
Learning-Based Constraints on Schemata1

Peter C.R. Lane (pcl@psychology.nottingham.ac.uk)
Fernand Gobet (frg@psychology.nottingham.ac.uk)

Peter C-H. Cheng (pcc@psychology.nottingham.ac.uk)
ESRC Centre for Research in Development, Instruction and Training,

School of Psychology, University of Nottingham,
University Park, NOTTINGHAM NG7 2RD, UK

1 In Proceedings of the Twenty-Second Annual Conference of the Cognitive Science Society, (pp. 776-81, 2000). Mahwah, NJ: Erl-

baum.

Abstract
Schemata are frequently used in cognitive science as a de-
scriptive framework for explaining the units of knowledge.
However, the specific properties which comprise a schema
are not consistent across authors. In this paper we attempt
to ground the concept of a schema based on constraints
arising from issues of learning. To do this, we consider the
different forms of schemata used in computational models
of learning. We propose a framework for comparing forms
of schemata which is based on the underlying representa-
tion used by each model, and the mechanisms used for
learning and retrieving information from its memory.
Based on these three characteristics, we compare examples
from three classes of model, identified by their underlying
representations, specifically: neural network, production-
rule and symbolic network models.

Introduction
One of the unifying themes in cognitive science is the use
of schemata for explaining the units of knowledge within
humans. However, the specific properties which comprise a
schema usually vary between authors. Early work in the AI
and cognitive traditions (e.g. Rumelhart, 1980) set the scene
for the use of schemata in computational models of learning.
It is now appropriate, with a number of successful models in
the literature, to see what forms of schemata arise within a
learning-based system. This question is especially interest-
ing because computational models do not simply implement
basic concepts such as schemata with an added learning
mechanism. Instead, each computational model is based on
some core representational structure and primitive learning
mechanisms, from which structures such as schemata may
be inferred.

The aim of this paper is to consider examples from a
number of computational models and simply extract those
elements which most relate to schemata. The difficulty here
is that the models have not been tested on identical tasks,
and so the comparison must be at a more qualitative level.
Hence, we begin with some informal definitions of schemata
to define our analytical framework.

Learning and Using Schemata
Brewer (1999) defines schemata as “the psychological con-
structs that are postulated to account for the molar forms of

human generic knowledge.” The idea is that knowledge of
visual scenes or discourse structure may be considered in
terms of basic units. For instance, house-scenes typically
consist of rooms, each room containing certain basic proper-
ties, such as walls or furniture. The schema for a room will
contain slots for the properties, and, in the absence of spe-
cific information, these slots will be filled with default val-
ues. So a room will, by default, be considered to have four
walls, a ceiling, a door, lighting, probably a window, and so
forth.

Less committal is the definition by Rumelhart (1980;
italics in original): “A schema theory is basically a theory
about knowledge. It is a theory about how knowledge is
represented and about how that representation facilitates the
use of the knowledge in particular ways.” Rumelhart there-
fore focuses on the form of the schema theory (representa-
tion and reuse), whereas Brewer (1999) defines the form of
the schema (a molar form of knowledge). Rumelhart’s defi-
nition is also echoed in that of Sweller (1988), whose con-
cern is with modelling problem-solving behaviour. Accord-
ing to Sweller (1988), a schema is simply a “structure
which allows problem solvers to recognize a problem state
as belonging to a particular category of problem states that
normally require particular moves. ... certain problem states
can be grouped, at least in part, by their similarity and the
similarity of the moves that can be made from those
states.” Each of these definitions stresses the functionality of
the knowledge in the schema. Also worth noting is that the
schema is a form of retrieval structure, identifying elements
from earlier experience which can be reused in the current
situation.

Our interest in this paper is in describing computational
models of learning, and for this purpose, as will become
evident later, a fairly loose definition of schemata is required
to provide the basis of comparison between different models.
Hence, we will use the following definition:

A schema is a cognitive structure for representing and
retrieving classes of typical situations for which a similar
response is required of the learner.

