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Axioms of Probability
The axioms and other basic formulas for the algebraic treatment of probability are considered.

Axiom 1: For any event, A, that is a member of the universal set, S, the probability of A, P(A),
must fall in the range,

0£P(A)£1 . 3
Axiom 2: The probability of S is,

P(S)=1 . 4
Axiom 3: If A and B are disjoint events, A«B is empty, then,

P(A»B) = P(A) + P(B) . 5
(The fourth axiom for infinite disjoint events is omitted here.)

Various propositions follow from the axioms.  The probability relation between
complementary events is,

P(~A) = 1 - P(A) . 6
Before discussing the other relations, derived from the axioms, the classes of probabilistic
situations need to be considered.

Classes of Probabilistic Situations
Figure 3 shows a classification of the dimensions of probabilistic situations.  This particular
conceptualization of the general underlying structure of this topic was developed as part of the
work described here.  Why an existing conceptualization could not merely be adopted is
discussed below and demonstrates how representations can influence the overarching
conceptualization of domains.  At the top level the classification distinguishes between
orthogonal dimensions of dependent events and independent events.  This highest level division
will be considered first and followed by the lower level subdivisions.

Independent versus dependent events
The dependent dimension considers events within one trial and the independent dimension deals
with events across more than one trial.  On the first dimension, events are dependent because the
occurrence of any event will mean logically that other events may or may not occur (e.g., an odd
number thrown on one die means an even number is impossible but a prime number may be
possible).  On the second dimension, events in two or more trials are considered.  The
occurrence of an particular event, E1, in one trial will determine the set of events, S2, for
consideration in the next trial (e.g., toss a coin, if a head is obtained toss the coin again,
otherwise throw a die).  Events in the two trials are independent in the sense that the occurrence
E1 does not logically determine any relations among the possible outcomes of the events in S2,
although it does determine that S2 is selected.  In other words, the occurrence of E1 does not by
itself provide any information about the structure of S2 (e.g., getting a head on the toss of a coin
that selects the throw of a die does not influence which of the six numbers will be obtained on
casting the die.)

Quite different processes are involved in independent situations compared to dependent
situations.  Whereas the operations for the dependent class of relations are grounded in set
theory, those for independent relations are not.  To make this concrete, consider the use of a
Venn diagram to represent the dependent occurrence or not of an even number on the throw of a
die, Even or Odd, Figure 4.  But how should the diagram be modified to incorporate a second
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independent throw of the die?  Letting the Even circle simultaneously represent both throws will
not do, Figure 5a, as the combination of an even preceding (or following) an odd number is not
represented (e.g., Even-1 & Odd-2 is not represented).  Drawing another circle for even
numbers on the second trial that partially overlaps the first circle allows all four possible
permutations of trial outcomes to be represented, Figure 5b.  This, however, is also
unsatisfactory, because each circle no longer simply encompasses only one type of event (e.g.,
just even numbers).  The difference in the processes underlying independent and dependent
trials is reflected in the structure of the formulas that encode the probability relations for the two
classes of situations.

An examination of probability texts shows that this logical difference is not usually
made explicit.  The use of the symbols from set theory for 'and' and 'or' in equations for
probability relations in both classes is symptomatic of this.  It is hypothesized that this
conflation of different types of situation is a problem for the learners of probability.  PS
diagrams clearly distinguish the classes, and how this problem was highlighted during the
development of PS diagrams is described below.

Skemp (1986) recommends the use of different symbols to distinguish mathematical
procedures that on an abstract conceptual level are equivalent but which require different types
or combinations of operations to perform (e.g., addition of integers versus addition of
fractions).  Here, different symbols will be used for the relations of “and”, “or” and “given”
in independent versus dependent situations.  For dependent situations the symbols will be
borrowed from set theory.  For independent situations ‘&’, ‘v’ and ‘«’ will be adopted for
“and”, “or” and “given”.

Dependent Situations
Dependent situations can be subdivided into those cases where the events of interest are joint or
disjoint events, Figure 3.  For example, in the throw of a die obtaining an odd number is disjoint
from getting an even number but joint with getting a prime number.

Figure 4.  Venn diagram for the outcomes of throwing a die

Figure 5.  Failed attempts to modify Venn diagram for independent trials.  (Trial numbers are
indicated by suffixes on the outcome labels.)
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In general, equation 5 gives the relation between the individual probabilities and the
probability of the union of disjoint events.  For events that are not disjoint (intersect or not
mutually exclusive) the relation to the individual probabilities and the probability of their
intersection is,

P(A»B) = P(A) + P(B) - P(A«B) . 7
Equation 7 reduces to Equation 5 when the sets are disjoint.

The multiplication theorem relates conditional probability of dependent event A given
event B to the joint probability of A and B,

P(A«B) = P(A|B) P(B) . 8a
Similarly, for B given A, the formula is,

P(A«B) = P(B|A) P(A) . 8b

Independent Situations
Two events, A and B, in different trials are independent when,

P(A&B) = P(A) P(B). 9
The probability of A or B is given by the formula,

P(AvB) = P(A) + P(B) - P(A&B) = P(A) + P(B) - P(A) P(B) . 10
The conditional probabilities of independent event A given event B in an earlier trial, is simply
the prior probability of A, because they are independent,

P(A«B) = P(A) . 11a
Similarly, for B given A, the formula is,

P(B«A) = P(B) . 11b
The probability of A or B can be found even when A&B is not given using,

P(AvB) = 1 - P(~A&~B) . 12
The dimension of independent events has sub-divisions of unlinked or linked events,

Figure 3.  The terms linked and unlinked event have been coined here, because probability texts
do not usually discuss this sub-dimension directly, but often cover the concepts implicitly using
worked examples.

Unlinked situations come in two forms.  Similar-unlinked situations repeat the same
process on successive trials, for example, the multiple toss of a coin, throwing several die, and
selecting beads from a bag with replacement between selections.  Dissimilar-unlinked situations
have different processes on successive trials; for example, in the Cab problem one trial deals
with the base rate of cabs and the second trial concerns the accuracy of the witness's
identification of the colour of the cabs.

