we met above and another is the diagonal rule, Table 4, which specifies that ends of the 
lines not fixed at the corners of the rectangle must be co-linear diagonally or vertically 
(e.g., Figures 2 and 3).  Domain-properties are the properties of interest in the domain.  
Encoded-laws are the laws and relations that govern the domain.  Property-mappings 
indicate which domain variables correspond to particular diagram features.  
Interpretation-rules give a general description of the phenomena covered by the schema 
that distinguishes it from other schemas covering different classes of phenomena.  Cases 
are pointers to LSs for particular phenomenon in the domain or important diagrammatic 
configurations that can be derived from the MLS.   

 Given some general abstract information about a problem, appropriate MLSs and 
MCLSs may selected to provide new information for solving the problem.  For example, 
when in-elastic collisions are being considered, a match of this fact with the contents of 
Interpretation slot of the Plastic-1DP-diagram MLS (Table 4) makes available the laws 
governing this class of collisions and the rules for drawing LEDs.   

 Like schemas in general, MLSs and MCLSs can be generalized or specialized, 
with information inherited by the new schemas.  For example, elastic collisions are a 
special case of collisions in general, so the 1DP diagram MLS can be considered as a 
special case of the Plastic-1DP diagram (Table 4), with fewer degrees of freedom in the 
equations and a more constrained LED structure.    

Justification of Framework Structure 

The framework builds upon typical schema theories (e.g., Ellis and Hunt, 1993) with the 
hierarchical interrelation of schemas within each of the four classes of schemas and is-
part-of relations for LSs as sub-schemas of CLSs.  However, why is it necessary to define 
the four classes of schemas, rather than attempt to accommodate scientific understanding 
with LEDs within a conventional account, is considered in this sub-section.  The question 
can be broken down in to two separate issues underpinning the distinctions made in Table 
1: (i) the phenomena level versus theoretical (meta) level; (ii) the separation of intra-
component relations from inter-component interactions.   

 Two levels, LSs/CLSs and MLSs/MCLSs, are required because the knowledge of 
particular examples of phenomena is different in kind to the overreaching theoretical 
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(abstract and general) knowledge about the relations governing all the classes of 
phenomena within a domain.  This is apparent from the processes for generalizing 
descriptions of phenomena into general laws (LSs/CLSs into MLSs/MCLSs) and the 
processes for deriving descriptions of phenomena from the laws (MLSs/MCLSs into 
LSs/CLSs).  The discovery of laws is not a simple process of induction where sets of 
variables replace sets of values or properties, or where constraints among variables are 
relaxed, as new examples are incorporated into memory.  (That is the process of 
generalizing LSs/CLSs into new LSs/CLSs to cover a greater range of phenomena).  
Rather, the process is about finding the functional or structural relations among all the 
variables using some formal representational system, that typically requires an extended 
series of inferences.  For example, to find the momentum and energy conservation laws 
from sets of data requires non-trivial problem solving techniques (Langley et al., 1987; 
Cheng and Simon, 1992).  The same holds for the processes in the reverse direction, 
where applying laws to a particular case is more than assigning values to variables, but 
involves the computation of values within some formal system.   

 The framework proposes different classes of schemas for intra-component 
relations as distinct from inter-component interactions, but the classes of schemas have 
the same overall structure with equivalent slots.  Thus, there appears to be no 
psychological reason to double the proposed number of conceptual entities, because 
accounts of the processing of the schemas at the level of slot contents would be 
equivalent, whether there are two or four classes schemas.  However, there is a logical 
basis for the distinction, because many scientific domains do have components whose 
internal relations are governed by different laws to those for the interactions between 
components.  Such differences are reflected in the ways that the schemas are processed, 
with different patterns of reasoning being identifiable when thinking is concerned with 
intra-component relations versus inter-component interactions, or when the connections 
between the two levels are being made.  A homogenous non-scientific domain that does 
not have such a natural division will not exhibit such patterns; but for domains that do, 
defining the different classes of schemas gives more explanatory power and greater 
clarity to the accounts of cognition.  This claim is support by previous applications of the 
framework, which provided coherent characterizations of scientific discoveries and 
protocols of problem solving and learning in particular domains, with meaningful 
patterns of behaviour being characterized on precisely this basis.  As will be seen below, 
this distinction also has implications for the design of instructional systems with LEDs.   
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 From the use of the framework to date, it appears that the number and types of 
slots proposed for the four classes of schemas are both necessary and sufficient to 
account for problem solving and learning with LEDs.  However, a further point should be 
made about definition of the slots.  They have, quite deliberately, not been defined 
precisely using specifications of particular data formats, because the exact nature of the 
information may vary from domain to domain.  For example, domains-conditions of 
LSs/CLSs may be specified as magnitudes of properties in one domain but as structures 
in another.  It is sufficient for the purposes of the framework that the contents of the slots 
are separate expressions that enable the schemas to differentiate one phenomenon from 
another.  The framework trades some precision in the definition of slots for a greater 
scope of applicability to diverse scientific domains.   