Our comparison looks at the variation in schema-form
based on the different assumptions underlying each model.
The greatest assumption made is the basic representation
used by the model for storing learnt information in its

memory. This representation may be highly structured, lo-
calised or distributed. The type of the representation affects
the processes which the model can use to learn, where learn-
ing is the process of converting what has been experienced
into an internal representation. In this context, some repre-
sentations provide better support for incremental real-time
learning, whereas others are better for complex rule induc-
tion. The type of representation also affects the retrieval of
information from the model’s memory for use in novel
situations. Some systems assume that every item of mem-
ory is compared to determine the closest match to the current
situation, whereas others maintain a hierarchy for indexing
their memory and consequently only search a subset of the
total memory.

These three characteristics, for representing, learning and
retrieving a schema, provide a framework for analysing how
different computational models address the questions of
learning and using schemata. We use this framework in the
next three sections, where we compare examples from three
classes of model. The classes are distinguished by their un-
derlying representations: neural network, production-rule and
symbolic network models. The examples are selected to be
representative (without attempting to be comprehensive).

Neural network models
The ability of a PDP (Parallel Distributed Processing) model
(otherwise known as a neural network) to learn schemata
was addressed at an early stage by Rumelhart, Smolensky,
McClelland and Hinton (1986), who described how such
properties can arise within a class of PDP models. However,
they did not address the question of learning. A better dem-
onstration of these ideas within the context of a learning
system is the Sentence Gestalt (SG) model of St. John and
McClelland (1990). We also consider the CLARION system
of Sun, Merrill and Peterson (in press), which is a hybrid
model of skill learning.

Sentence comprehension
The aim of the SG model (St. John & McClelland, 1990) is
to capture the process by which people fill out semantic
information whilst reading a sentence. For example, given
the sentence ‘Bobby pounded the board together with nails’,
the inference “with a hammer” is made automatically. We
can explain such behaviour by hypothesising that people
recall (subconsciously) some schema for the sentence from
which default information (the hammer) can be inferred. The
SG model attempts to account for such phenomena. It con-
sists of a two-stage recurrent neural network. The first stage
learns a distributed representation for the sentence, called the
sentence gestalt, from a temporal sequence of constituents.
Each constituent is either a simple noun phrase, a preposi-
tional phrase or a verb. The second stage acts as a probe for
information contained in the sentence gestalt. Each probe is
a role/filler pair, and the sentence gestalt is probed by pre-
senting either a role or a filler, from which the network is to
supply the complete pair. Requested information need not
refer directly to words in the sentence. For example, after
seeing ‘Mary ate the spaghetti’, the model should return the
filler “fork” for the role “instrument”.

The experiments performed by St. John and McClelland
demonstrate that the SG model successfully assigns con-
stituents to thematic roles based on syntactic and semantic
constraints. Further, the model can disambiguate meanings
and instantiate vague terms as appropriate to their context
and the training data previously seen by the model. This
behaviour fulfills the requirements for schemata as discussed
previously: the model classifies sentences into various
groups, and these groups can have variable or default infor-
mation associated with them.

We can now consider the schemata used in SG against the
three basic characteristics of our framework:

Representing a schema
All knowledge contained within a neural network is held
implicitly across the weights within the network. Once acti-
vation is presented on the input, every weight and node
within the network interact to generate an output. In this
situation, specific schemata are not really represented
within the network, in the sense of identifiable units, but
instead emerge as a consequence of the specific set of in-
puts. Hence, the schemata used by the model cannot be ex-
tracted for use as explicit rules, but instead must be inferred
from their effects on the network’s output.

Learning a schema
Given the nature of distributed representations, it is not pos-
sible to learn about just one schema, because of the unpre-
dictable effect on other information held in the weights. In-
deed, the process by which the SG model (and most similar
neural network models) is trained involves continuous
passes of the entire training dataset whilst the weights in the
network are gradually altered to approximate the mapping
between the input data and its target output. This process
means that the network captures generalisations true of the
entire dataset, making it robust in novel situations.