One reason why the Cab problem is difficult is knowing what to do with the information
about the base rates, which are commonly ignored by naive and not so naive reasoners.  To keep
track of the possibilities of correct or incorrect identification of blue or green cabs, the use of
tree diagrams, Figure 6, or contingency tables, Figure 7, are typically recommended (e.g.,
McColl, 1995; Shaughnessy, 1992).  The cells in the table match the leaves of the tree.
Although they help clarify what pair-wise calculations to do, they do not show which
intermediate values to pick and what calculation to do with them to obtain the overall result.
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In linked situations the particular composition of the groups of events in a trial differ
from each other and from the set of events in the preceding trial.  However, which group is
chosen in the second trial is determined by, or linked to, the particular event occurring on the
first trial.  Picking beans from a bag without replacement is a linked situation, because not
replacing the beans changes the set of beans for the next trial.  Monty's Dilemma includes
linked independent situations.  Another example is the case above, where choosing whether to
toss a coin again or to throw a die is linked to the outcome of the initial toss of a coin.  This
example is included in Figure 3 along with examples for the other types of situation.  (The
'encoding' entries are discussed below.)

Bayes' theorem provides a general approach to problems with independent situations,
but it is normally introduced to advanced students and is often difficult to apply (see below).

Permutations and Combinations
Outcome tables can be used to enumerate the possible outcomes of independent

situations.  Figure 8 shows all 36 outcomes of throwing two dice.  Each cell gives one possible
outcome permutation.  The other number in each cell is the sum of the numbers from each die.
Such outcome tables are often used for
instruction, because some events are easily
read-off the diagram, such as the number of
sevens along the diagonal.  Similarly the
numbers of combinations can be found by
cutting the grid along the other diagonal and
counting the cells above the line.  From the
structure produced the number of
combinations can be seen to be the sum of
the arithmetic series of integers from 1 to 6.

Table 1 gives the general formulas for
the numbers of permutations or combinations
of k selected objects from an initial set of n
objects, for selection with and without
replacement.  Some effort is required to use
the formulas to examine the numbers of
permutations and combinations under
different situations in order to gain a good
qualitative appreciation of the relations
among them.

Figure 6.  Tree diagram. Figure 7.  Contingency table.

1 2 3 4 5 6
Die 2

1

2

3

4

5

6

Die 1

1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6

2 3 4 5 6 7

3 4 5 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

6 7 8 9 10 11

7 8 9 10 11 12

Figure 8.  Permutation and sum outcomes of
throwing two dice.
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Odds
Probabilities may be expressed in the form of odds, which are ratios of chances of an event
happening to it not happening.  The relation of the probability to odds for and against event A is
given by the two formulas, respectively;

P(A) =  odds(A)
1+ odds(A)

 , 13

and

P(~ A) =  1
1+ odds(A)

 . 14

Odds sometimes provide a convenient way to express the probabilistic relations between pairs
of events, such as the chances of a hypothesis being correct given certain evidence.  The
likelihood ratios of necessity and sufficiency are useful ways to express the possible relations
among hypotheses and evidence (e.g., Giarrantano and Riley, 1989).

Knowledge Requirements of the Domain
What does someone need to know to have a good understanding of probability?  All of the
following things have a role, to a greater or lesser extent.

Mastery of the principles and laws of probability is certainly essential, which in terms of
an algebraic interpretation of the domain means having access to at least the equations above and
knowing when and how to apply them to different situations.  Knowing prototypical and
extreme examples will aid comprehension of a domain by providing set points of reference
against which comparisons can be made in the interpretation of novel cases.  Arguably, a
coherent network of such cases is the foundation of conceptual expertise.  Further, such cases
may serve as cues for the selection of appropriate formulas to use in modelling situations.  For
example, throwing two dice is a common example, which can be used as an analogue to some
other situation to help identify that situation as an independent unlinked process, and so aid
ones recall of formulas that are applicable (Equations 9 to 12).

There are many different levels and perspectives in the domain that need to be
interrelated.  Underpinning much of probability is set theory.  Chance events may be considered
in terms of probabilities or odds and related to relative frequencies in cases with finite samples.
For repeated processes, samples may be considered in terms of permutations or combinations
and related to the probability of particular sequences or to the overall numbers of sets of events.

Ideally, it is desirable for a learner to obtain a correct, complete and coherent network of
concepts for the domain.  Completeness is near impossible given all that is known about
probability and the limited time that can be devoted to any one topic in mathematics classes.  A

Table 1.
Formulas for Numbers of Permutations and Combinations.

Independent unlinked—
repetition or replacement

between selections

Independent linked—
 no repetitions or no replacement

between selections
Permutations nk k!

(n - k)!
Combinations (n + k -1)!

k!(n -1)!
n!

k!(n - k)!
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more realistic alternative is to provide the learner with sufficient knowledge so that they can fill
in the conceptual gaps for themselves as required.  To be able to extend their own knowledge
learners will need some understanding of the different methods and approaches that can be used
for reasoning about probabilistic situations.  Knowing when and how to use certain techniques
is important for successful modelling.  For example, given situations with large samples, it is
better to use the formulas in Table 1 to compute the total numbers of permutations or
combinations, rather than to attempt to enumerate and count every subset.

Learning how to deal with the complex interactions that can occur in probability
problems is an important part of learning the domain.  The Cab problem is more complex than
naive reasoners initially imagine and Monty's dilemma is complex irrespective of one's
experience in probability.  In addition to competence in algebra, skill at using the other "tools of
the trade" is particularly necessary for complex situations.  The ability to generate outcome
tables as required (e.g., Figure 8), and to use tree diagrams and contingency tables when needed
(e.g., Figures 6 and 7), are components of competence in this domain.

For a really robust knowledge of the domain, an understanding of the pitfalls of the
topic, the common misconceptions and possible misinterpretations, may be useful.  Such
knowledge can be used to check for errors and more importantly can help to delimit the
boundaries of specific concepts or procedures.  This may assist the learner developing a sense
of the global structure or topology of the domain and thus provide a better foundation for a
correct, complete and coherent conceptual network.  No general claim is being made about the
importance of the role of errors in learning, but it is argued that knowing about the areas of
common conceptual difficulties can shed some light on the concepts themselves.  This is, in
particular, with regard to the limitations of the representational systems used for a domain.  For
example, algebraic slips are easy to make when working with equations.  Learners can be made
aware of some of the common hazards and can be taught to spot when errors have occurred by
checking the dimensional consistency of the units of each the terms in an equation (e.g., in an
equation for energy conservation all the terms should be in Joules [kg m2/s2]).  This will
provide learners with a sense that there is an additional level of constraints that operates within
the laws of scientific and mathematics domains (Krauss, 1994).  In probability theory an
awareness that probability terms are dimensionless, whilst terms in relative frequency
expressions are numbers of things, places some overarching constraint on what are legal
operations on expressions for each type of measure of chance.

