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Abstract

The representational analysis and design project is investigating the critical role that representations
have on conceptual learning in complex scienti®c and mathematical domains. The fundamental ideas are
that the representations used for learning can substantially determine what is learnt and how easily this
occurs, and that to improve conceptual learning e�ective representations should be found or invented.
Through the conceptual analysis and empirical evaluation of a class of representations that appear to be
particularly bene®cial for conceptual learning, Law Encoding Diagrams (LEDs), the project has
identi®ed certain general characteristics of e�ective representations. In this paper a descriptive model of
the components and processes of conceptual learning is presented and used for several purposes: to
explain why the nature of representation used for learning is critical; to demonstrate how
representations possessing the identi®ed characteristics of e�ective representations appear to support the
major processes of conceptual learning; to consider how computers may further enhance the potential
bene®t of LEDs for conceptual learning. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

One of the major challenges now facing the use of computers in education is to develop
systems that e�ectively support conceptual learning in substantial mathematical and scienti®c
domains. Computer-based learning has had some success at promoting procedural or skills-
based learning (e.g. Anderson, Corbett, Koedinger, & Pelletier, 1995; Lesgold, Lajoie, Bunzo,
& Eggan, 1992; see also papers by Wood and Wood, and Wood, Underwood and Avis in this
volume), but it is by no means obvious that the design of these systems can be extended to
support conceptual learning.
This paper summarizes the theoretical and empirical aspects of a programme of research that
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is investigating how best to support conceptual learning. The basic claim of this work is that
the nature of the representational systems used for such learning, to a signi®cant extent,
determine what is learnt and how easy it is to obtain a good conceptual understanding. The
keys to conceptual learning are e�ective representations; the programme of research will be
referred to as `the representational analysis and design project'.
Work in cognitive science on problem solving, expertise and the nature of representations

has demonstrated the pivotal role that representations have in human cognition, especially in
reasoning and problem solving. Following Skemp (1971), Kaput (1992) and others, the
representational analysis and design project is extending this work into the arena of learning
and in particular to conceptual learning. Motivation for the approach of the present project
comes, in part, from studies of the nature of scienti®c discovery which have demonstrated that
the role of representations are fundamental to the success of the scienti®c enterprise. Major
®gures in the history of science made their discoveries by carefully selected representations, or
by inventing new representations. These representations had informational and computational
properties that facilitated the discoveries. Thus, an appealing notion is that learners may also
bene®t substantially in similar ways by being given carefully selected representations, or even
specially invented representations, for use in conceptual learning.
To introduce some of the issues to be covered in this paper, consider two learners' attempts

at solving a particular physics problem: one using a conventional algebraic approach and the

Fig. 1. PB's algebraic solution to a particle collision problem.
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second an approach using a diagrammatic representation. Both solutions were produced by
participants in the empirical evaluations that have been conducted on the e�ectiveness of
di�erent representations for learning as part of the present project. The problem involves
®nding the velocities of two elastic bodies which have collided head-on, given the masses of the
bodies and their initial velocities.
A picture illustrating this class of problems is shown as the ®rst step of the solution attempt

in Fig. 1. (The two pages have been accurately redrawn for clarity.) This solution was
produced by experimental participant PB, who was a graduate physicist working for his
doctorate in Physics. This attempt was generated in the pre-test of an experiment. PB would
have been well schooled with the relevant laws and algebra during his undergraduate degree.
Given the initial state of the problem, in which body-A impacts body-B coming in the opposite
direction with a di�erent speed, PB drew the diagram showing the initial situation, Step 1 in
Fig. 1. The solution involves writing down the algebraic laws for momentum and energy
conservation as applied to this class of phenomena, Steps 2 and 4, and substituting in the given
values, Steps 3 and 5. At Step 6, PB begins to think about substituting one equation into the
other to obtain an equation with just one unknown variable, but he realizes that he has made
a mistake in the substitution of values into the momentum equation (at Step 3), so he corrects
this before proceeding (Step 7). The full substitution and elimination procedure follows, Steps
8 and 9. PB obtains a quadratic equation but does not solve it. Instead, he reverts to the
earlier equation derived from the energy conservation laws (at Step 8) and simply ®nds a
numeric solution by considering squares of integers (Steps 10 and 11). The equation derived
from the momentum law (at Step 7) is then used to successfully check this numeric solution
(Step 12). PB is happy to state the ®nal solution (Step 13). However, he does not realize that
the values are the same as the initial velocity values given in the problem statement, which he
had earlier used to label the diagram at Step 1.
Despite being a graduate physicist it is clearly not the case that PB has a good

understanding of this basic topic of physics. Unfortunately, PB's performance is not unusual

Fig. 2. JT's diagrammatic solution to a particle collision problem.
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compared to the other graduate physicists and engineers that have been studied doing similar
problems (Cheng, 1996c). This solution attempt is a good example of the di�culties that can
arise from the use of a poor representation. Mistakes have been made in the manipulation and
interpretation of the expressions generated during the solution, some of which PB has done
well to spot and correct, others he has missed completely. E�ort has been wasted pursuing a
series of inferences in a particular direction which was then abandoned. Knowledge about
techniques for the manipulation of the representation itself is necessary for problem solving but
is not directly relevant to understanding the nature of the domain, in this case methods to
solve pairs of simultaneous equations and the solution to quadratic equations. It is easy to lose
track of the goal during problem solving when so much algorithmic work has to the done, as
shown by PB not realizing that the solution values were identical to the given values.
One of the claims of the representational analysis and design project is that such di�culties