The Framework and Aspects of LED Knowledge 

From the previous sub-sections an implicit impression of how the framework 
characterizes scientific understanding will have been gained.  This section makes the 
characterization explicit, with reference to the ten things, identified above, that are 
important for the understanding of scientific domains with LEDs.  Figure 8 shows 
schematically relations within and between schemas of the four class, with each quadrant 
containing schemas of the same class.  Boxes stand for schemas, with their labels naming 
examples in Tables 2 to 5 or referring to certain figures, and blank boxes representing 
other examples not discussed here.  Plain lines connecting boxes are "conventional 
hierarchical" relations, as per schema theories in general.  Other types of lines are 
explained below.  Each of the ten aspects will be considered in turn, with examples in 
Figure 8 shown by appropriate numbers in circles.   

 (1,2) MLSs/MCLSs encompass knowledge about elements and structure of LEDs 
and relate the laws of the domain to the structure of the diagrams.  (3) The association of 
particular phenomenon with specific configurations of LEDs is the job of the LS and CLS 
classes.  (4) Knowledge that a law(s) applies to a particular phenomenon, or class of 
phenomena, is provided through the Cases slots in MLSs/MCLSs, but deriving a 
particular case will require the application of the other information from these theoretical 
schemas in a series of inferences.  (In Figure 8, this is shown by solid arrows.)  (5) 
Variants of laws in the form of idealizations and specializations are encoded by the 
interrelation of schemas within the hierarchies of MLSs and MCLSs.  (6) Related 
phenomena and classes of similar phenomena are encoded by the interrelation of the 
schemas within the hierarchies of LSs and CLSs.  (7) Relations within components are 
covered by MLSs and LSs, whilst complex interactions among components are handled 
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by MCLSs and CLSs.  The dashed lines, in Figure 8, between LS and CLS boxes 
indicates that it is possible to recognize perceptually a Diagram of a LS within a 
Diagram of a CLS, but this does not mean that LSs are sub-schemas of CLSs.  (8) The 
interdependence of inter-component interactions and intra-components relations is 
embodied by MCLSs taking MLSs as sub-schemas in their Component-LEDs slot 
(dashed arrow).  (9) LEDs from the same domain but with different diagrammatic 
structures will be related schema that inherit information from a common parent schema 
that holds general information about the domain (Domain-properties, Encoded-laws, 
Interpretation), but not about particular diagrams.  (10) Diagrams with the same 
structure but applying to different domains are related through a common parent schema.  
That parent schema will hold information on Diagram-features and Diagram-
constraints, and the abstract relations (Encoded-laws) common to both domains, but it 
will not carry information on how the diagrams map to domain properties (Property-
mappings) nor any Interpretation in terms of the domain.  Such a schema will not be 
applicable to any single domain, but would play role in providing insight into the 
similarities across different scientific domains. 

Figure 8 

DESIGNING SYSTEMS FOR LEARNING WITH LEDS 

This section considers the implications of the framework for the design of computer 
based systems for learning with LEDs by first identifying the features of ReMIS-CL that 
appear to help or hinder learning and explaining why in terms of the framework.  Then 
the framework is used to make design suggestions for the future development of the 
system.   

 The present version of ReMIS-CL was built before the development of the 
framework.  The design was guided by various ideas (Cheng, 1993).  The first was to 
provide interactive LEDs for students to discover the constraints of the LEDs, with the 
system automatically maintaining the correct structure of the diagrams.  ReMIS-CL 
allows students to examine many different configurations and there is some evidence that 
students who do more diverse exploration gain a better qualitative understanding of the 
domain (Cheng, 1996b, 1996c).  For example, as the ratio of the masses changes, they are 
better able to predict what will happen to the final velocities.  The second idea was to 
provide two LEDs for the same domain, the 1DP diagram and the VV graph, to see 
whether multiple representation could facilitate the discovery of the invariants (laws) of 
the domain.  Two LEDs may help the learners to spot those aspects peculiar to each LED 
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and those that are common, so identify the underlying relations by a process of 
triangulation.  However, in the evaluations of ReMIS-CL, there was little evidence to 
show that learners were attempting to integrate the two LEDs in some way.  For instance, 
the amount of switching between LEDs of the systems was unrelated to subjects' learning 
gains.   

 The framework can explain both findings.  Diverse exploration of the 
configurations of a LED, rather than the amount of activity on the system, leads to better 
qualitative understanding.  ReMIS-CL seems to support learning of particular LSs by 
providing a simulation of the collisions that closely matches the configuration of the 
LEDs.  The size of the bodies are depicted as different size circles and the animation 
speed is in proportion to the magnitude of the velocities.  All the pieces of information 
needed to fill the slots of a LS are simultaneously present.  The system was designed so 
that users directly manipulate elements representing particular properties within the 
diagrams, so subjects could easily examine a series of similar configurations 
systematically by making small incremental changes to the diagram or explore very 
different configurations by making dramatic changes.  The different goals of these 
approaches will influence the organization of the acquired LSs in a way that reflects the 
similarity of phenomena or the similarity of LED configurations, rather than embodying 
arbitrary relations among the features of the LEDs, such as the width of the diagram.  
Thus, subjects qualitative reasoning, in the experiments, may have been supported by an 
appropriate hierarchy of LSs, with an overall organization of the schemas reflecting the 
important relations in the domain.   