The traditional algebraic approach to learning probability can support most of these
requirements, but it does not do so particularly well.  The apparent limitations are illustrated in
the comparisons with PS diagrams, below.

DEVELOPMENT GUIDELINES FOR EFFECTIVE REPRESENTATIONS

This section introduces the six characteristics of effective representations inferred from the
studies on LEDs, as summarized above.  These characteristics are general "systemic" features
that should be considered in the broad context of the knowledge requirements of the domain
and the overall structure of the representation.  They are being adopted as guidelines for the
development of representations, and their use in the design of the new probability representation
is an indication that they are sufficiently well specified to be of utility.  The characteristics are
grouped according to whether they (1) deal with the encoding of information and relations in the
expressions of representations (semantic transparency) or (2) concern the use and usability of
representations (plastic generativity).
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Semantic Transparency
This set of characteristics/guidelines are things that may make representations better able to
support learners' development of a coherent, comprehensible and memorable network of
concepts.  They identify the features of a representation that aim to make the nature of the
domain apparent in the structure of the representation itself, rather than obscuring the domain
behind notational formats that are largely arbitrary with respect to the nature of the domain.
These characteristics/guidelines consider relations between the "static" structure of expressions,
or sets of expressions, in the representation and the major conceptual distinctions, invariants or
underlying regularities of the domain.

G1 Integration of levels of abstraction
Domains have information at different levels of abstraction.  At the most abstract there are the
general laws or relations that cover the whole domain and to a large extent help to define the
scope of a domain. A case in point are the axioms and laws of probability.  At the concrete level
there are descriptions of particular phenomena or sets of data pertaining to specific cases; such
as the situation in the Cab problem.  Levels of abstraction are integrated in a representation
when the information at these different levels is tightly coordinated within the expressions of the
representations.  A representation that has expressions to encode the laws of a domain and
separate expressions for sets of data pertaining to specific cases does not have well integrated
levels of abstraction.

It is hypothesized that a good representation for conceptual learning should have well
integrated levels of abstraction.  It should support a close conceptual connection between the
cases and the laws of a domain.  Such a representation will likely have simple rules governing
the structure of its expressions that encode the laws whilst simultaneously presenting data for
possible cases in the domain.  Better conceptual understanding may result, because the
representation may reveal how the laws of the domain constrain the configuration of individual
cases and how the laws determine the overall topology of the space of possible configurations.
With a poorly integrated representation the onus is on the learner to deliberately make these
conceptual connections for themselves.

For example, a good explanation of the Cab problem should show how the interaction
between the base rate information and the measures of the witness’ accuracy determine the
underlying structure of the problem under the appropriate probability relations, and how this
yields the actual outcome probability value.

White (1993) also considers that the conceptual gulf between abstract laws and concrete
cases is a general problem in the learning of science. However, she considers that the problem
should be addressed by the introduction of representations at an intermediate level of abstraction
to bridge conceptual gulf.  This contrasts with the claim here that it may be better to devise a
single representation that reduces the conceptual distance between the levels of abstraction,
rather than attempt to span the gulf between the levels by adding more representational
machinery.

G2 Combining globally homogenous and  locally heterogeneous representation of
concepts
An effective representation should, on the one hand, support a unified overall conceptualization
of the domain — a globally homogenous representation of concepts.  On the other hand, the
representation should not obscure conceptual differences where they naturally exist, over and
above any universal invariants of the domain — a locally heterogeneous representation of
concepts.

To be globally homogenous a representation should have a general scheme applicable to
all its expressions that encodes the deep regularities of the domain.  In some form, the general
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notational structure of its expressions should reflect the inherent structure of the domain.  To be
locally heterogeneous a representation should have distinctive notational features, at a detailed
level, that are consistent with differences which exist between particular concepts.  Although it
may seem contradictory for a representation to be both homogenous and heterogeneous, this
may be achieved by encoding global and local requirements using different structural features of
the same expressions.

It is claimed that globally homogenous but locally heterogeneous representations may
enhance learning in various ways.  The overarching representational scheme aims to provide a
rational framework that learners may use to recall and examine individual concepts and to
constrain the exploration of the relations among those concepts.  The similarity of expressions
may show learners that the concepts are related according to certain underlying invariants that
hold over the whole domain.  The individual features of expressions supports learning by
attempting to make a clear distinction between concepts that are, at one level, quite distinct but
nevertheless closely related.  The likelihood of over-generalizing a concept or unnecessarily
restricting the scope of a relation may both be reduced in representations that are globally
homogenous but locally heterogeneous.  Further, if the expressions of a representation are
relatively simple, but visually distinct, they may stand as memorable icons for the concepts they
represent.

For example, it is desirable for a representation for probability theory to be globally
homogenous with respect to the axioms of probability and the general propositions that
immediately follow from them, Equations 3 to 6, because they are universally applicable in all
probabilistic situations. It is desirable for the same representation to be locally heterogeneous
with respect to the various dimensions of probabilistic situations identified in Figure 3.

The notion of locally heterogeneous representations of concepts is related to Zhang and
Norman's (1994a) ideas about the external separability of dimensions of information in
representations.  This is considered in detail in the discussion.

G3 Integration of perspectives
Like most scientific and mathematical domains, there are different perspectives that can be
adopted when dealing with probability.  At least three levels exist for probability.

Ontological level: The first level includes the perspectives of set theory and probability
theory, which are distinct ontologies ranging over different elementary entities and relations.  Set
theory covers discrete objects and membership of groups, whilst probability theory also deals
with continuous measures of the chance or likelihood of possible events.  The probability
ontology can be further divided into aleotoric/frequentist (statistical or stable relative frequency)
versus epistemic/Bayesian (degree of belief) ontologies, as argued for by philosophers at length
(Hacking, 1975).