Retrieving a schema
Again, the nature of the distributed representation within the
model implies that the whole network is activated when
obtaining a response to a novel input. Hence every piece of
acquired information (every weight value) is used in generat-
ing a response. This process additionally ensures a robust
response in novel but similar situations, because the re-
trieval process is based on the similarity between the novel
input and the model’s previous experience. For instance, if a
large number of examples are presented to the network, and
the responses analysed, it will be seen that those examples
which are most similar tend to generate similar responses.
Conversely, if a novel input is partly similar to one type of
example in the training data, and partly similar to another
type, the computed response will fall somewhere between
that for the two items of training data. Note that the similar-
ity in input to the network is heavily dependent on the form
of encoding used for representing each item of data to the
network on numeric input units.

Bottom-up skill learning
CLARION (Sun, Merrill & Peterson, in press) is a hybrid
model for bottom-up skill learning. It is designed to model
the process by which low-level perceptual-motor skills are
converted into explicit rules, and also capture the interaction
between these two levels of knowledge whilst carrying out a
complex task. CLARION assumes that declarative knowl-
edge is represented explicity within a rule-based system,
whereas procedural knowledge is represented implicity
within a neural network. CLARION has been tested in a
perceptual-motor task involving navigation through a mine-
field, in which the model must learn to react to particular
visual patterns of mines with appropriate navigation instruc-
tions to avoid the mines and reach a target. The dual use of
knowledge is reflected in subjects’ responses: mostly they
react instinctively, but after some experience in the domain
some explicit planning is reported. CLARION’s use of two
knowledge levels is intended to capture this shift towards
more explicit knowledge.

The novelty in CLARION is that the rules can either be
pre-programmed (i.e. taught in the standard top-down man-
ner) or learnt based on the low-level knowledge in the neural
network. Specifically, if the neural network suggests an
action which satisfies its criterion for success, then the cur-
rent sensory state is turned into the condition part of a new
production in the rule set, with its action part being the cur-
rently suggested action. Further learning processes on the
rules update statistics and may refine and alter rules for effi-
ciency. CLARION therefore contains two independent learn-
ing mechanisms, but the two can also work together with an
interesting transfer of bottom-up (procedural) knowledge into
the explicit rule-set. As with SG, schemata are evident in
the similarity-based generalisations made by the model.

Representing a schema
CLARION uses a two-level representational structure: a
rule-based system and a feed-forward neural network. As with
SG, schemata are seen to emerge through the interaction of
many elements in the model. Hence, the network and the
rules can generalise robustly to novel situations based on
partial similarity. The purpose of the rule-based system is to
‘fix’ the generalisations learnt by the neural network and
prevent later experience ‘blurring’ them. These rules may in
themselves represent broader classes of situation, because
some of the attributes can have variables instead of specific
values, rather akin to slots on a more generic template.

Learning a schema
The procedural knowledge in CLARION is learnt in a simi-
lar manner to the SG model described above, using a modi-
fied form of backpropagation: an additional reinforcement
term is included in the training error because the correctness
of a specific action is only known at the completion of the
task. The rule-based declarative knowledge includes mecha-
nisms for constructing new rules, or expanding or shrinking
the conditions of existing rules. The mechanism for con-
structing a new rule is merely to include, for a successful
action, the situation and action as the condition and action
parts of a new rule. Expanding or shrinking a rule’s condi-

tions amounts to increasing or decreasing the likelihood of
the rule matching future inputs by altering the range of pos-
sible values in one of its attributes. Before making any such
changes to a rule’s conditions, an information gain for each
rule is computed to determine whether a modified version
would do better than the current rule.

Retrieving a schema
As with SG, the whole of CLARION’s memory is probed
simultaneously to determine all information relating to the
current situation. The possible actions suggested by the
separate procedural and declarative levels are then chosen
through a weighted competition, reflecting the degree of
emphasis CLARION is placing on each type of knowledge.
Note that in both levels CLARION relies on a similarity-
based metric to generalise to novel situations. This is natu-
ral in the chosen domain, where all inputs are visual scenes;
the rules basically contain a localist representation of in-
formation similar to that in the neural network.

Summary
The form of schemata possible in these neural network mod-
els is determined partly by their learning mechanisms and
partly by their retrieval mechanisms. The basic neural net-
work is capable of learning complex mappings from the
input to output data, and inherent mechanisms within the
neural network are used to retrieve information most similar
to the current situation. In CLARION, situations may be
learnt explicitly with specific rules consisting of core and
variable information.

