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Abstract
This paper describes a large scale experiment that evaluates
the effectiveness of Law Encoding Diagrams (LEDs) for
learning qualitative relations in the domain of elastic colli-
sions in physics.  A LED is a representation that captures the
laws or important relations of a domain in the internal struc-
ture of a diagram by means of diagrammatic constraints.  The
subjects were 88 undergraduate physics students, divided into
three learning trial conditions.  One group used computer
based LEDs, another used conventional computer based
representations (tables and formulas), and the third was a non-
intervention control group.  Only the LED subjects had a sig-
nificant improvement in their pre-test to post-test qualitative
reasoning.  The LEDs appear to make it easier for subjects to
explore more of the space of different forms of collisions and
hence gain a better qualitative understanding of the domain.

Introduction
Law Encoding Diagrams (LEDs) are an interesting class of
diagrammatic representations.  They capture the law(s) of a
domain by means of their internal structure, using geomet-
ric, topological or spatial constraints, such that each diagram
represents a single instance of the phenomenon or one case
of the law.  LEDs can be found in the history of science
(Cheng, in press) and may have had an significant role in
some discoveries, such as finding the law of conservation of
momentum (Cheng & Simon, 1992).  As LEDs seem to
have been useful to original scientists, it is possible that they
may help students learn about the same domain.  Cheng
(1994, 1995) describes a detailed small scale study in which
subjects learnt about elastic collisions in physics.  The
subjects used computer based LEDs in a system called
ReMIS-CL.  It was found that subjects, physics students,
could quickly learn to use LEDs for problem solving with
little instruction.  In post-tests half the subject used LEDs
for problem solving with novel strategies, in contrast to their
own ineffective pre-tests solutions.  From the detailed anal-
ysis of their use of ReMIS-CL, it appears that the successful
subjects obtained a better understanding of the diagram-
matic constraints of the LEDs, because they comprehen-
sively examined the space of structural forms of the LEDs.

This paper describes a larger scale investigation of
computer based LEDs for learning, with 88 undergraduate
physics students.  The main aim was to evaluate the
effectiveness of ReMIS-CL against controls of two kinds:

(i) a group using a similar, but non-diagrammatic, computer
based learning environment; and (ii) a non-intervention
group.  The investigation also provided further evidence to
support the hypothesis that successful learning with LED is
linked to the extent to which subjects explore the space of
different structural forms of LEDs.

The next section of the paper describes the domain of
elastic collisions and ReMIS-CL.  The method and results
are then outlined in the following two sections.  The impli-
cations of the results are described in the final two sections,
which also contrasts the present approach to others in com-
puter based physics learning.

Elastic Collisions and ReMIS-CL
Elastic collisions are important in physics, because both

momentum and energy conservation are involved.  Here
impacts between two bodies (balls) travelling in a straight
line are considered.  Figures 1 and 2 shows screen displays
(minus menu bar) of ReMIS-CL, a computer based discov-
ery learning environment for this domain.  At the bottom of
the screen, there is an animated simulation of the collision
that the user can run at will.  The two large areas above have
two interactive LEDs: the one-dimensional property
diagram (1DP diagram) and the velocity-velocity graph (VV
graph).  Figures 1 and 2 show different collisions but LEDs
within each represent the same collision.  The lines in the
diagrams represent magnitudes of velocities and masses: U1
and U2 are the velocities before impact; and, V1 and V2 are
the velocities after collision.  In Figure 1 the bodies
approach and depart in different directions but with equal
speeds.  In the 1DP diagram, mass lines, m1 and m2, are
drawn equidistant between the U1—U2 and V1—V2 lines.
In the V-V graph the masses are represented by the sides of
the small triangle.  The ratio of the lengths of the mass lines
in both LEDs equals the ratio of the masses of the two balls.

Both LEDs can be directly manipulated to change the
values of the variables.  Figure 2 shows the result of sliding
the handle, the small rectangle, at the end of the U2 arrow to
the right, doubling the initial speed of body-2.  The rest of
the 1DP diagram’s structure is automatically updated to be
consistent with its own diagrammatic constraints and thus to
satisfy both conservation laws.  The LEDs are inter-linked
so that the structure of V-V graph is also revised.  ReMIS-



CL ensures that the LEDs are always consistent with their
diagrammatic constraints.