Alternative measures.  The second level concerns the different ways measures of
probability can be expressed, sometimes independent of the assumed underlying ontology.
These include: quantities of objects, odds, and probability per se.  For example, in the Cab
problem, we are told the actual proportion of cabs in the city (quantities) and the accuracy of the
witness as a percentage (probability).

Viewpoints:  The third level deals with different points of view that may be taken within
particular situations.  For example, in some problems similar to Monty's dilemma it is
sometimes easier to determine the probability of outcomes by considering the final outcomes
and working backwards through the contingencies to the initial conditions, rather than by
following the temporal sequence of trials as presented in the problem statement.  Different
viewpoints of the relations that hold in a particular situation may also be considered.  For
instance, one may view the probability of a given event, P(A), in terms of the probability under
the viewpoint of the non occurrence of that event, 1-P(~A).  Similarly, each side of the formulas
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for de Morgan's laws, Equations 2a and 2b, can be taken as alternative views of the same overall
state.

It is hypothesized that the better a representation (or set of representations) supports the
integration or close co-ordination of the perspectives within and between the three levels, the
easier the system may be for reasoning about, and learning in, the domain.  Close integration of
expressions may aid the comprehension of concepts by making available relations from other
perspectives that will place mutual constraints on the possible interpretation of the concepts.

Plastic Generativity
Manipulating representations to make inferences is intrinsic to learning in scientific and
mathematical domains.  It is rare for solutions to problems to be found without some
algorithmic work to generate new expressions that meet the requirements of the given problem
situations.  The Cab problem and Monty’s dilemma cannot be solved by merely substituting the
given values into the formulas for the laws of probability theory.  A good representation will
support the user in reasoning things out for themselves by modelling different cases or concepts
through the derivation of appropriate expressions.  Good representations for learning must,
therefore, be generative — not mere displays that present sets of data or fixed visualizations of
particular relations.

The set of characteristics/guidelines in this section consider the use and usability of the
representation for making inferences, solving problems and exploring the conceptual structure
of the domain.  They concern the "dynamic" transformation of expressions.  In this section, and
beyond, the term operation is used to denote an individual action that in one step modifies an
expression, usually according to a syntactic rule (e.g., canceling a term from both sides of an
algebraic equation, or adding a circle to a Venn diagram).  The term procedure is taken to mean
sequences of operations to modify expressions or to generate new expressions that meet
particular sub-goals generated during problem solving.

For the purpose of exposition, an analogy to the role of representations in reasoning
about a domain is made to the role of materials in the construction of physical models.  Both are
mediums of expression, either of physical form or conceptual structure.  Plastics (polymers) are
particularly suitable materials for modelling, because they can be moulded and possess certain
desirable properties that facilitate the modelling process.  In the same vein representations must
be generative and possess characteristics that support conceptual modelling that are counterparts
to the desirable physical properties of plastics.  The characteristics to be considered in turn are:
G4, malleability; G5, compact procedures; G6, uniform procedures.

G4 Malleable representations
An important property of many plastics that makes them ideal for modelling is their malleability.
They have a degree of flexibility combined with a degree of rigidity, which makes them capable
of being moulded yet able retain the desired form without external support.  On the one hand, a
material that is too rigid will fracture rather than be moulded (e.g., chalk).  But, on the other
hand, the material should not be so fluid that it flows in arbitrary directions whilst being worked
upon, as this too will make it impossible to form (e.g., syrup).

It is hypothesized that a good representation for conceptual learning should be
malleable, that is have expressions that are neither too rigid nor to fluid.  Under a general
information processing conceptualization, this characteristic may be considered in terms of the
mapping between the state space of expressions defined by the representation and the concepts
in the domain.  A rigid representation is one in which it is impossible to navigate directly from a
node (an expression) for one concept to a node for another concept, because there are no
procedures in the representation itself that will allow expressions to be modified to attain the
goal expression.  In such cases, a switch to another representation is required.  A highly fluid
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representation has a state space that is highly branching, so that many arbitrary routes through
the space can be followed, but few of them lead to the node for the desired concept.

A rigid representation may be of limited utility in the broad context of learning, because
it will be hard to generate new expressions.  Charts and graphs are rigid representations, as they
present information about a particular case but they cannot, in and of themselves, be modified to
represent other cases without additional information being supplied.  A rigid representation may
impose costs in the form of additional representations to be mastered, to carry out the inferential
work not supported by the rigid representation.

Similarly, a fluid representation may allow many different expressions to be easily
generated but most of these expressions will not be directly meaningful with respect to the cases
being considered.  The size of the potential search space of expressions will be large.  The
notation systems for set theory and probability theory are examples of fluid representations,
which can be arbitrarily manipulated to produce a great many relatively meaningless formulas.
Knowledge about the representation itself, in the form of strategies to direct search down
profitable paths, is necessary for representations at this end of the spectrum.  Mastery of such
strategies may be a substantial overhead to learning about the domain.

Supplementary representations may be used as a means to help make the choice of the
right path by managing the information that is needed to solve a problem; for example, the tree
diagram or the contingency table used in the solution to the Cab problem.  The need for
supplementary representations or representation specific strategies to deal with the
disadvantages of rigid and fluid representations is an additional cost to the learning of a
particular domain.  Thus, malleable representations that occupy the middle ground between rigid
and fluid ends of the spectrum are expected to be most effective for learning.

This characteristic is related to Stenning and Oberlander's (1995) claims about the
benefits of diagrammatic representations in relation to their degree of expressivity.  They argue
that diagrams are limited abstraction representational systems, whose expressiveness is neither
too great nor too restricted.  Such representations allow a finite, but not a unitary, set of models
to be inferred.  The notion of malleable representations differs from Stenning and Oberlander's
ideas about expressivity in that the scope of this characteristic is limited to the syntactic nature
of representations.  Semantic considerations are separately covered by the first three
characteristics above.

G5 Uniform procedures
This characteristic, and the next, consider the complexity of the procedures for the
representations of a domain.  It is hypothesized that the more complex the procedures the more
difficult the representation will make conceptual learning in the domain.  First, there is a cost to
acquiring the skills and knowledge to manipulate the representation, over and above the
development of an understanding of the conceptual content of the domain.  Once acquired,
complex procedures still pose a problem, simply because they make the exploration of the
domain more demanding.  The procedures may be complex in two general senses: (G5) there
may be numerous and diverse procedures, or (G6) individual procedures may involve long and
tortuous sequences of operations.   The formal nature and implication of these two types of
complexity are considered in this section and the next.