 The lack of effect of giving two LEDs to the subjects can be explained in terms of 
the conjunction of the relatively short time subjects spent on the system and the amount 
of knowledge required before commonalties between two different LEDs can begin to be 
considered.  To gain a deeper understanding of the domain by combining both the 1DP 
diagram and the VV graph requires a process of generalization that yields the common 
parent schema for the two LEDs — MLS box '(9)' in Figure 8.  However, it is unlikely 
given the relatively short time subjects had on the system that they would have acquired 
full MLSs for the two LEDs, so it would be difficult for them to comprehensively 
compare the slots of the MLSs to discover what contents were, or were not, shared in 
common.  Further, the framework makes it clear that attempting to learn a MLS from sets 
of LSs is a difficult task in itself, but ReMIS-CL does little to support this process.  For 
example, it prevents incorrect diagrams from being generated but does not deliberately 
focus attention onto the diagrammatic constraints.  Although in hindsight it is clear that 
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subjects had insufficient time or support to fully understand the LEDs, this problem has 
only made conspicuous by the application of the framework.   

 A limitation of ReMIS-CL, which is obvious from the descriptions of the domain 
presented here, is its narrow focus on simple two-body one-dimensional elastic collisions.  
This is not a criticism that follows from the framework, but the framework does raises the 
question of whether covering more of the domain would also have an effect of enhancing 
learning about this particular part of the domain.  By acquiring related schema, say for 
plastic or two-dimensional collisions, this could help learners refine the contents of the 
schema for elastic collisions by making more explicit constraints that were only implicit 
when schemas for a single class of phenomena were considered in isolation.  For 
example, the fact that the lines in the 1DP diagram are always parallel stands in stark 
contrast to the lines in the 2DP diagram (Figures 3 and 6).  For this reason, and also 
simply to broaden the scope of ReMIS-CL, covering other aspects of the particle 
collisions domain is desirable.   

 As already noted, the framework predicts that learning about an aspect of a 
domain that only requires the acquisition of a schema from existing schemas of the same 
class will generally be easier than attempting to learn that same schema by invoking 
schemas from an other class.  Knowledge of the 1DP diagram MLS is easier to obtain by 
specializing the 2DP diagram MLS than by generalizing many examples of LSs for 
different configurations of 1DP diagrams.  Similarly, generalizing the CLSs for Simple-
Newton's-Cradle is easier than deriving the General-Newton's-cradle CLS (Table 3) from 
the 1DP-series-collisions MCLSs.  The extension of ReMIS-CL to cover more of the 
domain will, thus, requires the provision of more instructional support for students than is 
given in the discovery learning approach used so far.  The next version of the system will 
need to show, amongst other things, how the diagrammatic constraints of the LED 
defined in each MLS translates into the various diagrammatic configurations of known 
LSs.  This might be done visually by temporarily highlighting the diagram's features 
covered by a particular constraint.   For example, the rectangle rule of the 1DP diagram, 
described above, could be drawn to the attention of the learner by superimposing a red 
rectangle over each 1DP diagram.  Selecting a different constraint, such as the diagonal 
rule, would mean highlighting a different part of each 1DP diagram.   

 The framework also provides some guidance on the order in which interactions 
among components and relations within components should be introduced.  One can 
image that considering inter-component interactions first would provide a good context 
for the later introduction of intra-component relations.  However, in the framework MLSs 
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are found as sub-schemas within MCLSs, so trying to learn MCLSs first will mean there 
will be no contents for one its slots.  Hence, learners must return to the MCLSs again to 
fill in the gaps after the MLSs have been learnt.  However, by dealing with MLSs first, it 
is more likely that one pass though the MCLSs might be sufficient.  Learning about 
interactions through compositional analysis may overall be easier, because it is more 
constrained with fewer unknown entities having to be entertained than under a 
decomposition approach.   

CONCLUSIONS 

To investigate design of effective computer based systems of learning science with 
LEDs, this paper initially considered what it is to have a good understanding of a 
scientific domain.  Such an understanding involves a complex network of concepts with 
many different kinds of information at different levels of abstraction and generality.  The 
framework of schemas has been shown to adequately characterize such complex 
networks of concepts, so it can be used as a basis for considering the design of 
instructional systems for learning science.  By applying the framework to ReMIS-CL 
explanations were provided for why the system seems to be effective for promoting some 
aspects of scientific understanding but not others.  Further, suggestions for the future 
development of the systems were derived from the framework to illustrate how it can be 
used to help constrain the design of LED based instructional systems.   
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