The three main constraints of the 1DP diagram are: (i) the
tail ends of the arrows for the initial velocities and the points
of the corresponding final velocity arrows must be in line
vertically, making the total length of the U1—U2 line equal
to that of the V1—V2 line;  (ii) the total length of the mass
line equals the length of the velocity lines; and, (iii) the ends
of the lines not previously fixed in (i) and (ii), indicated by

the small circles, must lie on a straight vertical or diagonal
line.

In the V-V graph the straight diagonal line is constant
momentum contour and the circle (sometimes an ellipse) is
a constant energy contour.  There are 3 main constraints. (i)
The momentum contour line passes through the points for
initial and final velocities, as indicated by the small circles,
and is parallel to hypotenuse of the mass triangle.  (ii) The
centre of the energy circle/ellipse is at the origin of the
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Figure 1:  ReMIS-CL Screen showing simple equal mass collision.
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Figure 2:  An Asymmetric collision in ReMIS-CL



graph and it also passes through the points for initial and
final velocities.  The intersections of the contours give the
solutions to the two conservation laws.  (iii) The eccentricity
of the ellipse is given by the square-root of the ratio of the
masses; √(m1/m2).  The law encoding constraints of this
LED are more complex than those for the 1DP diagram.

ReMIS-CL logs the actions of the users on the system and
stores the values of variables.  Different kinds of operations
are recorded with time stamps, including: switches between
the representations; changes to values of the variables;
resets that return the variables to their default values (i.e.,
Figure 1); and runs of the simulation.

One way to distinguish different collisions is in terms of
configurations, defined as relations between the pairs of
initial (or final) velocities with respect to their signs
(directions) and whether they are zero, equal or unequal
(Cheng, 1995).  There are 7 different configurations for
pairs of initial velocities, U-configurations.  (The same
applies for final velocities.)  Figures 1 and 2 show different
configurations.  For different ratios of the masses, alternate
final velocity configurations can result from each U-config-
uration.  Combining initial and final velocity configurations,
there are 41 possible complete configurations.  Each corre-
sponds to different structural forms of the LEDs, so this
provides a convenient way to record and assess the
behaviour of subjects.

Method
Design.  There were three experimental learning trial condi-
tions.  (1) The LED group used ReMIS-CL with the two
LEDs.  (2) The Num group used numerical/formula version
ReMIS-CL which had the animated simulation but not the
LEDs.  In their place were: (i) a temporally ordered table of
previous sets of values from which particular cases could be
simply selected; and, (ii) a structured table of current values
of the variables along with values of momentum and energy
terms for each body before and after collision.  The values
of the variables could be changed by selecting a variable
and typing a new value.  (3) The Con group was a non-
intervention control group, so did not use either version of
the system.

Subjects.  The subjects were first year undergraduate
physics students at the University of Nottingham.  They
participated in the experiment during a weekly computer
programming class.  Given the constraints on the organiza-
tion of the class, which was run in six separate groups, it
was not possible to randomly assign subjects to the three
experimental conditions.  Pairs of class groups made up
each of the three experimental groups.

Materials and Procedure.  The experiment included: a pre-
test of the subjects knowledge of the domain; a learning trail
on the system (not with the Con group); and, a post-test
similar to the pre-test.  The trial immediately followed the
pre-test and the post-test followed a fortnight later.  Pre-test
and post-tests lasted 20 minutes and the trial 30 minutes.

The pre-test had four sections.  The first asked the subjects
to state the laws and write the equations governing elastic
collisions.  The second section had three qualitative ques-
tions in which the one or more outcomes of particular
collisions had to be given.  For example, what are the possi-
ble outcomes when the balls have different masses but they
approach from opposite directions with the same speed?
The third section included two questions about extreme
cases, in which outcomes of collisions with large speeds or
masses were considered.  The final section was a quantita-
tive question in which an exact solution had to be calcu-
lated.  The questions were written in English and accompa-
nied by a simple diagram depicting the situation (not a
LED).  Subjects responded by making annotated sketches.
Most subjects had insufficient time to complete the last
(quantitative) section, so it will not be considered here.  The
post-test was similar to the pre-test, except the first section
was replaced by a general question about what they had
thought they had learnt using the system.  The LED and
Num groups were also given a picture of the ReMIS-CL in-
terface they had used.

