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Abstract 

The effect of chunking in the process of drawing was 
investigated using a task domain consisting of simple 
hierarchically organized geometrical patterns, which 
participants learnt to draw. The study focused upon the 
latencies between drawing actions. A new technique for 
the identification of chunks was devised, based on 
patterns in the magnitudes of latency. The technique was 
significantly better than the use of a fixed latency 
threshold. It was discovered that there was a strong 
temporal signature of the underlying chunk structure and 
that effects of learning were evident.    

Introduction  
The concepts of chunking and the limited size of 
memory span, first proposed by Mill er (1956), underlie 
many modern theories of human cognition. The 
phenomenon has been verified in many domains 
(Vicente, 1988), and at most levels of cognitive 
processing in both humans and nonverbal organisms 
(Terrance, 1991). Given the pivotal role of chunking it 
is, perhaps, surprising that there has been lit tle research 
on the role of chunking in drawing. There has been 
some research on: low level motor behaviour 
constraints on drawing (Van Sommers, 1984), the 
functions of drawing in high level cognitive tasks such 
as design (Akin, 1986) and, drawing as a reflection of 
children's cognitive development (Goodnow & Levine, 
1973). However, direct investigations of the role of 
chunking in the process of drawing are absent.   

We are conducting studies that begin to address this 
deficiency in the understanding of this prominent 
human abilit y. Our approach is to have participants 
learn specially designed named geometric shapes, from 
verbal labels, which they then reproduced from memory 
– drawing out induced perceptual chunks. This paper 
focuses on whether chunks are apparent in temporal 
characteristics of drawing. Specifically, we have 
discovered that the absolute duration of pauses between 
drawing actions, the latencies, reflects the hierarchical 
structure of induced chunks and reveals the effect of 
learning by the composition of chunks. Further, we 
have found that local maxima in the latencies are better 
discriminators of boundaries between separate chunks 
than a fixed latency threshold.  

Previous work on chunking and drawing will first be 
discussed to set the context for this work. 

Chunking and Pausing Behaviour 
The idea that latencies or pauses might be a means by 
which one can segment data in order to discriminate 
chunk boundaries, arises from research conducted by 
Chase and Simon (1973). They defined an operational 
method by which to characterize chunks. In recall and 
memory tasks the latency distributions for between-
glance placements of chess pieces, which were taken to 
indicate boundaries between chunks, were significantly 
longer than within-glance placements, which were 
taken to indicate items within a chunk. Hence, items 
with pauses below a certain threshold could be 
considered as within a chunk and items with longer 
pauses above the threshold could be considered to be 
between chunks. The use of thresholds as one means to 
distinguish chunks has been supported by studies in 
domains such as: Chess (Chase & Simon, 1973; Gobet, 
1998), Go (Rittman, 1976,1980), and electronic circuits 
(Egan & Schwartz 1979). 

A significant pause can be defined as a latency 
greater than a static threshold typically within the range 
2 to 5 seconds (Card, Moran, & Newell , 1983). 
Although, in studies of drawing, researchers have used 
pauses as low as  1 second to segment data into chunks 
(Akin, 1986; Ullman, 1990).   

However, there are difficulties with the use of latency 
thresholds to differentiate chunk boundaries (Holden, 
1992; Gobet, 1998). Firstly, there is no one threshold 
that holds across different task domains (Chase & 
Simon 1973; Egan & Schwartz, 1979; Akin, 1986; 
Ullman, 1990; Gobet & Simon, 1998). However, a 
threshold can be found by training participants in a 
domain and then testing them (Reitman, 1976). 
Secondly, it has been observed that when learning takes 
place, as in the transition from novice to expert, latency 
times for chunk boundaries decrease (Chase & Simon 
1973; Reitman, 1976; Egan and Schwartz, 1979). 
Thresholds must be changed dynamically over time to 
cope with individual differences. Thirdly, for memories 
that are organized hierarchically (Palmer, 1977), the 
higher the chunk is in the hierarchy the more subchunks 
it contains and the longer it takes to recall (Reitman, 
1976). A single threshold might elicit chunks at one 
level but not its subchunks or higher order chunks.   

This paper proposes an alternative approach to 
thresholds for the identification of chunks using 



latencies between drawing actions. By focusing on 
patterns over successive latencies the new technique 
can overcome some of the limitations of fixed 
thresholds.  