Considering our plastic analogy again, plastics for modelling usually have a uniform
consistency for good reasons.  A material that is not uniform (e.g., pebbles in clay) will be hard
to use, because the moulding process will not only have to achieve the desired shape, but will
also need to accommodate any local variations in the consistency of the material.  More skill and
special techniques are needed.

For a particular domain, there will be expressions for each of the concepts and
procedures to modify one expression into another in order to examine the relations between
concepts.  The representations for a domain will be more complex in procedural terms, if more
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types of processes are typically needed to transform expressions for the same set of concepts.
By the same token, representations will be more uniform when most of the procedures are
constituted by sequences of operations with common patterns.  Different representations, by
definition, have different operators, so a conceptualization of a domain that requires multiple
representations will necessarily be less uniform than a conceptualization that employs just one
representation.  With multiple representations, additional procedures that link the
representations together, by mapping information between them, are also required.  An
individual representation may be more or less uniform depending on the number of different
techniques that are needed to use the representation.  Venn diagrams have a small set of
techniques for their construction and modification, largely based on the drawing and labeling of
intersecting shapes.  In contrast, for the laws of probability a relatively large number of algebraic
techniques must be employed, including: simplification of formulas by eliminating terms;
isolating particular terms on the left hand side of equations; elimination of variables by
substitution of formulas into each other; solution of simultaneous equations; and so forth.

A representation which has largely uniform procedures is likely to be better for learning,
for at least two reasons.  First, there are simply fewer procedures to learn.  Procedures mastered
under one part of the conceptual space will be available for the exploration of other concepts of
the domain, without the need to acquire additional procedures.  Second, uniform procedures will
support a more coherent approach to modelling the domain, so that knowing what procedure to
use on a particular problem will be more straightforward.  Thus, more attention may be paid to
the relations among concepts, rather than expending effort to merely find appropriate ways to
derive expressions.

Cheng (1999b) describes a representation for a domain where quite different procedures
are required for the same class of problems when situations differ only in detail.  For some
problems a simple stepwise decompositional approach is possible but for others the best
approach is to set up and solve simultaneous equations.  The idiosyncratic need for different
procedures is an additional obstacle for learners of that domain.  If different procedures are
needed for the same class of situations then learners may make unwarranted conceptual
disassociations despite the underlying relations being the same.  This is a particular concern
with representations that do not support the combination of globally homogenous and locally
heterogeneous representation of concepts, because the structure of expressions for different
concepts will not indicate that such a conceptual disassociation is not appropriate.

G6 Compact procedures
Carrying the plastic analogy a little further, a model will require more time and effort to produce
when many different processes are used.  For example, it is inefficient to sculpt a model by
laboriously chipping lumps from a solid block, carving off thin layers and finally sanding to
achieve a smooth finish.  It is better to inject the plastic directly into a mould, a process with just
one step.  Mistakes are more likely in the first approach, because more actions have to be carried
out and each one must be performed with some precision.

This second form of complexity of procedures is concerned with the inherent
complexity of procedures themselves.  A procedure will be complex if a long and tortuous path
of operations is required to transform an expression into the desired form.  Conversely, a
compact procedure will consist of a few operations, with the generation of a small number of
intermediate expressions on the way to the target form.

It is proposed that a representation that is complex to manipulate, in this sense, is likely
to be a barrier to learning for at least three reasons.  First, long procedures will, quite simply, be
more difficult to learn than more compact procedures, because there are more steps and a greater
variety of operations to be carried out in a specific order.  Second, the chance of making errors
in the transformations of the expressions is less for compact procedures as there are few places
to make syntactic slips or misinterpret expressions.  When the error rate is high the opportunity
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for conceptual learning is diminished, because fewer correct expressions for different concepts
can be examined and the incorrect ones will cause confusion.  Third, users of the representation
will be less able to attend to information that is most relevant to the learning goals of a particular
exercise when substantial amounts of distracting syntactic work is necessary.

That completes the description of the characteristics of effective representations.

DESIGN CRITERIA FOR LEDS

The guidelines are proposals about the general characteristics of effective representations, but
they are too general to be directly used in the detailed design of a representation.  From the
many examples of good and poor LEDs that have been studied, the following five criteria for
effective LEDs are proposed (Cheng, 1999b), which allow new representations to be designed
that are likely to meet the guidelines.

Ca) There should be simple and clear mappings from domain properties to elements of the
diagram (e.g., preserving a linear relation between magnitudes of probabilities and
element size; not having a diagrammatic element for an event appear more than once in
the LED).

Cb) The diagrammatic constraints encoding the laws should be simple (i.e., use simple
geometric, topological and spatial relations) and should require minimal propositional
constraints to help encode relations.

Cc) Different cases should be clearly distinguished as different configurations of the
diagrams (e.g., probabilities of zero and unity should be limiting cases of the LED;
different diagrammatic structures for each of the classes in Figure 3).

Cd) The criteria Ca-Cc apply to the different levels of the domain, such as relations among
the variables within components and also the interactions among components (e.g.,
probabilities of individual events and overall probabilities of combinations of events
consisting of sets of permutations).

Ce) The diagrammatic constraints for the different levels should be compatible, such that the
rules for interactions between levels are consistent with the levels and correctly encode
the nature of the interaction (e.g., the interpretation of an element or configuration of the
diagram standing for an event or relation should be the same at both levels).
The criteria are related so it will be necessary to make a trade-off amongst them.  For

instance, it may be worthwhile allowing the constraints encoding the laws (Cb) to involve a few
complications if this means that the constraints across different levels in the domain (Ce/Ce) can
be made compatible in a particularly straightforward manner.

PS diagrams were designed to meet these criteria as far as possible.  The following
section introduces the system.