During the trials the LED and Num groups worked in
pairs.  They were given a sheet that described how to use the
system.  For the LED group this included a brief description
of the 1DP diagram and the V-V graph.  The subjects were
told to use the system to find out as much as they could
about elastic collisions and given a log sheet on which to
record their discoveries.  ReMIS-CL logged the actions
performed by the subjects.

For the purposes of analysis, only those subjects who did
both the pre-test and post-test are considered.  The groups
numbers were: LED=25, Num=27 and Con=36.

Results
The subjects had reasonable conceptual understanding of the
domain, with 97% and 76% knowing that momentum and
energy conservation laws, respectively.  There were no
apparent differences among the three experimental groups in
this respect.

Figure 3:  Mean Scores



Figure 3 contrasts the average pre-test and post-tests
scores for all three groups on the qualitative problems.  The
scores were the sum, for all three questions, of the number
of correct outcomes less the number of incorrect outcomes.
The lowest and highest scores observed were -5 and +5.
There was a significant increase in the LED group's score
pre-test to post-test (t= 2.66, p=0.014), but the score for
Num group was unchanged and the slight decrease of the
Con group was not significant (t=0.80, p>.1).  The differ-
ence in the pre-test scores of the LED group and the Con
group was significant (t=2.4, p<.05).  In a 3X2 mixed
ANOVA of the 3 groups and the 2 tests, there were no
significant effects of group or time of test, but there was a
significant interaction (F2,85=3.66, p<.05).  There were
strong and significant correlations between pre-test and
post-test scores of the Num and Con subjects (Pearson;
r=0.75, p<.001, and r=0.62, p<.001, respectively), but the
LED group had a weak (non significant) correlation (r=0.17,
p>.05).  The LED group’s qualitative reasoning has
improved.  The Num and Con groups’ have not, and it
appears that there has been little change in performance at
the level of individual subjects.

Table 1 shows various average measures of the behaviour
of the LED and Num groups in the trials.  The LED group
performed 2.5 times more operations than the Num group.
Values changes and simulation runs were the most common
operations.  However, as a proportion of the number of
operations of each subject, the LED group did significantly
more value changes and ran fewer simulations than the Num
group.  Num subjects often performed series of two or more
consecutive operations of the same kind; e.g., running the
simulation three times in a row, with the same values.  The
ratio of the numbers of such series of operations to the total
number of operations, per subject, are also shown in Table
1.  For example, on average, 13% of operations by LED
subjects were changes to the values followed by a series of
at least one more change in the values.  The LED group had
significantly fewer simulation series and significantly more

series of changes of values than the Num group.  The LED
group had three times the ratio of value change series to
simulation series, whereas the Num group had nearly equal
ratios.  This implies that the two groups may be doing
different kinds of reasoning, whilst using the system.

Simple measures of the distribution of U-configurations
and complete configurations were devised, such that unity
indicates an even distribution in which there are equal
numbers of all the different configurations and zero indi-
cates a maximally skewed distribution in which only one
configuration is present.  Larger values (approaching 1)
indicate that a subject has explored more of the space of
configurations.  Table 2 shows the scores for the two
groups, obtained by analysing the logs of subjects on

ReMIS-CL.  Both scores for the LED group were higher
than those of the Num group, although only the difference in
the complete configuration scores was significant.  LED
subjects are exploring a greater range of the possible
configurations of collisions.

Table 3 shows correlations for comparisons of U-configu-
rations with other measures of performance on the systems.
The LED group seems to have more thoroughly explored
the space of different configurations by concentrating on
value changes as opposed to runs of the simulation, shown
by the significant positive correlations between the U-
configuration distribution and value changes, both
proportion and series measures.  There are weak negative
correlations for simulation measures and U-configurations