Here, we define latency for a particular element as 
the time between li fting the pen off the paper at the end 
of one element and the time at which the pen touches 
the paper again at the beginning of marking the current 
element. The same holds for mouse button up and down 
actions when dragging a line on a computer screen. 

The Nature of Drawing 
Intuitively and theoretically there are various reasons to 
believe that understanding the role of chunks in the 
process of drawing will be a challenge. First, consider 
the recall and the drawing of a perceptual chunk given a 
verbal label for that chunk. A succession of processes 
are involved, including: the recall of the chunk, the 
planning of the order in which to produce the elements 
of a chunk, the planning of where to draw each 
individual element, and, the execution of the motor 
actions to make a mark for the element. It seems likely 
that such a sequence of processes would hide any 
hierarchical organization of chunks in long-term 
memory. Second, it appears unlikely that these 
processes would occur in a strictly serial manner and 
they are likely to be interleaved to different extents. 
This will probably mask any attempt to analyze the 
underlying structure of chunks. Third, the process of 
planning might in itself interfere with the recall of 
chunks and so potentially prevent each chunk from 
being recalled in a single burst of activity (Reitman, 
1976). One might reasonably assume that analysis of 
latencies within this area would reflect planning and 
action, rather than chunking. Fourth, the processes of 
mark making, including subjects sensitivity to methods 
of motor eff iciencies (Akin, 1986), might interact with 
the recall of chunks. For example, the speed of making 
a mark may vary with the hierarchical chunk level of 
the current element being drawn and so interfere with 
the apparent recall l atency of the next element.   

Despite all these reasons, the experiment reported 
here demonstrates that the duration of pauses between 
the drawing of individual elements is highly indicative 

of the structure of chunks in memory. It appears that far 
from diluting any information about the underlying 
organization of chunks, the duration of latencies in the 
process of drawing seems to provide a temporal 
signature for perceptual chunks.  

The next section presents the drawing domain and 
task used in the experiments. The following section 
describes the discovery of patterns in the latencies that 
were highly suggestive of a temporal signature of 
chunks. The experiment and results that demonstrate 
the reality of these patterns are then considered in turn. 
The implications of the findings are considered in the 
final discussion section.  

Domain, Stimuli and Tasks 
To study the behavioural manifestations of chunking in 
drawing a special ‘shape’ domain consisting of named 
geometric patterns was devised; examples are shown in 
Figure 1. Initially participants were taught six basic 
patterns, such as Figure 1a and 1b, and they drew 
several examples of them when given their names. They 
were then shown pairs of names of basic patterns to 
draw overlaid upon each other; Figure 1c. These 
composite patterns were then separately named; Figure 
1d. The composite patterns consist of four lines and a 
typical drawing task involves drawing a sequence of 
different composite patterns in a row beside a written 
list of names. 

Features of the design of the domain that make it 
highly suited to the study of chunking behaviour are: 
(1) the use of simple predefined shapes to make errors 
in recall or drawing easily identifiable, (2) the definition 
of a fixed hierarchy of patterns, with known nesting of 
levels and no overlapping of elements over chunks at  
the same level, (3) the participants learn the patterns, so 
the specific chunks and their organisation is known a 
priori, (4) verbal labels are used as stimuli to make 
participants recall the perceptual chunk from long-term 
memory, (5) the composite chunks consist of a small 
number of sub-chunks to keep demands on working 
memory low, (6) the outline square is drawn before 
each pattern to ensure drawing processes are fully 
engaged when the pattern is produced.  
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Figure 1.  Examples of types of patterns from the shape drawing domain.  



The domain has three chunk levels: (level 1) lines 
within chunks, (level 2) basic patterns, (level 3) compo-
site patterns. Thus, every line was coded depending on 
the order in which they were drawn. The first and 
second drawn lines of a two line basic pattern were 
coded level 2 and 1, respectively. The code for the four 
lines of two basic patterns overlaid was 2-1-2-1, 
respectively. The four lines of a composite pattern were 
coded 3-1-2-1, respectively, on the assumption that the 
composite consisted of two sub-chunks.  