PROBABILITY SPACE DIAGRAMS — PS DIAGRAMS

Probability space diagrams use geometric and spatial diagrammatic constraints to encode the
laws of probability.  Like Law Encoding Diagrams in general (Cheng, 1996a. 1996b), each
instantiation, or drawing, of a PS diagram represents a particular case or probabilistic situation.
All PS diagrams use physical space as a direct visual analogue for the "space" of possible
events and their probabilities, hence the name Probability Space diagrams.  PS diagrams are
typically bounded by a pair of (faint) vertical parallel lines that delimits the space for that
diagram.
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Visual representations of probability have
been proposed previously, but they have been
limited to basic situations (e.g., Armstrong, 1981;
Dahlke & Kakler, 1981) or restricted to particular
problem types (e.g.,  Ichikawa, 1989; Gigerenzer
& Hoffrage, 1995).  PS diagrams have been
designed to cover the full range of probability
situations and problem types.  For set theory, PS
diagrams use subdivisions of the space to
represent subsets.  For probability theory the
interpretation uses the size of the divisions to
represent magnitudes of probability, odds or
relative frequency.  For the main classes of
probability situations (Figure 3) there are different
configurations of PS diagrams.  Each class of
diagrammatic configuration is defined by the
particular operations that encode specific relations.
These aspects of PS diagrams are considered in
turn.

Set theory
In PS diagrams parallel labeled horizontal

line segments ('lines' for short) represent sets.
Figure 9a shows a set, A, in relation to the
universal set (or space), S.  The common
horizontal space occupied by A and S represents
the elements that both sets contain (imagine a vertical column with sides intersecting the ends of
A).  As S is the universal set no parts of A can lie beyond the ends of S.  The faint vertical lines
are sometimes used to show how particular sets are projected to or from each other, Figure 9.
Short sections are labeled to explicitly denote particular elements, such as Figure 9b, which
identifies odd numbers from the first six integers.  As S is the universal set, the complement of
A is simply that part of S that does not project into A, so Figure 9c shows that A»~A=S.
Figures 9d and 9e show disjoint and intersecting sets.  The intersection of A and B, A«B, is
explicitly shown in Figure 9e.  Null or empty sets are represented by lines of zero length,
namely points, as shown in Figure 9f.  Although of zero length, the horizontal location of a
point may be meaningful in the context of the other lines for other sets.

Other properties of sets can be shown with similar diagrams.  Figures 10 and 11 are
diagrams for commutativity of sets, Equation 1, and de Morgan's laws, Equation 2, respectively.
The diagrammatic counterpart of the equality of the symbolic expressions are the two halves of
the diagrams, top and bottom, that share a common "result" line (thick line in the middle).

Figure 9.  Set theory interpretation of PS
diagrams.

Figure 10.  Commutativity of sets.
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Similar diagrams can be drawn for associativity, idempotence, distributivity, the laws of excluded
middle and contradiction, identity, absorption, involution, equivalence and symmetrical
difference.

Arrows are included in PS diagrams to aid interpretation when the lines are not arranged
following the top to bottom convention or when particular elements are to be highlighted.

In relation to set theory, PS diagrams are in effect one-dimensional Venn diagrams.  The
PS diagram is drawn by partitioning each set into two nested subsets for the other main sets in
S and their complements.  In Figure 12 there is a line for B and ~B under each of the lines for
A and ~A.  The selected subsets with thick lines in Figure 12 map onto the equivalent
(numbered) subsets of the Venn in Figure 1.  As the order of elements in a set is arbitrary, the
PS diagram may be re-drawn with all the lines for C and its complement grouped together side
by side at the top, with A and ~A broken into eight sections at the bottom, for instance.  If the
bottom layer is ignored or not drawn, then the PS diagram in Figure 12 represents S containing
only subsets A and B, which happen to intersect.  The intersection is the left quarter of the PS
diagram.

This division of lines into several parts for subsets makes the PS more cumbersome to
construct than Venn diagrams, in the first place, but there may be advantages in the interpretation
of the diagram.  For example, try locating the line/area standing for ~A«B«~C«D in the PS
diagram in Figure 13 and the Venn diagram in Figure 2.  These are special cases as every set
intersects every other set.  To depict situations where some but not other sets intersect with the
PS diagram it is a matter of deleting columns for those conjunctions that are not applicable.
With the Venn diagram it is necessary to reposition the circles with respect to each other or even
to change the shapes representing each set.

S

A,~A

B,~B

C,~C

A ~A

B ~B B ~B

C ~C C ~C C ~C C ~C

1 2 3 4

Figure 12.  PS diagram for three intersecting sets.

Figure 11.  de Morgan’s Laws.
Figure 13.  PS diagram for all possible intersections of four sets.
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Probability, Relative Frequencies and Odds
Information about the quantities of objects in sets, or the relative frequency of elements, or the
probability of events are encoded in PS diagrams by interpreting the lengths of lines as
magnitudes.  Figure 14 is a basic PS diagram with lines U and A.  Under a quantity
interpretation the length of line U may, for instance, represent a total of 1000 items and the
length of A represents 750 items of type A.  The ratio of the length of A over U gives the
relative frequency of A, rfu(A)=750/1000.

Under a probability interpretation, U is taken to be of unit length and the probability of
A is given by the ratio of the length of A to U, P(A)=0.75.  This constraint captures the second
axiom of probability theory, Equation 4.  The arrows from U to A indicate that it is the ratio of
A to U that is of interest.

Figure 15 shows the extreme cases when the length of A is equal to U and when A is a
point, which represents the probabilities of A being equal to unity and zero.  This illustrates the
range of probability values as given in the first axiom of probability theory, Equation 3.

Figure 16 shows that the probability of A and ~A equals unity, Equation 6.
PS diagrams provide an interpretation of odds,

as shown in Figure 17.  The overall length of the A
and ~A lines must equal the length of U and the small
semicircle is used to indicate that an odds ratio is
being considered, the ratio of the length of A to ~A.
Figure 17 also shows the odds against A, odds(~A),
where the ratio is the length of ~A to  A.  Taking
together both the probabilistic and odds interpretations
in Figure 18, the diagrams encode the relation between
the probabilities and odds, as given by Equations 13 and 14.

Dependent Events: Joint and Disjoint
The first of the major classes of probability situations (Figure 3), to be considered, are those
with dependent events, Figure 19.  PS diagrams use different methods to encode dependent
versus independent situations.  In PS diagrams for dependent situations the relations among
events are encoded by the horizontal relations between the lines for individual probabilities.  The
diagrams take into account the relative horizontal position of the lines and probabilities are
computed by operations that, in effect, add or subtract lengths of line segments from each other.