can be avoided by giving learners better representations. Fig. 2 shows an alternative approach
to the solution using a similar, but more di�cult, problem. It is more di�cult because the
masses of the bodies are not equal. Fig. 2 is an example of a class of representations that was
invented by the scientists, Huygens and Wren, who discovered the laws governing this domain
(Cheng & Simon, 1995). The magnitude of the masses are shown by the lengths of lines m1 and
m2 in the middle of Fig. 2. The given initial velocities are shown by the arrows at the top of
Fig. 2, u1 and u2. The ®nal velocities have been found by construction of the diagram
according to certain geometric rules that encode the laws of momentum and energy
conservation for this domain. After impact, the bodies depart in the same direction but v1 is
much greater because its mass is much smaller.
The diagram in Fig. 2 was actually produced in the post-test of an experiment, by

participant JT who was a graduate psychologist with little knowledge of physics (in contrast to
PB, above). JT learnt about the domain for 40 min using a computer-based learning
environment that exploits these diagrams and was developed as part of the present project. No
direct instruction on the structure or use of the diagrams was given to JT who simply learnt
about the domain by manipulating the diagrams on screen and comparing them with an
animated simulation of the collisions. Despite the limited amount of instruction and the
relatively short time on the system, JT rapidly acquired the rules governing the structure of the
diagrams. The post-test was the ®rst time she drew the diagrams for herself, but she
successfully applied them to problems she could only guess at before using the system. The
experiments conducted in the present project, with a variety of representations in computer-
based and conventional media, show that such dramatic changes in approaches to problem
solving with new representations is not unusual.
The diagram in Fig. 2 is clearly simpler than the numerous complex expressions in Fig. 1, so

the chances of making errors when generating or modifying such representations are likely to
be lower. The form of the diagram also re¯ects the structure of the domain, the pairs of arrows
for initial and ®nal velocities giving a simple image of what is happening, so the interpretation
of the representation is supported naturally. The diagram uses simple geometric constraints to
encode the laws of the domain that are directly applied to elements representing particular
properties, whereas the syntactic algebraic rules operate on quite arbitrary expressions remote
from the phenomenon itself.
The contrast between Figs. 1 and 2 exempli®es how the representation a learner uses can
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determine what and how easily they learn. Thus, an approach which appears to have great
potential for improving conceptual learning is to judiciously select, or invent, appropriate and
e�ective representations. This paper will summarize the theoretical and empirical work
conducted to articulate and test this claim. The paper has three main sections.
The ®rst section considers why it is that representations can exert such an in¯uence on

conceptual learning, or to put it another way, to explain why the processes of conceptual
learning are so sensitive to the choice of representations. To achieve this, it is necessary to
consider the nature of conceptual understanding and the processes of conceptual learning. This
is done by presenting a general descriptive model of the components and processes of such
learning. This model is used to identify the major barriers that an ine�ective representation
may raise in the path of the learner; to show that previous computer-based approaches to
promote conceptual learning have been largely piecemeal in their attempts to support learners
overcoming such barriers, and to argue that the choice of an e�ective representation can, in a
systemic fashion, minimize these barriers.
The second section of the paper also uses this model to provide a context in which to

consider the nature of e�ective representations. Various characteristics of e�ective
representations are identi®ed and described. A particular class of representations, Law
Encoding Diagrams (LEDs Ð illustrated in Fig. 2), has been the main focus of the empirical
studies and conceptual analysis in the project, because they possess these characteristics and
appear to be e�ective in supporting conceptual learning. Empirical evaluations of these LEDs
have shown that they can improve learning compared with traditional algebraic approaches
(Cheng, 1996d). Other systems of LEDs have also been specially designed for various domains
(Cheng, 1999a,b,c) and further empirical evaluations have demonstrated that they can promote
learning (Cheng, 1999e). An example with LEDs for electricity is presented later.
The third and ®nal section of the paper considers general educational issues and implications

concerning the introduction of novel representations.

2. Conceptual learning and representations

The representational analysis and design project is based on a considered choice to explore
learning in substantial complex mathematical and scienti®c domains. Examples are probability
theory, electricity, particle collisions, Galilean kinematics, Newtonian dynamics, algebra,
di�erential calculus and thermodynamics, of which the ®rst four have been studied in detail to
date. Such domains are being considered because the potential impact that the choice of
representations can have on problem solving and learning is much greater than for simpler
domains. Important aspects of representational design may be missed in studies with simpler
domains, and approaches to support conceptual learning developed for simple domains may
not scale up to larger, and more complex ones.

2.1. Conceptual understanding

A ®rm conceptual understanding of a substantial scienti®c or mathematical domain will need
to encompass all the di�erent ontological, functional and structural aspects of that domain.
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Clearly, for a representation to enhance learning e�ectively, it will need to support each of
these to some extent.
For example, consider the domain of electricity: This topic is di�cult to learn because it has

intangible entities and properties (e.g. electrons, resistance) and uses formal technical concepts
(e.g. perfect conductor, Amps). Moreover, the domain involves a great many di�erent types of
components (e.g. resistors, wires, switches, bulbs, diodes, etc.) which may be arranged in a
huge variety of network con®gurations (e.g. simple series and parallel arrangements,
Wheatstone bridge, to mention a few). The behaviour of these components and networks may
be described in concrete terms, by giving values of electrical properties, or they may be
characterized in more abstract terms in relation to the general laws of electricity. These laws
re¯ect the complexity of the domain with relations for individual components and also
assemblies of components. It is possible to reason about the domain in formal algebraic terms
using laws and also in more concrete causal or material terms, perhaps by analogy to hydraulic
systems. At a more detailed local level, it is possible to consider the structure of a network in
terms of the connectivity of components, topology, or in terms of the spatial arrangement of
components.
Assuming that an individual's conceptual understanding of a domain consists of a complex