Group Operations Proportion of
simulations

Ratio of sim-
ulation series

Proportion of
value changes

Ratio of value
change series

LED 132 0.26 0.040 0.56 0.13
Num 52.5 0.44 0.092 0.47 0.093

LED/Num 2.51 0.60 0.44 1.21 1.37
p  (t test) <.001 <.001 <.001 <.001 <0.01

Table 1:  Numbers and Types of Operations

Group U Complete
LED 0.56 0.30
Num 0.47 0.20

LED/Num 1.19 1.5
p (t test)  .1>p>.05 <.001

Table 2:  Measures of configuration distributions

Complete configuration
distribution

Proportion of
simulations

Ratio of sim-
ulation series

Proportion of
value changes

Ratio of value
changes series

LED 0.86 0.19 -0.06 0.62 0.68
p <.001 >.05 >.05 <.01 <.001

Num 0.79 -0.33 -0.30 0.23 0.18
p <.001 >.05 >.05 >.05 >.05

Table 3:  Correlations between U-configuration distribution and other trial measures



for the Num group, which implies that running more
simulations coincides with less exploration of the space of
configurations.

The results for the two extreme problems were similar,
with a significant improvement in LED subject's score pre-
test to post-test, but no significant improvements in either
the Con or the Num groups.  However, the details of the
results of the extreme case questions are consistent with the
qualitative questions results, they add little to the interpreta-
tion of the results (in the next section), so are not reported
here, due to limited space.

Discussion of Results
The experiment has shown that LEDs implemented as
interactive diagrams can be effective for learning about
qualitative relations and extreme cases in the domain of
elastic collisions.  This outcome is noteworthy, because the
duration and form of the intervention.  The subjects had a
short time on the system, 30 minutes.  They were not given
a carefully designed series of activities, but merely told to
look for interesting relations or patterns.  As the LED group
was the only one to improve, it appears that the gain can be
attributed to the role of the LEDs.  Alternative explanations
will be considered and shown to be implausible.

Comparison of the Num and LED groups shows that the
mere use of a computer based system with an animated
simulation is not responsible for the gain.  The Num group
used the simulation more than the LED group.  The
difference between the pre-test scores of the Con and the
LED groups was likely due to the non-random assignment
of the subjects to the experimental conditions, which was
beyond the control of the experimenter.  Thus, it is possible
to argue that the effect is due to repeated testing, if two
assumptions are made.  First, the Con group are experienc-
ing a ceiling effect, so repeated testing will not result in an
improvement.  Second, the Num group does improve due to
repeated testing, but this is matched by an equal degradation
due to the use of the numerical/formula version of the
system, for some unknown reason.  This alternative is less
likely than the explanation that the improvement is due to
the LEDs, because it is more convoluted and the assump-
tions are not secure.  First, it is unlikely that the Con group
is experiencing a ceiling effect, because their average score
of 1.2 is much less than the maximum qualitative problem
score of 5.  The second assumption is also weak, because it
requires two independent processes simultaneously working
to produced effects that cancel each other out.  The strong
and highly significant correlation between the Num subjects'
pre-test and post-tests scores suggests that no processes are
at work, rather than two independent ones.

The improvement in the LED group’s score from signifi-
cantly below to just above the Con group might be
explained by contending that the LED group was more
highly motivated, because they knew less.  This is unlikely
given the lack of change in the Num group and the small
absolute (though significant) difference between the LED
and Num pre-test scores.

Further, there are good reasons to positively attribute the
improvement of the LED subjects to the LEDs.  Part of the
explanation of why the LED group improved, but the Num
group did not, may be the sheer numbers of operations that
the LED group did compared to the Num group, two and a
half times as many.  This difference can itself be explained
in at least two ways.  First, the LED version of the system is
easier to use; a human computer interaction factor.  The
1DP diagram and the V-V graph can be quickly changed by
re-sizing a line.  With the numerical/formula system it was
necessary to select the variable and then type the required
value at the keyboard, a slower process.  However, this
operational factor is not sufficient to explain the whole
difference.

The second explanation, which is itself an explanation of
the relative success of the LED group, is in terms of
differences in the types of reasoning that the LED and Num
subjects were doing.  The Num subjects appear to have been
spending time relating the values of the variables to the
simulations, in the cases they examined.  The Num group’s
greater proportion of simulations and ratio of the simulation
series are indications of the load imposed by the need to
interpret each set of values.  For a particular case, Num
subjects were more likely to run the simulation several
times, seemingly in an attempt to gain an appreciation of the
form of the collision.  The LED subjects, on the other hand,
can quickly get an appreciation of the form of a collision by
looking at the 1DP diagram.  The direction of the arrows
and their lengths makes the form of the collision available
by means of a quick perceptual inferences.  Thus, it appears
that LEDs subjects may have been comparing successive
collisions, rather than individual cases, given their greater
proportion of value changes and ratio of value change
series.