Production-rule models
Production rules have been a popular representation for a
number of computational models, two notable examples
being Soar (Laird, Newell & Rosenbloom, 1987) and ACT-
R (Anderson & Lebiere, 1998). However, such models are
also difficult to discuss in our framework, as their inherent
power makes them suitable for application in a wide range
of domains and settings, as well as for testing various theo-
ries of learning: there are few architectural constraints which
have a significant bearing on the forms of knowledge learnt.
Here, we describe the generic learning and retrieval mecha-
nisms in Soar.

Soar: chunking of productions
The Soar system integrates perceptual-motor behaviour with
basic capabilities for learning and problem solving. All
knowledge within Soar is held in the form of productions,
with a working memory holding specific attributes and their
values. Soar operates in a cycle, attempting to satisfy some
goal within its working memory. This cycle takes the con-
tents of working memory and matches it to productions in
its knowledge-base. These matching productions place new
goals or other elements into working memory (this is
known as the elaboration phase, which proceeds until all
eligible productions have fired, quiescence), and then a de-
cision is made as to which of the new goals to pursue next.

Representing a schema
All behaviour within Soar is goal oriented, in the sense that
the system is always trying to satisfy some goal or another.
Each goal contains three slots: the current problem space,
state and operator. The specific representations for informa-
tion in these slots can vary across applications. A particular
schema may not be represented specifically in a production,
but instead, in a specific context, a number of similar rules
will be matched, suggesting interrelated subgoals, and so
yield the effect of a schema.

Learning a schema
Learning within Soar is based on a chunking process that
creates new rules. Each rule recreates the results of subgoals
in relevantly similar future situations (Laird, Rosenbloom &
Newell, 1986). Chunking relies on an analysis of the de-
pendencies within the solution to a given subgoal to create
new rules. A new rule is created for each independent result,
with a condition relating to the dependency analysis of the
subgoal, and an action relating to the specified subgoal. This
chunking mechanism is a universal learning mechanism,
similar to explanation-based learning (see Rosenbloom &
Laird, 1986). The interesting facet of learning within Soar is
its ability to focus on those aspects of the situation used for
problem solving, and to use only these relevant aspects in
chunking. This focus ensures that the chunks learnt by Soar
will generalise to novel situations. In addition, Soar has a
process of variabilisation, in which information is made as
general as possible before it is stored as a chunk in a produc-
tion.

Retrieving a schema
The retrieval mechanisms within Soar operate only in its
elaboration phase, in which “all directly available knowledge
relevant to the current situation is brought to bear” (Laird,
Rosenbloom & Newell, 1987). In this phase, every produc-
tion in its memory whose condition directly matches some-
thing in the working memory is activated, and its suggested
subgoals and other information are added to memory. Match-
ing productions against working memory is based on the
similarity of the attributes and their values.

Summary
Just as with neural networks, no specific structure corre-
sponding to a schema exists in Soar. However, the basic
learning mechanism within Soar, chunking, does limit the
form and content of learnt productions. Firstly, productions
are retrieved based on their similarity to items in working
memory. The features placed within a production are taken
from the set of dependent relations in the attainment of a
goal. In addition, some variabilisation can occur on the fea-
tures.

Symbolic network models
This section considers a pair of models which construct
symbolic networks of symbol-level information within a
hierarchy. Each of these lays some claims to universality of
application, but have currently only demonstrated good re-

sults in one or two areas. The first is the CHREST model,
which learns about chess patterns, and the second is
EUREKA, which learns about physics problems.

CHREST: storing chunks into templates
The CHREST (Chunk Hierarchy and REtrieval STructure)
model of expertise (Gobet & Simon, in press) is a recent
development of EPAM (Elementary Perceiver and Memo-
riser) (Feigenbaum & Simon, 1984). The learning processes
in EPAM include mechanisms for constructing a discrimina-
tion network and incorporating information into it; the
learnt information is known as chunks. CHREST includes
extra mechanisms for learning templates (Gobet & Simon,
in press); it is this template which is of interest to us here,
as it possesses schema-like properties.