Figure 14.  Basic PS Diagram

Figure 15.   PS diagrams for extremes of probability

Figure 16.  Sum of
complementary probabilities

Odds(A)
Odds(~A)

U
A

~A

Figure 17.  Odds
interpretation of PS

diagrams.

Odds(A)≈∞, P(A)≈1

Odds(A)≈0, P(A)≈0
Odds(A)=1, P(A)=1/2 

A

~A

Figure 18.  Extreme probabilities
as odds.
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In Figure 19, events A and B are joint, and in Figure 20 they are mutually exclusive.
The same events A and B are considered in each group of diagrams and for easy reference their
lines are shown at the top of each diagram, Figure 19i and 20i.  The arrows showing projections
of A and B from U have been omitted for clarity and, in general, when a line stands alone in this
manner its probability is to be taken with respect to the Unit line, by convention.  To find the
probabilities of particular events the relevant sections of the lines for A and B are selected,
following the set theoretical interpretation above.

Joint and disjoint events are represented in PS diagrams by overlapping or non-
overlapping lines, respectively.  The magnitude of P(A«B) is the ratio of the length of the line
for A«B divided by the Unit line.  In the case where events are at not disjoint there is an overlap
of the lines, Figure 19ii.  For disjoint events, however, there is no overlap, so A«B is empty and
the probability is zero, Figure 20ii.  Although the lines may not overlap, they may be drawn so
that they abut, for the sake of convenience.  The probability of A»B is then the ratio of the
length of line between the “free” ends of lines A and B to the length of U, Figures 19iii and
20iii.  This encodes Equation 5, for the third axiom of probability theory.  Figures 19iv and 19v,
shows diagrams for the probabilities P(B|A) and P(A|B) for joint events, and similarly for
Figure 20iv and 20v, with disjoint events.

Combining the diagrams for P(A»B) and P(A«B), in Figure 19, they encode the
relation given in Equation 7, as shown in Figure 21.  The probability for events that are not
disjoint is less than the sum of the individual probabilities, because of the overlap of the lines for
A and B, which represents the intersection of the events.  Thus, the joint probability is given by
the ratio, to the U line, of the lengths of A plus B minus A«B.  Each term in Equation 7 is
represented by a line in Figure 21.  Further, why Equation 7 should reduce to Equation 5 in the
switch from joint to disjoint events is demonstrated by changing the diagram in Figure 21 so
that A and B merely abut, so there is no longer an overlap and the term in the equation for
P(A«B) is a point (zero length).

Multiplication rule and the compound
ratio rule
The overlap between two events underpins the
representation of conditional probabilities.  The
value of a conditional probability is given by the
ratio of the length of the lines for the overlap
divided by the length of the line for the 'given'
event.  Figure 19iv/v shows examples for
P(A|B) and P(B|A).  Note that the base line
(denominator) is not the Unit line in this case.
Using the same logic, prior probabilities are
also really conditional probabilities but with the
Unit line as the 'given' event: P(A)=P(A|U).
This fact is useful for understanding how a PS
diagram encodes the multiplication rule,
Equation 8a/b.

P(A)
P(B)

P(A«B)

P(A»B)

P(A)
P(B)

P(A|B)

P(A)
P(B)

P(B|A)

P(A)
P(B)

P(A)
P(B)

i

ii

iii

iv

v

Figure 19.  Dependent joint events
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First, a simple geometric relation needs
to be introduced.  Consider in Figure 22 the
relation among the ratios of lengths N:M, N:X
and X:M.  N:M can be considered as composed
from N:X and X:N, because
N/M=(N/M)(X/X)=(N/X)/(X/M).  This will be
called the compound ratio rule.

Now consider Figure 23, which depicts
the multiplication rule for conditional
probabilities.  A and B intersect, so the
probability of the conjunction is given by the
ratio of the thick line in the middle for A«B to
the line for U.  The conditional probability of A
given B is represented by the ratio of that part of
the line for A that overlaps B divided by the
length of the line for B.  As P(B) is the ratio of
the lines for B and the U line, the compound
ratio rule is applicable, with the mappings of the
lines for events to the lines in compound ratio
rule diagram shown on the right of Figure 22.
Thus the diagram encodes the multiplication
rule, Equation 8a (or 8b), by inserting an extra
line for P(A) (or P(B)) into the diagram for the
conditional probability of the conjunction.

Independent Unlinked Events
PS diagrams for dissimilar-unlinked independent events are shown in Figure 24.  To

encode one trial following another, or two trials occurring separately, the PS diagrams for
independent events: (i) have separate lines for each trial; (ii) include the possible outcomes of
each trial; (iii) show how each outcome of the first trial affects the overall probability of the
outcomes of the second trial but not the individual probability of the events within the second
trial.  All this is done by scaling the lines for the events of interest in the second trial with
respect to the lines for the outcomes of interest in the first trial.

Figure 24 shows various unlinked independent probability relations for events A and B
(Figure 24i).  Consider the diagram for P(A&B), Figure 24ii.  The line for the outcome A in the
first trial is drawn.  This line is then taken as the base, or ‘unit’, line for re-drawing the overall
line for the second trial, with events B and ~B.  Thus the probability P(A&B) is the ratio of the
length of the line for A&B to the length of the unit line (which is not shown, but is given by the
vertical bounding lines of the probability space).  This scaling operation is a geometric form of
multiplication, so the diagram encodes Equation 9.

P(A)
P(B)

P(A«B)

P(A»B)

P(A)
P(B)

P(B|A)

P(A)
P(B)

P(A)
P(B)

P(A|B)

P(A)
P(B)

i

ii

iii

iv

v

Figure 20.  Dependent disjoint events.

Figure 21.  Combining diagrams for. Figure 22.  Compound ratio rule.
P(A»B) and P(A«B)

Figure 23.  PS diagram of the
multiplication rule.
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The diagram for P(AvB), Figure 24iii, uses the
same scaling principle but is a little more complex
example.  Again the line for the second trial, including
B and ~B, is scaled to the line for A in the first trial.
The line for B and ~B is also scaled to the line for ~A.
Thus, the line for AvB is given by the overall length of
all the segments for which either A, B, or both, are true.
From the left, this is composed of segments for A&B,
A&~B and ~A&B.  The probability P(AvB) is the
ratio of the length of this composite (thick) line to the
Unit line.  The diagram encodes Equation 10.  Further,
the diagram also encodes Equation 12, which relates
AvB to not ~A&~ B, because the line for AvB covers
all of the unit line except the segment for ~A&~B.