The explanation of the difference between the LED group
and the Num group goes deeper than the fact that the LED
subjects could more quickly examine a greater number of
collisions.  Remember that the measures of value changes
and runs of the simulations are relative to the total number
of operations executed by each subject; thus the rate at
which LED subjects examined different collisions was
greater than the Num subjects.  This, and the fact that the
LED group examined a greater number of different
collisions (higher configuration distribution measures),
implies that the LEDs seem to make it easier for the subjects
to consider different forms of collisions.  In the 1DP
diagram and the V-V graph, the different collision are
distinct patterns or shapes, so considering different forms or
configurations requires relatively less cognitive effort than
attempting to distinguish different cases from sets of numer-
ical values.  Note that the availability of a table of previous
values did not appear to help the Num group.  To some
extent, the LEDs appear to make more of the space of
configurations of collision accessible to the system users.



General Discussion
Some general implications for instruction and learning in
technical domains follows from the findings of this study.
Providing computer based diagrams that make the underly-
ing relations of a domain more accessible to problem solvers
may be an effective way to facilitate the learning of qualita-
tive relations.  LEDs make the underlying laws of a domain
more accessible by capturing them in the internal structure
of diagrams and by having each diagram represent one
instance of the phenomenon.  This means that the learner is
less burdened with the task of interpreting individual cases,
so is freer to examine successive cases or to consider
extreme and special cases.  Such cases usually correspond to
distinctive and unexpected patterns in LEDs, which will
challenge and help refine the learners understanding of the
rules governing the form of the LEDs.  Hence, there seems
to be a double benefit in making the relations readily
accessible.

The findings of this experiment are consistent with the
previous small scale experiment on ReMIS-CL (Cheng,
1994, 1995).  In that experiment the subjects who success-
fully used the LEDs in the post-test were the ones who had
obtained the most complete understanding of the constraints
of the LEDs.  They achieved this by exploring more of the
space of possible configurations of the LEDs.  Both experi-
ments suggest the importance of examining a wide range of
cases during learning with LEDs, but this same approach
may be effective with other representations.  By exploring
more of the space of possible configurations of the
phenomenon, the learner will see a greater variety of the
correct forms of expressions in a representation and thus
have greater variety of distinct cases over which to induce
the relations underlying the phenomenon.  Investigating
extreme cases is more likely to provide useful information
for establishing the boundary conditions of a law than
merely examining normal or typical cases.

The LED approach is now briefly contrasted with some
examples of other research on computer based systems for
physics learning.  Whitelock et al. (1993) have also studied
learning about collisions and have shown that faulty causal
models can be challenged with a computer simulation.  This
is consistent with White’s (1993) findings.  Although not in
the same domain, White’s approach is interesting because it
provides learners with correct intermediate causal models
(ICMs), in addition to animated computer simulations.
ICMs act as bridge for the conceptual gulf between abstract
general laws and observations of phenomena.  Children
have successfully learnt about Newtonian dynamics with
ICMs, achieving a level of understanding matching students
beginning undergraduate science programs.

LEDs may also be considered as representations at an
intermediate level of abstraction.  However, LEDs capture
the formal relations defined by the laws of a domain in a
constraint based manner, rather than portraying causation.

Ploetzner et al.’s (1990) DiBi system is an intelligent
tutoring system for elastic collisions that aims to support

and guide students in their construction of sound domain
representations.  In contrast, ReMIS-CL is a discovery
learning environment that has no built in intelligence or
student model, but it explicitly provides correct domain
representations in the form of LEDs.

The present study has demonstrated the effectiveness of
LEDs for learning about some qualitative relations and
extreme cases in the domain of elastic collisions.  It has also
provided a better understanding of some of the processes
involved in effective learning with LEDs.  However, many
issues are raised by this and the research mentioned above.
Will LEDs be useful to students attempting to develop
conceptual understanding of a domain?  Can LEDs be
effective for students who have less experience in physics
and who are much younger?  How important is it to have
two complementary LEDs, such as the 1DP diagram and the
V-V graph, in a single system?  Ongoing research is
attempting to address these questions.
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