Motivating Observations and Hypotheses 
The experiment reported below consists of two 
experiments (taken together here for the sake of brevity 
and coherence). The first was a pilot in which latency 
and other measures were examined in an exploratory 
manner. In graphs for various measures based on data 
from each individual participant on a single task (i.e., 
raw un-aggregated data), it was noticed that certain 
patterns of latencies appeared to be common and were 
related to the participants’ induced chunks. Figure 2 
ill ustrates the patterns found. Local maxima in laten-
cies, peaks, tended to be associated with the first line of 
basic and composite chunks. A peak was operationally 
defined as any latency whose magnitude was at least 
10% greater than the mean of the preceding and 
following latencies. With new just learnt composite 
chunks there were two peaks, matching the two sub-
chunks, with the second peak being smaller. With old 
composites that had been drawn many times, and so 
learnt well , the second peak tended to disappear.   

Although the patterns ill ustrated in Figure 2 were not 
universal they were suff iciently frequent to suggest that 
some temporal signature of chunks would be found by 
analyzing latencies. In particular, we propose three 
hypotheses: (H1) Peaks may be an effective way to 
discriminate chunks. Are peaks better than fixed latency 
thresholds for identifying chunk boundaries? (H2) Hier-
archical chunk levels may be reflected in the absolute 
magnitude of latencies. (H3) The learning of chunks 
may be apparent in changes of latencies over time. 
Further, (H4) if the temporal signature of perceptual 
chunks is real then it should be apparent when different 
drawing media are used. The purpose of the experiment 
was to test these hypotheses.   

Experiment 
The first two hypotheses were tested by using the 
shapes domain described above. The third hypothesis 
concerning learning was tested by comparing 
performance over two successive sessions in which the 
same patterns were learnt and reinforced. The fourth 
hypothesis was tested by using two different drawing 
interfaces – pen and paper drawing versus keyboard and 
mouse driven on-screen computer drawing, henceforth 
freehand and computer groups, respectively. 

The participants were unpaid volunteers, 4 male and 
4 female aged 30-45. Equal numbers were assigned to 
the computer and freehand groups.  

Apparatus 
The computer drawing used a specially written program 
on a Macintosh G3 computer. To draw a line, 
participants first used the keyboard to select the type of 
line to be drawn (i.e. horizontal, vertical or diagonal) by 
pressing a key. The line was then drawn using a 
standard mouse dragging action, with the line "rubber 
banding" between the endpoints.   

The freehand drawing used a high spatial and 
temporal resolution drawing tablet (Wacom UD tablet) 
connected to a PC computer running a specially written 
data capture and analysis program. 

In both cases the computers recorded detailed spatial 
and temporal data to enable the drawn patterns to be 
identified and for the latencies to be found.   

Procedure 
Participants were tested individually and each 
completed two sessions. The participants were given a 
period of familiarization with the given drawing 
apparatus. In session 1, in order to learn the patterns 
participants completed drawings of several basic 
patterns. This was followed by a further 6 drawings of 
both and basic and composite patterns. In the session 2, 
there were 18 drawings consisting of multiple patterns. 
The stimuli were presented on printed sheets or by 
verbal instructions. 

Results 

Peaks versus thresholds: H1 and H4 
Consider first the overall distributions of latencies for 
elements within chunks (level 1) and between chunks 
(levels 2 and 3). For data aggregated over participants 
in the same group and over all the tasks in each session, 
Table 1 shows various measures for these distributions. 
Between chunk latencies are greater than within chunk 
latencies, across session and interface type. All the 
distributions are skewed towards lower latency values. 
This pattern is similar to that found in other domains 
(e.g., Chase and Simon, 1973; Reitman, 1976; Egan and 
Schwartz, 1979), so it is appropriate to analyze this 
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Figure 2.  Temporal signature for different chunks 



domain using thresholds to identify chunk boundaries. 
As latency distributions were skewed, median latencies 
rather than the mean latencies were used in the analysis.  

As expected, the median latencies were shorter for 
freehand drawing versus computer drawing because of 
the extra decisions and motor actions required with the 
computer drawing interface. 