A template is created in the following manner. During
training, CHREST (just like EPAM) builds a discrimination
network of chunks of information. Specific to CHREST is
the ability to create lateral links (Gobet, 1996): in this case,
similarity links. These similarity links can be used whilst
searching the network to suggest chunks not directly linked
by the tests in the network. However, the novel aspect of
this is that a node can reorganise information in similar
chunks (satisfying an overlap criterion) into a template. This
template contains a core pattern, based on the original
chunk, and a set of slots, for the information which varied
across the associated chunks.

Representing a schema
CHREST represents all information as chunks within nodes
in a discrimination network: a chunk is a familiarised pat-
tern. Nodes are linked by test links, which require some fea-
tures to be matched on traversal. Some of the nodes in the
network contain templates, where a template contains a core
chunk and a number of slots. However, CHUMP (Gobet &
Jansen, 1994) and CHREST+ (Lane, Cheng & Gobet, 2000)
additionally allow nodes in the network to be associated with
information about possible moves or problem solutions,
allowing CHREST to learn to solve problems.

Learning a schema
The discrimination network within CHREST is learnt
through four learning mechanisms. Beginning from the root
node, CHREST sorts a novel pattern through the network
until no further test links can be applied. At the node
reached, two things can occur. First, the pattern may match
the chunk, in which case more information can be added to
the chunk from the pattern (familiarisation). Second, the
pattern may mismatch the chunk, in which case a further
test link and node are created based on the mismatching fea-
tures (discrimination). The third learning mechanism con-
structs similarity links between two nodes when their
chunks have at least 3 identical items. Finally, for a node
with at least 5 similarity links satisfying an overlap crite-
rion, the chunk may be replaced by a template. This tem-
plate uses the existing chunk as its core, and the varying
information across the other nodes as its slots.

Retrieving a schema
Retrieving knowledge within CHREST is achieved simply
by following the test links from the root node, applying the
tests to the target pattern until no further test applies. The
chunk at the node reached is the retrieved schema.

EUREKA: restructuring knowledge
EUREKA (Elio & Sharf, 1990) demonstrates how an effec-
tive organisation for large amounts of domain-specific
knowledge can support efficient recognition and application
of relevant knowledge to the problem at hand. Secondly, the
model demonstrates how the qualitative shift from novice to
expert levels of knowledge and organisation can arise within
a learning framework. EUREKA uses a discrimination net-
work, rather like the CHREST model described above, but
instead of simple chunks, the nodes in EUREKA’s network
hold Memory Organization Packets (MOPs) (Schank, 1980).
Each MOP represents a complex knowledge structure hold-
ing generalised knowledge extracted from a group of individ-
ual experiences. Differences between experiences are encoded
in the tests between the links in the discrimination network,
and so similar previous experiences are retrieved based on the
features in the network which match the current experience.

EUREKA has been applied to physics problems, and is
initialised with a set of MOPs containing basic knowledge
about physics concepts, equations and inference rules. How-
ever, this knowledge does not contain any information about
their usefulness or relevance in any particular type of prob-
lem. When EUREKA is given its first physics problems, it
must use its basic knowledge in conjunction with a means-
ends problem-solving strategy to construct a solution. Hav-
ing done this, EUREKA then places the entire problem and
its solution (features, inferences and solution steps) into a P-
MOP (Problem MOP). This P-MOP is then stored in the P-
MOP network, where some reorganisation of the network
may occur. When solving later problems, EUREKA can use
information in a P-MOP in preference to its means-ends
analysis, which can lead to a shift in EUREKA’s problem-
solving strategy towards a greater use of important abstract
physics concepts, such as force or energy, usually not pre-
sent in the problem statement. Also, the use of a P-MOP
instead of means-ends analysis means the model begins to
solve problems working forwards from the given informa-
tion instead of backwards from the target, in accordance with
observed differences between novice and expert problem
solvers (cf. Koedinger & Anderson, 1990; Larkin, McDer-
mott, Simon & Simon, 1980).