network of concepts (Hiebert & Carpenter, 1992), we may address what constitutes good
knowledge by considering the nature of such networks. Precisely what form the internal mental
representation takes is not essential for the present considerations (but see Kyllonen & Shute,
1989, and the paper by Gobet and Wood in this volume for discussion of mental knowledge
representation). Of concern here is the general structural character of such networks, in
relation to the above description of the nature of complex domains.
Some insight into this issue comes from studies of how scientists originally made discoveries

in new domains. Contrary to popular stories about discoveries as leaps of insight and
serendipity, realistic historical accounts that, for instance, examine the evolution of scientists'
ideas through their laboratory notebooks, show that substantial work on the part of scientists
is involved. They sift through large bodies of empirical evidence and a host of potential models
before they eventually obtain a coherent integration of laws for the domain with the many
di�erent manifestations of the phenomena, over a range of complementary but alternative
perspectives. If learners of science obtain personal networks of concepts with a similar scope
and structure, it would be reasonable to claim that they have a good understanding.
Some of the desirable properties of good networks of concepts are highlighted by Thagard's

(1989) Theory of Explanatory Coherence, and its implementation in the ECHO model. The
theory and model are used to assess the acceptability of di�erent sides of major debates in the
history of science, which demonstrate the possibility that the structure of networks of concepts
can be assessed, on a relatively large scale, to determine the quality of understanding. Chi
(1992) also considers the ways in which networks of concepts are structured, but she focuses on
di�erent hierarchical categories of concepts that may be used to describe aspects of a domain.
This theory seeks to explain di�erent degrees of di�culty in achieving conceptual change in the
history of science, and in individuals learning science, in terms of di�erent classes of structural
changes to the hierarchies of concepts. Again, the point is made that it is feasible and
important to address the general nature and structure of networks of concepts when
considering the quality of understanding.
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Other work in arti®cial intelligence and cognitive science on models of induction, analogy
and concept integration demonstrate the importance of relatively local analysis of the structure
and organization of concepts (Holland, Holyoak, Nisbett, & Thagard, 1986; Gentner, 1989;
Fauconnier & Turner, 1998). Processes to identify, select and compare sub-networks of
concepts are common to these models of complex patterns of reasoning. The models also
support the present view that good conceptual understanding relies on a rich well-structured
network of concepts.
Research on expertise in physics and mathematics problem solving also speaks to this issue.

Expert knowledge is usually organized in accordance with the important core principles of the
domains (Larkin, McDermott, Simon, & Simon, 1980; Chi, Feltovich, & Glaser, 1981;
Koedinger & Anderson, 1990). So, approaches to conceptual learning should foster the
principled organization of concepts. It is, however, unrealistic to expect most learners to
become full experts of domains in science and mathematics, given their scope. Thus, a good
understanding should: (1) encompass a fair initial sample of concepts from throughout the
whole domain, so that when novel situations are met there are likely to be some relevant
concepts to act as an appropriate starting point for problem solving; (2) include problem
solving methods that are easy enough for the learners to use to construct the new concepts for
themselves.
These considerations provide some indication of the possible goals of conceptual learning in

terms of building good networks of concepts. Support for learning should facilitate the
development of networks that: have ample scope; are well integrated under some overarching
scheme that re¯ects the fundamental laws of the domain; have good di�erentiation of concepts
as they relate to di�erent classes of situations; provide usable methods for independent analysis
of new concepts.

Fig. 3. Components, processes and sub-processes of conceptual learning.
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2.2. Components and processes of conceptual learning

How do learners obtain such conceptual networks? Fig. 3 illustrates the major task facing
the learner and also the designer of e�ective approaches to instruction, by showing major gaps
to be spanned between the external sources of knowledge exhibited in books, instructors,
computer software and as physical models and demonstrations (Domain Ð bottom left box)
and the internal Network of concepts the learner is gradually developing (top right box).
Building the conceptual network clearly does not occur by simply transmitting the knowledge
of the domain to the learner. At a minimum, consideration must be given (1) to the role of the
External representations used for the domain and (2) to the role of individual Concepts
(schemas, sets of related propositions or groups of rules), as shown by the middle boxes in Fig.
3. These components must be considered due to the limitations of human information
processing. First, external representations are essential given the complexity of domains and
the quantity of the information that must be considered. External media act as memory aids
and information processing tools. Forms of external representations include charts, graphs,
diagrams, equations, tables and all sorts of formal and semi-formal notations. Second,
individual concepts are considered on the assumption that learning is an incremental process in
which Networks of concepts are gradually constructed by assembling rules, schemas or chunks
that are often considered in relative isolation from each other initially.
Four main processes operating over the components during learning and problem solving

can be identi®ed. The processes are shown in Fig. 3 by the nested rectangles (P1±P4)
surrounding particular components (domain, external representation, etc.). The arrows between
squares for the components represent sub-processes.

(P1) Observation generates and checks expressions that are descriptions of phenomena. Its
sub-processes include: record a phenomenon or a particular case as an expression in the
external representations; and, match an expression with a phenomenon or case (e.g. drawing
a circuit diagram for a new circuit and con®rming that the diagram matches the circuit
topology).
(P2) Modelling subsumes observation and acts to generate new expressions to tie together
descriptions of particular cases or phenomena with selected relations or concepts. It has sub-
processes to modify an expression to obtain a new expression and to express a concept in the
external representation. An example is ®nding a formula and calculating the overall
resistance using the diagram for the new circuit (drawn above) by combining known
formulas for the resistance of simpler circuits.
(P3) Acquisition involves constructing a new concept (mentally). It subsumes modelling and
combines it with sub-processes to either interpret an expression as a concept, or to revise an
expression for a concept, or both, in the context of related concepts retrieved from the
network. An example is forming a chunk of knowledge consisting of the new formula for
resistance (see above) and the diagram for a given circuit, as distinct from formulas for
other previously analyzed circuits.
(P4) Integration is a process that adds a concept to the network of concepts or that modi®es
the structure of an existing network of concepts in some way. It subsumes acquisition and
combines it with sub-processes that augment a network of concepts with a new concept or to
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(re )organize a network by connecting, moving or deleting concepts. For example, examining
how the new concept/chunk (obtained above) is similar to, or di�ers from, other concepts
for closely and distantly related circuits.