Table 1: Between and Within Chunk Latency 
Distributions (milliseconds) 

 
Computer Freehand Group 

Session 1 2 1 2 
Between Chunk      N 217 309 197 315 

Mean 1647 1188 2017 899 
Median 1347 931 989 620 

SD 1237 892 2985 1677 
Within Chunk         N 214 325 186 286 

Mean 814 686 1113 413 
Median 681 665 475 389 

SD 958 340 3657 169 
 
As the number of chunks is defined by the stimuli set 

an ‘optimum threshold’ can be set to distinguish chunk 
boundaries on an individual participant and session 
basis. The threshold is set so that the number of items 
above the threshold equals the number of known chunk 
items. Table 2 gives the thresholds found for each 
participant. Note the differences across sessions and the 
differences between individuals within sessions. As 
would be expected, the threshold for free hand is 
generally less than that for computer drawing.  

Table 2: Optimal thresholds (milliseconds) for each 
participant 

 
Computer sessions  Freehand session 
 1 2   1 2 

P1 600 800  P5 400 400 
P2 1400 800  P6 600 600 
P3 1400 1200  P7 800 800 
P4 1600 1200  P8 600 600 

 
How do peaks compare with the use of latency 

thresholds as methods to discriminate chunks? Inform-
ation theory (Wickens, 1993) provides a convenient 
way to measure how well each method performs by 
treating each as a system that is attempting to transmit 
information about items within chunks and items at the 
boundaries between chunks. By using conditional 
probabiliti es, information theory takes into account not 
only true positives and negatives (e.g., peak–>between 
chunks, ~peak–> within chunk) but also false positives 
and negatives (peak–>within chunk, ~peak–>between 
chunks).  Using the optimal thresholds given above and 
the prior knowledge about which items were chunks or 

not, the correctness of each individual identification 
was determined. The same was done for peaks. Hence, 
the ‘quality’  (information transmission/channel 
capacity) of each method was computed (Wickens, 
1993). The ideal quality, for all participants across the 
sessions, was almost unity because the numbers of 
within and between chunk items were nearly equal.   

Table 3: Quality of chunk discrimination by the two 
methods (bits) 

 
 Peaks Threshold 
 Session 1 Session 2 Session 1 Session 2 

Computer  
P1 0.628 0.444 0.398 0.247 
P2 0.503 0.186 0.155 0.080 
P3 0.306 0.195 0.261 0.092 
P3 0.355 0.117 0.247 0.071 
Freehand  
P5 0.460 0.595 0.133 0.274 
P6 0.400 0.620 0.168 0.331 
P7 0.671 0.622 0.321 0.205 
P8 0.410 0.238 0.217 0.138 
 
Table 3 shows that for each participant in each 

session under each drawing interface, the quality of the 
discrimination with peaks was better than that using 
fixed latency thresholds. Although there were just four 
participants in each group, two-tail t tests were 
performed to determine whether the peak method gave 
a significantly higher quality of discrimination than the 
threshold method. This was indeed the case for the 
freehand drawing in sessions 1 and 2 (p=.005 and 
p=.02, respectively) and computer drawing in session 2 
(p=.018). For computer drawing in session 1 the 
difference was approaching significance (p=.07).  

The results demonstrate: (H1) that peaks are a more 
effective way to discriminate chunk boundaries, and 
(H4) the temporal signature of perceptual chunks is 
apparent across different drawing media.  

Chunking levels and learning: H2 & H3 
Figures 3 and 4 show graphs of the median latencies 
against different chunk levels for each drawing 
interface and across each session. With one exception, 
for every participant in each session with both drawing 
interfaces, the median latencies increased with 
increasing chunk level. Using Page’s test for ordered 
median alternatives as applied to the different levels of 
the chunk hierarchy (levels 1, 2, and 3) there was a 
significant increasing trend in the latencies for the 
computer drawing in both sessions; in both cases L=56, 
p=.001 (n=4, k=3).  Similarly for Freehand drawing in 
session 1 L=56, p=.001 and session 2 L=55, p=.01 
(n=4, k=3). The difference between the medians holds 
not only at the group levels but also at an individual 
level. Using the data for each participant, the Kruskal-



Walli s-H test was used to test whether the latency 
distributions for the hierarchical levels were 
significantly different. As shown in Table 4, the results 
of the test for all participants were significant in both 
sessions and regardless of the mode of drawing. 
Comparing the graphs in Figures 3 and 4 across the two 
sessions for each mode of drawing, it is clear that the 
magnitudes of latencies drop. (Note that the latency 
scale ranges differ.)  

The results demonstrate: (H2) that the magnitude of 
latencies reflect the hierarchical chunk level. 