Representing a schema
EUREKA stores information in a network of P-MOPs. At
the root of the network is a P-MOP representing a “generic
physics problem”. Each P-MOP contains several elements:
firstly, a set of norms represent the features which a problem
must satisfy for this P-MOP to apply; secondly, a set of
indices (links) to other P-MOPs, with the index specifying
the feature(s) which distinguish between them; thirdly, the
P-MOP includes a general inference rule; fourthly, the P-
MOP includes a specific solution method for carrying out
the inference rule; and fifthly, the P-MOP includes a count

for the number of problem-solving experiences which it
organises (i.e. has matched in the past). The P-MOP repre-
sentation is a clear example of an explicit schema, with the
norms indicating the class of similar problems to which its
inference rules will apply.

Learning a schema
EUREKA's learning mechanisms operate through a process
of reorganisation. Once a problem has been solved, every-
thing about the problem and its solution is collected into a
problem-solving experience. This experience is then com-
pared with the existing P-MOP retrieved from the network.
If any of the norms differ between the P-MOP and the expe-
rience, these are removed from the P-MOP and used as indi-
ces to new organisation beneath this P-MOP; any inference
rules referring to these differing norms are also removed
from the P-MOP and included in the new organisation. This
process has the side-effect that partial solution methods may
reside on P-MOPs. A further reorganisation can occur in
cases where a descendant P-MOP covers most of the prob-
lem-solving experiences of its parent P-MOP; in such situa-
tions the organisation of the network is not efficient, and
one of the discriminating features might be better seen as a
commonality.

These two learning mechanisms can lead the network to
focus on abstract features in the following way. A property
such as a force may not be represented within the problem
statement, however, it will be referred to in the problem
solution. As problem-solving experiences are gathered, a
number will be seen to include force within their solution,
and so this feature will become a norm within the P-MOP.
From there, the feature may be used to discriminate between
different P-MOPs, because it has been derived as a feature of
a number of problem-solving experiences.

Retrieving a schema
Each P-MOP in EUREKA's memory is a separate schema,
and each is indexed through the P-MOP network. Any of the
features in the initial problem representation can serve as
indices into the P-MOP network. Whenever the feature ap-
pears as a difference in the P-MOP, the corresponding index
is traversed. If a number of indices may be traversed, then
EUREKA prefers the index leading to the P-MOP that or-
ganises the most problem-solving experiences. Hence,
EUREKA is directed preferentially to patterns that recur
most often. During the traversal, EUREKA will apply the
inference rules of any P-MOPs that match the current situa-
tion; this process will alter the current situation (the set of
equations and unknowns) and so affect the further traversal of
the P-MOP network. Note that EUREKA's bias towards P-
MOPs which organise larger numbers of problem-solving
experiences means that P-MOPs arising from reorganisation
of the network will be preferred during problem solving. It
is this bias which ensures EUREKA will preferentially use
P-MOPs emphasising the presence of forces or abstract enti-
ties: as discussed above, such P-MOPs are formed from the
aggregate of several more concrete P-MOPs, and so organise
a larger number of problem-solving experiences.

Summary
The symbolic network models are closer to the spirit of tra-
ditional schemata theories. In particular, there is a close cor-
respondence between the information in a P-MOP or the
pairing of problem and solution nodes within CHREST, and
the schemata discussed in Koedinger and Anderson (1990).
Both models can use information to partially match a current
situation. However, different learning mechanisms encode
different kinds of information in their nodes; CHREST re-
stricting itself to perceptual similarity, with EUREKA infer-
ring more abstract quantities for use in discrimination.

Conclusion
This paper has taken an inductive approach to the question
of how to learn schemata by applying an analytical frame-
work to a number of computational models, and describing
the ways in which these models represent, learn and retrieve
schemata. Our aim has been to uncover, from existing mod-
els, the origins of constraints on the possible forms of
schemata. From our analysis we can see some similarities
across all the models. Firstly, all use a distributed form of
representation, in the sense that schemata for novel situa-
tions will usually arise from a number of partial matches,
although the symbolic network models possess more ex-
plicit schema-like structures. Secondly, all use a similarity-
based form of retrieval, differing in the features which may
be used for discrimination. In particular, EUREKA allows
abstract features (not perceptually obvious) to become sig-
nificant.