There is a hierarchy of processes in this model. To better integrate or enrich the network of
concepts by di�erentiating di�erent concepts (P4), it is necessary to recall, compare and
contrast particular concepts. This may require the acquisition (P3) of new information about
the chosen concepts, which will normally involve modelling (P2) the general situation to which
the concepts apply, so that the structure of expressions of the concepts can be examined. The
modelling may in turn need speci®c data to be found by observation (P1) of the phenomena or
by accessing available information about the domain to help constrain the derivation of
appropriate expressions. Clearly, conceptual learning is complex. It encompasses nested groups
of processes working on the components at di�erent levels and over di�erent time scales. Later
in this special edition, Gobet and Wood consider the processes of acquisition and integration
in more detail.
PB's solution to the particle collision problem, shown in Fig. 1, illustrates many of these

processes and provides an example of a failed attempt at conceptual learning. If PB had been
successful he would have augmented his network of concepts with a new instance of a collision
that was consistent with the conservation laws of the domain. PB correctly retrieved the
conservation laws from memory as part of the process of trying to acquire a new concept but
he failed to ®nd an expression that could be usefully interpreted. This was, in turn, due to the
di�culties he had with the modelling process. Although the conservation laws were correctly
expressed, Steps 2 and 4, PB was unable to do the necessary modi®cations to the expressions.
This was in part due to his failure to examine all the alternative solutions and also because he
did not attempt to match this answer to the given problem conditions. This is surprising, as he
had initially recorded the details of the problem in the external representation, an example of
the observation process.
The ease with which a coherent network of concepts develops will depend on how di�cult

each of these four main processes are to perform. When the processes do not facilitate
transitions between components of the model they can be viewed as potential barriers that
have to be overcome by some means. An e�ective general approach to promoting conceptual
learning will provide support for each of the processes by minimizing the barriers or by
providing the learner with the means to bypass them.

2.3. Supporting conceptual learning

Various approaches to supporting conceptual learning can be considered as attempts to
overcome the barriers to learning identi®ed in the descriptive model presented in Fig. 3.
Although computer support for such learning is now common, there appears to have been no
dramatic improvement in conceptual learning, because programs typically support just a few of
the processes in Fig. 3.
For example, simulation environments, such as Interactive Physics (Knowledge Revolution,

1996) or Electronics Workbench (Interactive Image Technologies, 1993), provide good support
for the process of observation, allowing the user to easily examine a wide variety of cases.
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Virtual electronic circuits are easily built in Electronics Workbench and their behaviour
accurately simulated under di�erent operating conditions. The system provides meters and
graphs for the automatic presentation of data. This in turn facilitates the process of modelling
to an extent, but leaves the problem of generating appropriate expressions consistent with the
relevant laws as an unsupported task for the user. Such systems have extensive simulation
engines based on the laws of the domain but these are typically hidden from the learner. There
is normally no provision in the systems to demonstrate how the laws constrain particular
phenomena or shape the overall structure of the domain.
Providing learners with the laws as mathematical formulas for modelling the domain leaves

them with considerable work to express the target concepts in some interpretable form in the
external representation. Some of this e�ort can be mitigated by the use of spreadsheets and
symbolic ``algebra calculators'', but this still leaves unresolved the problem of the acquisition
of appropriate concepts. Being able to easily manipulate the formulas algorithmically does not
necessarily make the interpretation of the resulting expressions meaningful or any easier to do.
Learners can easily lose sight of what complex expressions mean and become narrowly focused
on processing formal notation as an end in itself.
An approach that encompasses more of the processes in Fig. 3 is White's (1989, 1993) use of

intermediate causal models. These are computer-based visualizations at an `intermediate' level
of abstraction between concrete descriptions of phenomena and abstract general laws. In terms
of the model in Fig. 3, intermediate causal models have been designed to support the
observation, modelling and acquisition processes (P1±P3) by presenting visualizations that
show critical information about the phenomena in a form that re¯ect aspects of particular
concepts. However, the approach does not directly support the process of concept integration
(P4). The visualizations provide information about particular properties and relations, but it is
largely left to the learner to forge connections between them.
Kaput (1992) sees computers as providing an opportunity to exploit the role of external

representations to support learning better. The possibilities include, for example; o�-loading
students' mental computation onto the computer freeing them to focus on meaningful aspects
of problems; using the system to represent processes as separate symbols, so that procedures
themselves can become objects of re¯ection. In terms of the model in Fig. 3, these approaches
are attempting to enrich the modelling process (P2).
Some experimental systems that aim to promote scienti®c reasoning skills may support the

process of conceptual integration (P4); for example, Belvedere by Suthers and colleagues
(Cavalli-Sforza, Moore, & Suthers, 1993) and Convince Me by Ranney and colleagues (Ranney
& Schank, 1998). The latter system exploits Thagard's (1989) model of explanatory coherence,
mentioned above, to assess the acceptability of the structures of propositions that learners
propose as explanations of particular problems. By stating concepts in natural language, rather
than the representations speci®c to particular domains, the systems allow learners to closely
examine how concepts interrelate, without needing to invoke the acquisition (P3) and
modelling (P2) processes.
In terms of our model of conceptual learning, previous approaches to computer support for

learning appear rather piecemeal. None attempt to cover the full range of processes identi®ed
in Fig. 3, so the potential bene®ts of an approach that facilitates one or two processes may be
hindered by the lack of support for the other processes. What appears to be required is an
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approach in which all of the processes involved can be equally supported in a general systemic
fashion. This is what the representational analysis and design project is attempting to do.