Table 4: Analysis of participants’ latency distributions 
over the hierarchical levels; Kruskal-Walli s H 

 
 Session 1 Session 2 Mode of 

Drawing Participant n χ2 n χ2 

Computer P1 118 60.3+ 184 61.48+ 
 P2 102 20.5+ 158 21.0+ 
 P3 105 28.7+ 145 24.5+ 
 P4 106 19.9+ 146 15.2+ 
Freehand P5 92 21.3+ 124 45.3+ 
 P6 107 24.0+ 187 88.9+ 
 P7 91 32.3+ 175 59.4+ 
 P7 93 29.1+ 115 29.9+ 
+p≤.001, df=2 in all cases 
 

Table 5 presents median latencies for participants 
using each mode of drawing for each chunk hierarchy 
level and summarises the analysis. The latencies 
decreased over sessions regardless of the hierarchical 
level. The differences between participants performance 
over the two sessions was assessed by applying the 
Mann-Whitney U test (one-tailed); for the freehand 
drawing group the decrease in median latencies is 
significant at all chunk levels and for the computer 

drawing group the decrease is significant at chunk 
level-2 and level-3.  

The results demonstrate: (H3) that the learning of 
chunks is apparent in the changes of latencies over 
time. 

Table 5: Comparison of the latencies between sessions 
at each hierarchical level 

 
Hierarchical levels 

1 2 3 
Mode of  
Drawing  & 
measure 
 

S1 S2 S1 S2 S1 S2 

Computer       

Median 681 665 1131 865 1720 1114 
N 542 401 117 
U 33523 14540+ 1079+ 
Z -0.88 -4.44 -3.09 
Free-hand    
Median 472 389 989 584 1042 658 
N 473 341 110 
U 19664+ 12228+ 626.5*  
Z -4.869 -6.591 -1.88 

*p<.05, +p≤.001  

Discussion 
A specially designed geometric shapes domain has been 
used to study chunking behaviour in drawing. 
Participants learnt named patterns that were assumed, 
reasonably, to have been stored in memory as induced 
perceptual chunks. The differences in the distributions 
of recall l atencies for elements within chunks and those 
between chunks is similar to patterns of latency 
distributions found in other domains (e.g., Chase and 
Simon, 1973; Reitman, 1976; Frey, 1976; Egan and 

Figure 4: Freehand drawing 
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Schwartz, 1979; Akin 1986; Ullman, 1990; Gobet, 
1998). Similarly, optimal latency thresholds that could 
be used to identify chunks were found to vary with 
participants, depending on the nature of the drawing 
interface and on the effect of learning.   

It was discovered that peaks (local maxima in 
latencies) were significantly better discriminators of 
chunks than fixed thresholds. The contrast between the 
approaches would be even starker, if, as would 
normally be the case, the number of chunks was not 
known a priori and used to set the optimal threshold. 
Peaks have the advantage that they use only local 
information about the relative magnitude of latencies to 
discriminate chunks. Whether the peaks method 
constitutes a general technique applicable beyond 
drawing awaits further studies in other domains.  

It was found that in drawing there was a strong 
temporal signature of perceptual chunks in the 
latencies. The level of an element in the chunk 
hierarchy is reflected in the magnitude of the latency, 
the higher the level the longer the pause. The effect is 
sufficiently prominent to yield significant differences in 
individual participant data. The effect of learning is also 
evident in the changes in the absolute magnitude of 
latencies at specific chunk levels. The changes to the 
latencies appear to indicate when two chunks have been 
compiled into a single composite chunk.   

These effects were consistent over the different 
modes of drawing, which suggests that the temporal 
signature reflects the structure of chunks in memory, 
and that the other processes of drawing, such as 
planning, are organized on the basis of the chunk 
structure. The process of drawing may magnify the 
effect of chunk structure rather than diminish or distort 
it. It seems plausible that the (sub) processes of drawing 
may operate in a largely serial fashion. Latencies 
between chunks may be longer than within chunk 
latencies because they encompass more sub-processes. 

Further work is addressing the robustness and 
generalisabilit y of the phenomena outlined in this 
paper. The temporal signature of chunking has been 
found to be apparent in other drawing domains, such as 
diagrammatic representations for problem solving 
(Lane, Cheng & Gobet, 2001). 
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