However, the differences in behaviour of the various mod-
els are largely down to their specific learning mechanisms.
As stated in the introduction, the motivation for these mod-
els has not been to learn schemata, as such, but instead to
learn effectively in general situations. We therefore conclude
that, for the purposes of developing a more meaningful defi-
nition of schemata, we should begin by analysing the avail-
able range of learning mechanisms in models such as those
referred to here. These learning mechanisms should be ex-
plored in their cognitive implications. For instance, the use
of seriality or resource bounds, the malleability of learnt
features and how wide-ranging any changes to previous
knowledge may be. Most of these properties will come di-
rectly from the learning mechanisms, whereas others will be
imposed by the interaction of the learning mechanisms with
the other properties of the system, such as its use of percep-
tual-motor stimuli. Once these properties have been under-
stood, the use of schemata for describing the units of knowl-
edge within humans will become grounded in the processes
by which that knowledge has been learnt.

References
Anderson, J. R., & Lebiere, C. (1998). The atomic compo-

nents of thought (Lawrence Erlbaum).
Brewer, W. F. (1999). Schemata. In R. A. Wilson & F. C.

Keil (Eds.) MIT Encyclopedia of the Cognitive Sciences,
pp. 729-730.

Elio, R. & Scharf, P. B. (1990). Modeling novice-to-expert
shifts in problem-solving strategy and knowledge organi-
zation. Cognitive Science, 14, 579-639.

Feigenbaum, E. A., & Simon, H. A. (1984). EPAM-like
models of recognition and learning. Cognitive Science, 8,
305-336.

Gobet, F. (1996). Discrimination nets, production systems
and semantic networks: Elements of a unified framework.
Proceedings of the Second International Conference of
the Learning Sciences (pp. 398-403). Evanston, III:
Northwestern University.

Gobet, F. & Jansen, P. (1994). Towards a chess program
based on a model of human memory. In H. J. van den
Herik, I. S. Herschberg, & J. W. Uiterwijk (Eds.), Ad-
vances in Computer Chess 7 . Maastricht: University of
Limburg Press.

Gobet, F. & Simon, H. A. (in press). Five seconds or
sixty? Presentation time in expert memory. Cognitive
Science.

Koedinger, K. R., & Anderson, J. R. (1990). Abstract plan-
ning and perceptual chunks: Elements of expertise in ge-
ometry. Cognitive Science, 14, 511-550.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987).
Soar: An architecture for general intelligence. Artificial
Intelligence, 33, 1-64.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986).
Chunking in Soar: The anatomy of a general learning
mechanism. Machine Learning, 1, 11-46.

Lane, P. C. R., Cheng, P. C-H., & Gobet, F. (2000).
CHREST+: Investigating how humans learn to solve
problems using diagrams. AISB Quarterly, 103, 24-30.

Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H.
A. (1980). Models of competence in solving physics
problems. Cognitive Science, 4, 317-345.

Rosenbloom, P. S., & Laird, J. E. (1986). Mapping expla-
nation-based generalization onto Soar. Proceedings of the
Fifth National Conference on Artificial Intelligence (pp.
561-567). Philadelphia, PA: MIT Press.

Rumelhart, D. E. (1980). Schemata: The building blocks of
cognition. In R.J. Spiro, B.C. Bruce and W.F. Brewer
(Eds.) Theoretical Issues in Reading Comprehension
(Lawrence, Erlbaum), pp. 33-58.

Rumelhart, D. E., Smolensky, P., McClelland, J. L. &
Hinton, G. E. (1984). Schemata and sequential thought
processes in PDP models. In D. E. Rumelhart & J. L.
McClelland (Eds.) Parallel Distributed Processing, Vol,
II. MIT Press, Cambridge, MA.

St. John, M. F., & McClelland, J. L. (1990). Learning and
applying contextual constraints in sentence comprehen-
sion. Artificial Intelligence, 46, 217-257.

Schank, R. C. (1980). Language and memory. Cognitive
Science, 4, 243-284.

Sun, R., Merrill, E. & Peterson, T. (in press). From im-
plicit skills to explicit knowledge: A bottom-up model
of skill learning. Cognitive Science.

Sweller, J. (1988). Cognitive load during problem solving:
Effects on learning, Cognitive Science, 12, 257-285.