2.4. Role of representations in conceptual learning

The history of science is rich in examples where a new representation had to be adopted or
invented in order for new discoveries to be made (e.g. Miller, 1986; Gooding, 1996). By
analogy, if the representations that a scientist uses to make discoveries are fundamental, then
the representations given to learners ®nding out about the same domain for themselves are also
likely to be critical. Further, it is possible that the representations used by the scientists may be
better suited for students learning the same domain than the representations currently
employed, because the original representations are sometimes well tuned to the cognitive
requirements of reasoning and problem solving in those domains. However, algebra is now
conventionally used, but it is too powerful and unconstrained a representation to be used for
straightforward learning (Cheng, 1996c).
Work in cognitive science has clearly demonstrated the importance of understanding

representations to understand problem solving (Newell & Simon, 1972). A poor representation
may lead to an order of magnitude increase in the di�culty of ®nding a solution to a problem
compared to a good representation (Kotovsky, Hayes, & Simon, 1985). The research in this
area may be classi®ed using the model in Fig. 3. There has been work that has addressed the
modelling process (P2), in particular examining the nature of external representations.
Diagrammatic representations can o�er substantial bene®ts, because of the way that they index
information spatially (Larkin & Simon, 1987). Multiple external representations may facilitate
or hinder learning, depending on how information is distributed among the representations
(e.g. Ainsworth, Bibby, & Wood, 1997; see also the paper by Ainsworth in this volume). The
nature of the acquisition process (P3) and the form of concepts has been examined. Visual
representations in the form of perceptual chunks and diagrammatic con®guration schemas have
a fundamental role in expert knowledge of some domains (Koedinger & Anderson, 1990),
including electricity (Egan & Schwartz, 1979). Further, the importance of considering both
external and internal aspects of representations in terms of how information is distributed in
di�erent ways between mind and environment is crucial in this area (e.g. Zhang & Norman,
1994). Logical inferences that require great deliberation may be ``o�-loaded'' on to an external
representation, where visual processes can be exploited with much less e�ort (e.g. Scaife &
Rogers, 1996; Kaput, 1992).
Such previous approaches to supporting conceptual learning can be interpreted as attempts

to mitigate the problems of the representations employed. Observation (P1) will be harder to
do with representations that do not provide clear and simple mappings between the expressions
of the model and the elements of the domain. This may in turn require that additional
representations be employed, such as charts and graphs. Similarly, modelling (P2) will be more
di�cult if the expressions in the representation cannot be simply interpreted in terms of laws
governing the behaviour of phenomena. For instance, when arbitrary syntactic rules are used
to encode the laws of the domain, the expressions in the external representation are unlikely to
directly re¯ect the structure of phenomena or organization of the domain. Acquisition (P3) will
be more di�cult with a representation that does not e�ectively allow di�erent concepts to be
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distinguished easily from each other. Remembering a new concept will be hard if it is not well
di�erentiated from similar but distinct concepts, or if the expression for the concept is similar
to expressions for known concepts that are quite unrelated. Conceptual integration (P4) is
made more di�cult by any representation that does not allow the relations between concepts
to be easily explored, or which fails to provide a clear overarching conceptual scheme to
support the interpretation of concepts. In other words, a good representation should allow the
learner to quickly obtain a sense of the overall topology of the network of concepts and some
means to locate where in the structure any particular concept belongs.
Thus, the role of representations in learning is fundamental and it should be possible to

substantially improve learning by replacing poor representations with ones that match the
criteria just outlined. The question is, now, what constitutes an e�ective representation for
learning?

3. Nature of e�ective representations

Ideally, an e�ective representation will not hinder the learner by presenting barriers between
any of the pairs of components in Fig. 3. The representational analysis and design project is
studying the characteristics of e�ective representations that support all of the processes in a
systemic fashion, as a way to unlock conceptual learning. The particular class of
representations that has been the focus of the project are LEDs, because they seem to be
e�ective for conceptual learning. The project has taken various approaches to the study of
LEDs, including: the analysis of the role of LEDs in the history of science (Cheng, 1996a); the
design of new LEDs (Cheng, 1999a±d); the empirical evaluation of LEDs in comparison to
conventional representations (Cheng, 1996c,d, 1999e); the construction of computer-based
learning environments that exploit LEDs (Cheng, 1996b, 1998a, 1999b); the theoretical and
empirical examination of the internal knowledge structures acquired when learning with LEDs
(Cheng, 1998b, 1999a). From these converging lines of research, characteristics of e�ective
representations, which support all the processes of conceptual learning in a systemic fashion,
have been derived (Cheng, 1999e, 1999f).
In this section the characteristics are presented, and an example of problem solving with

LEDs for electricity is examined to show why the possession of the proposed characteristics
may allow representations to e�ectively promote conceptual learning.

3.1. Characteristics of e�ective external representations

Five characteristics of representations have been found and they are grouped depending
whether they: (1) concern the semantic transparency of representations; that is, the ease of
interpreting the expressions of the representations in terms of the domain (characteristics C1 to
C3); or (2) deal with the usability of representations, plastic generativity, that is the ease of
forming and manipulating expressions in the representations (characteristics C4 and C5).

(C1) The ®rst characteristic of the semantic transparency group proposes that an e�ective
representation must help to integrate information about a domain at di�erent levels of
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abstraction. Expressions in a representation should reveal the nature of the connection

between the laws of the domain and the descriptions of phenomena.

(C2) The second characteristic in this group proposes that a good representation will

simultaneously di�erentiate concepts that are di�erent in detail, but will show how at a

more general level the concepts are related. On the one hand, the invariants of a domain,

such as underlying laws or fundamental axioms, should be apparent as universal structural

features that are constant across all the expressions of the representation. On the other

hand, things which are contingently variable in a domain, such as alternative cases or values

of properties, should be re¯ected as features of the representation which themselves vary

across di�erent expressions. The representation of concepts will be globally homogeneous

but locally heterogeneous, with respect to the domain.

(C3) The third characteristic is to support the integration of the many di�erent perspectives

or ontologies applicable to the domain within a representation. Alternative perspectives

should be supported by di�erent readings or interpretations of the same expressions within

the representation. New expressions should not have to be generated, nor supplementary

representations introduced, to allow complementary views of the same relations or

phenomena to be examined.

(C4) The ®rst characteristic in the plastic generativity group suggests that the expressions of

an e�ective representation will be malleable, that is not too brittle nor too ¯uid. A brittle

representation is one in which it is not possible to easily derive all the acceptable expressions

that are meaningful in terms of the laws or phenomena of the domain. When a

representation breaks down in this sense, some other representation will need to be invoked.

A ¯uid representation is one in which it possible to generate many correct but largely

meaningless expressions, as is the case with algebra. To use a ¯uid representation requires

additional constraints to be invoked to make modelling practical; for instance, prior

knowledge about the suitability of certain types of derivations for particular classes of

problems. Malleable representations are likely to be the most fruitful in searches for

appropriate expressions.

(C5) The second characteristic in this group proposes that the procedures in the

representation for working with expressions should be compact and uniform. The same

procedures for manipulating the representation should be applicable to all the situations and

problem types of the domain. Each procedure should require few inferential steps to

complete. These attributes will reduce the likelihood of making errors during representation

manipulation and also reduce learning demands by requiring mastery of only a few short

procedures.

The utility and validity of the characteristics are being demonstrated by using them to design

novel representations for domains such as probability theory (Cheng, 1999f). In the next

section, an example of a representation that possesses these characteristics is presented and the

reasons why possession of the these characteristics makes a representation better for conceptual

learning are considered.

These characteristics bear some resemblance to Green's cognitive dimensions of notations

(Green & Petre, 1996). The two approaches di�er in that Green is concerned with the general
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usability of representations, whereas the representational analysis and design project is
concerned with what makes e�ective representations for learning.

3.2. Law encoding diagrams

A system of LEDs for a particular domain uses diagrammatic constraints to encode the laws
of the domain in the structure of diagrams in such a way that each instantiation (drawing) of a
LED represents one instance of the phenomenon and one case of the laws. Examples of
systems of LEDs include Galileo's diagrams for kinematics, Newton's diagrams for dynamics,
some of the diagrams for chemical bonding and electronic structure, and also Huygens's
diagrams for particle collisions (Cheng, 1996b). Here, we will consider LEDs for basic
electricity, to illustrate the nature of this general class of representational systems and to show
how representations can meet each of the desirable characteristics of e�ective representations.
The LEDs for electricity are called AVOW diagrams after the basic electrical properties

(Amps, Volts, Ohms, Watts) and this representational system was developed as part of the
present project (Cheng, 1999d). Fig. 4 shows a simple electrical circuit composed of a number
of resistors connected to a battery (left) and the AVOW diagram matching the circuit (right).
Each rectangle, or AVOW box, represents one resistor in the network. The height of the box is
the voltage (V ) across its resistor and the width is the current (I ) through the resistor. The
gradient/slope of the diagonal across the box gives the resistance (r ) of the resistor. The area
of the box is the power (P ) dissipated. The geometry of rectangles is being used to encode the
basic laws of electricity (i.e. V=Ir, P=VI ). Resistor-A has about double the voltage of
resistor-B but about the same current. The spatial arrangement of boxes in the AVOW
diagram re¯ects the topology or con®guration of the circuit. Resistor-B and resistor-C are in
series with each other and together they are in parallel with resistor-A, and all three are as a
whole in series with resistor-D. The electrical properties of the network, or any sub-network,
are represented by the same diagrammatic properties of the rectangle for the whole network.
Empirical evaluations of learning with AVOW diagrams (Cheng, 1999e) and other LEDs

(Cheng 1996b,d) have shown that this class of representations can promote conceptual learning
better than conventional representations for the same domains. For example, in the ®rst
experiment on electricity a mini-curriculum was developed, which students followed using
AVOW diagrams or a conventional algebraic approach (Cheng, 1999e). After about 100 min of
instruction the AVOW diagram group had obtained a signi®cantly better understanding of the

Fig. 4. A circuit diagram and an AVOW diagram.

P.C-H. Cheng / Computers & Education 33 (1999) 109±130122



domain and were able to solve di�cult problems which they had not previously seen. The
algebra group improved in places but not on the more conceptually demanding problems.
Detailed analysis of the learners' problem solutions provided evidence of the types of processes
that appear to be responsible for their learning, or their lack of it (Cheng, 1999e). It appears
that learners were using the AVOW diagrams to learn concepts as perceptual chunks based on
the diagrams which they had been given or which they produced themselves. The perceptual
chunks seem to be organized in the form of a lattice, with concepts lower down being based on
diagrams composed of components from concepts learnt earlier and positioned higher in the
lattice of concepts. The algebra group did not appear to have a well organized set of concepts,
but a loose collection of various rules, formulas and propositions.
Fig. 5 gives a problem that was used in that empirical evaluation. This is a deceptively

di�cult problem to solve accurately, because it involves a complex interaction between the
properties of the components in the network. The problem solver must initially work out how
the circuit functions correctly, then how it works after the fault develops, and ®nally compare
the details of the two states. We will contrast the post-test solutions of the learners trained
using AVOW diagrams or algebra.
Fig. 6 (top) shows the few equations written by the one and only participant in the algebra

group who successfully solved the problem. The transcript of the explanation he provided with
the answer, shown in Fig. 6 (bottom), has been annotated to show when the participant was
considering the basic electrical properties. Each property is considered in relative isolation from
the others during the course of the explanation (the P, V and I symbols tend to be clustered
together). Clearly the participant is having di�culty dealing with all the relations and
interactions which have to be simultaneously satis®ed. Although he got the correct answer,
there are errors in his reasoning (as indicated by the underlined section towards the end of the
transcript). He had di�culty modelling the situation (process P2, Fig. 3). Although he wrote
appropriate expressions for the laws governing the domain, their application to the problem
was indirect and clumsy.
This participant has worked out the initial and ®nal states of the situation, so it is possible

that he will have acquired a concept encapsulating the behaviours of this network under
related conditions (P3). However, the new concept is likely to be fragile as the reasoning
behind it is not strictly correct. The error is likely to cause confusion in the future, when
similar circuits are again considered. The concept is also going to be poorly integrated with
other concepts (P4), because the problem situation was described as a fault in the network, so
the broken bulb was simply ignored rather than considered as an integral component of the

Fig. 5. Faulty circuit problem.
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circuit whose electrical properties happened to have changed. There is no indication in the
transcript that the participant sees the connection between the broken bulb and the closely
related phenomenon of insulators.
Fig. 7 is an AVOW group participant's solution to the same problem (it has been redrawn

for clarity). Initially this participant draws the AVOW diagram for the circuit functioning
correctly [Fig. 7 (before)]. The diagram shows the correct con®guration of AVOW boxes for
the given circuit topology and also correctly encodes the identical resistances of the bulbs as
rectangles with equal gradients. The areas of the boxes shows that bulb-A and bulb-B shine

Fig. 6. An conventional solution of the faulty circuit problem.

Fig. 7. AVOW diagram solution to faulty circuit problem.
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equally brightly but are substantially dimmer than bulb-C. In AVOW diagrams an insulator is
represented by a vertical line segment, so in Fig. 7 (after) the AVOW box for bulb-A becomes
a becomes a tall thin box. The overall shape of the box for bulb-B is kept the same but its size
is increased now that bulb-A has blown. However, the participant realizes that the overall
height of the diagram must be constant and that the shape of the box for bulb-C must also be
kept constant. Thus, the size of the box for bulb-C is reduced, so that all of these constraints
can be met. The participant then simply reads o� the correct answer by comparing the relative
sizes of the boxes in the before and after diagrams in Fig. 7 (bulb-B gets brighter and bulb-C
gets dimmer than before, but after they are equally bright).
Modelling (P2) is relatively straightforward for the AVOW participant. The diagrams were

drawn straight o� for the two states. The participant has clearly acquired (P3) perceptual
chunks for series and parallel sub-networks, which are used for modelling. A new chunk for
each diagram can be easily acquired for each diagram and taken together they may be
integrated (C4) into a large chunk for a typical fault situation. Note, also how the concept of a
broken bulb is integrated within the representation with concepts about insulators or ``open''
circuits.

3.3. Conceptual learning with LEDs

The electricity example has shown how LEDs can support the main processes of the model
in Fig. 3. Now, the observations and ®ndings of the studies of learning with AVOW diagrams
and other LEDs will be interpreted in terms of the characteristics of e�ective representations
and the model of conceptual learning in Fig. 3.
AVOW diagrams, like LEDs in general, integrate levels of abstraction (C1) by incorporating

into the same diagrams (1) information on the magnitudes of properties of speci®c components
represented as the size of the diagrammatic features and (2) relations governing the domain in
the form of diagrammatic constraints. In the AVOW diagram solution to the faulty circuit
problem (Fig. 7), the learner has used this feature of LEDs to good e�ect. The diagrams not
only have the right arrangement of boxes but are also drawn to the scale, so that direct
comparison between magnitudes of particular properties can be made. Like White's (1989)
intermediate causal models, LEDs support the processes of modelling (P2) and acquisition
(P3). But they do so by reducing the cognitive distance between descriptions of phenomena and
abstract laws by combining the levels of information in a single representation, characteristic
C1, rather than introducing an additional layer of representations to mediate between the
levels.
LEDs typically support the globally homogeneous and locally heterogeneous representation

of concepts (C2). At a global level, AVOW diagrams provide a coherent space within which all
the components of electrical circuits can be distinguished. The space uses the vertical dimension
for voltage and the horizontal dimension for current. This has bene®ts for learning in terms of
the observation process (P1), because the general scheme provides constraints on how to record
information in expressions/diagrams of the external representation. At a higher level, this
characteristic means that AVOW diagrams support the process of acquisition (P3) of concepts.
For example, on seeing the arrangement of AVOW boxes for parallel loads it is easy to spot
that the form of the diagram is di�erent to the con®guration for series loads, and that quite
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di�erent relations amongst the voltages and currents must hold for the two cases. Similarly,

this characteristic (C2) supports the process of conceptual integration (P4). For instance, the

perceptual chunks (concepts) for batteries and loads are similar, as both are boxes. However,

they di�er in detail with the direction of ¯ow of the current; up the diagram for the battery,

because it supplies voltage, and down the diagram for a load. Thus, a new concept can be

obtained by combining these two perceptual chunks: a complete circuit is conceptualized as a

loop, composed of an AVOW box for the battery connected to the top and bottom edges of

the diagram for a network of resistors.

LEDs permit multiple perspectives to be integrated (C3). The use of geometric relations in

AVOW diagrams to encode the laws of electricity is consistent with algebraic statements of the

laws, but AVOW diagrams may also be interpreted in concrete physical terms. An AVOW box

for a resistor may be viewed as a stream of current running downwards and contained by the

sides of the box. In the limit, a vertical line down the AVOW diagram may be considered as

the path followed by a single electron. The height of the box represents the force driving the

¯ow. The integration of di�erent perspectives (C3) is achieved in LEDs by permitting multiple

interpretations of the same diagrams. One of the bene®ts of this is the support of the process

of acquisition (P3), because the di�erent perspectives will provide mutual constraints on each

other. The triangulation of alternative interpretations around the single representation will help

to clarify and elaborate concepts under each perspective.

AVOW diagrams are relatively easy to use for observation (P1) and modelling (P2), because:

(1) they have an appropriate degree of malleability (C4) in the form of a su�cient, but

otherwise limited, set of operations for generating correct diagrams; (2) the procedures for

manipulating the diagrams are compact and uniform (C5). This is clearly illustrated by

comparing Figs. 6 and 7. The diagrammatic solution is typical of the learners in the AVOW

group. They have little trouble choosing and applying correct geometric rules for the

construction of the diagrams; normally they draw the correct form straight o� or make a few

incremental modi®cations to a diagram. There is typically one symbol for each element in the

domain, a line for an electrical property and a box for a circuit component. Thus most of the

work on the diagrams can be directed towards achieving problem goals, rather than being used

simply to marshal related symbols into canonical forms suitable for interpretation. The

algebraic solution was generated by the only learner in the other group to give the correct

answer. In other respects this solution is typical, in that it shows a reluctance to attempt to

model the circuit by writing formulas and computing values. Learners prefer to, or have to,

resort to informal verbal reasoning, as in this case, which happens to show the consequence of

using a representation that is too unconstrained, ¯exible, and certainly not compact, Fig. 6.

In summary, the AVOW diagram representation possesses each of the desirable

characteristics of e�ective representations. This in turn means that the properties of the

representation seem to facilitate all of the processes involved in conceptual learning identi®ed

in Fig. 3. Thus, by changing the representation, it is possible to reduce many of the barriers to

learning under a single systemic approach. This systemic approach is in marked contrast to the

previous approaches, discussed above, that mostly attempt to enhance conceptual learning by

addressing one or two of the processes in Fig. 3, rather than the process as a whole.
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4. Education with new representations

This paper has summarized some of the work of the representational analysis and design
project. The central theoretical claims are that: the representations used for learning can
substantially a�ect what is learnt and how easy learning occurs; representations can constrain
the nature of the conceptual structures that the learners develop and the problem solving
procedures they acquire. Thus, serious consideration must be given to the ontological,
structural and functional roles that representations have in learning. By doing this, the project
is demonstrating that alternative representations can unlock conceptual learning.
There are general implications of this work not only for the design of computer-based

systems to support learning, but also all forms of learning that require representational systems
of any complexity. This ®nal section considers some of the implications of using e�ective
representations like LEDs.
The model of conceptual learning introduced above highlights the complexity, variety and

number of processes involved in such learning. It is unlikely that there will be any
straightforward solution to e�ectively promoting such learning. This is why the present project
has adopted a systemic approach to promote conceptual learning through the analysis and
design of representations designed to provide support for each of the constituent processes
involved.
The project has identi®ed characteristics of e�ective representational systems for learning.

Two general consequences follow from the formulation of such characteristics. First, it is
feasible to analyse existing representations to predict the nature of the misconceptions about
the domain and di�culties in their intended use caused by the representation. The examples of
learners using algebra illustrate the point. The second consequence is the feasibility of
designing new representations that are less likely to foster misconceptions and that will
facilitate problem solving.
Although e�ective representations such as LEDs hold some promise to enhance learning in

particular domains, there are various wider issues that may limit the value of such alternative
representations, two of which are considered here.
First, it is desirable for students to become familiar with problem solving using algebra,

given the extent to which the approach is embedded into education. Thus, will using LEDs
initially to learn about a domain assist or hinder the later transition to solving problems using
the conventional representations for that domain? Compared to the other approaches,
mentioned above, that advocated the use of informal propositions or realistic visualizations,
LEDs may better support the transition into algebra. LEDs encode the laws of the domain
using geometric rules which can often be straightforwardly mapped into algebraic formulas.
Few of the other approaches attempt to provide support for bridging the conceptual gulf
between concrete descriptions and the algebraic equations stating the laws. However, it remains
an open empirical question whether well-designed instruction based primarily on algebra will
be better than starting with LEDs and then later making the transition.
The second issue that may limit the potential of adopting new and e�ective representations is

their novelty. Any attempt to introduce new representations into curricula in which traditional
representations are deeply and comprehensively embedded will be a substantial task. For some
educators, understanding a domain is synonymous with knowing the appropriate expressions
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in the traditional representation, so alternative representations are seen as largely irrelevant or
even as undesirable distractions. Other educators may appreciate the potential bene®ts of
alternative representations but not adopt them because the traditional representations are just
too tightly interwoven with course materials, forms of assessment, and teachers' knowledge and
skills. Alternative representations may require too great a departure from existing resources
and practices to seem to be worth adopting. Thus, one of the long term objectives of the
present project is to demonstrate that switching representations can improve students'
conceptual learning to such an extent that the major changes needed for their introduction will
be seen as worthwhile.
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