PS diagrams for conditional probabilities of
unlinked independent events are constructed in a
similar fashion, with the scaling of the lines for one
trial to the lines for events of interest in the other trial.
However, the comparison of the lengths of the lines is
not to the unit line, but to the line that is the basis of the
conditional, as shown in Figure 24iv/v.  Thus, the magnitude of the probability of P(A|B) equals
P(A) (and P(B|A)=P(B)), because of the scaling has reduced the length of the line for A in
direct proportion to the line of B.  Thus Figure 24iv(v) encodes Equation 11a (and 11b).  In this
case, the resulting magnitude of the probabilities is unchanged, but the scaling procedure is
essential to the PS diagram because it captures the underlying process that generates the
probabilities.

The order of construction with respect
to the trials does not affect the underlying
structure of the diagrams for events.
Compare Figures 25a and 25b in which the
trials for A&~A and B&~B are reversed.
The same four overall outcomes are obtained
and they have equal length lines and
probabilities.  The scaling of the lines for the
second trial with respect to the first has not
affected the independent probability of any
outcome of the second trial.  The line for A in
Figure 25b, for instance, has merely been split
into two segments but with a constant overall
length, equal to that in Figure 25a.  Further,
rearranging the diagram slightly in Figure
25c, so that the two parts of the lines of A are
side by side, it becomes clear that P(AvB) is
equal to the overall lengths of P(B) and P(A)
(end to end), less the length of P(B&A),
because A and B overlap.  This encodes
Equation 10.

For similar-unlinked trials, the lines
for each trial are repeated on successive rows,
for example Figures 26a, 28a and 29.  The
lines are scaled as for all PS diagrams for
independent situations and the number of Figure 24.  Independent Unlinked Events

Figure 25.  Equivalent PS diagrams for
independent unlinked events.
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repetitions of the lines on the second trial is the same as the number of possible outcomes.  In
Figure 29, the A-B-C line is repeated three times on the second trial because there are three
different events.

Linked Independent Events
This class of situations occurs when particular outcomes of one trial determines the possible
events that may occur in the next trial, but the chances of the events within the second trial are
not influenced by the first trial.  Selection of items from a group without replacement is one
form of linking, say beads from a bag.  On the first trial there is a choice of n beads with equal
probabilities P(U)/n=1/n of selecting any one at random.  The second trial is linked to the first
as there are now n-1 beads.  The probability of choosing any bead in the second trial is 1/(n-1),
but the particular bead or its chance of being selected is not a function of which bead was
chosen in the first trial.

The encoding for linked independent events uses the same scaling procedure as
unlinked events.  To begin, Figure 26a shows the PS diagram for the similar-unlinked
independent case of the double selection of three beads (A, B, C) with replacement between
selections.  The line for A-B-C is simply re-scaled and repeated three times on the line for the
second trial under each of the three possible outcomes of the first trial.  However, for linked
events the choice of lines to be scaled is contingent upon the nature of the linking.  Figure 26b,
shows the PS diagram for a set-linked case when there is no replacement in the selection of
beads.  As one bead has been removed (e.g., A) its line segment is excluded. The remaining line
(B-C) is then re-scaled and located on the line for the second trial under the line for the bead
that was removed in the first trial (A).  The diagram is completed in the same way for the other
beads.

Another example of set-linking
is shown in Figure 26c, which is the
example given in Figure 3.  A die is
thrown if a tail comes up on the toss of a
coin, otherwise the coin is tossed again.
Figure 26d is the example from Figure 3
of the probability-linked case, where
coins that are biased towards heads or
tails are tossed if the initial toss of a fair
coin is a tail or a head, respectively.  An
example for the combined case of both
set and probability linked independent
events is shown in Figure 26e.  In the
second trial, the chances of a '6' or a
head are disproportionately high
compared to the other numbers or to a
tail.

The structure of the PS
diagrams, the way they encode the
axioms and propositions of probability
theory and how they are used to model
probabilistic situations, have been
considered in detail to give an
impression of the validity and
completeness of the system.
Introducing students to PS diagrams
would not initially give such detailed

Figure 26.  One unlinked and four linked
independent events.
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explanations of the nature of the geometric
constraints and their interrelations.  Figure 3
summarizes the different methods of encoding
the laws of probability in PS diagrams for the
different classes of situations.

MODELLING WITH PS DIAGRAMS

How PS diagrams are used for problem solving
and their potential for learning are considered in
this section, by applying the diagrams to a range
of counterintuitive situations and hard problems.  The chosen examples are hard for naive
reasoners and for students who have studied probability (Kahneman, Slovic, and Tversky, 1982;
Shaughnessy, 1992).  As claims are being made about the general nature and scope of PS
diagrams a wide range of examples are considered to provide a good sampling of the potential
application of the diagrams.

Features of Some Probabilistic Situations
Because PS diagrams encode the laws of probability using the internal structure of diagrams,
such that each diagram represents a particular case, they often allow the features of situations to
be explored through alternative interpretations of the diagram or by contrasting diagrams.  Some
examples of this use of PS diagram, are considered.

Conjunctions
Given appropriate contextual traps, naive reasoners will sometimes claim that the probability of a
conjunction is greater than the probability of one their parent stem events (Kahneman, Slovic,
and Tversky, 1982) .  For example, primed with the information that a woman is "bright, single,
31 years old, outspoken and concerned with social justice" college students often rate the
statement "She is a bank teller and feminist" as more likely than "She is a bank teller".  It is
predicted that showing or having reasoners construct the PS diagram for conjunctions of
dependent events may better help them avoid such conjunction fallacies than knowing and using
Equations 7 and 8.  The equations do not relate the probability of the conjunction directly to the
probability of the stem events, but require the consideration of either the probability of the
disjunction or a conditional probability.  However, in Figure 27, which models this situation, the
overlap of the lines for the stem events gives the probability of the conjunction.  It is clear that
the probability of the conjunction can never be larger than the line for the smallest of the stem
events.  Further, the greatest probability occurs when one event is completely subsumed by the
other, so that the overlap equals the length of one of the events, say, when all feminists are bank
tellers.

Combinations and permutations in repeated selections

Figure 27.  PS diagram for "feminist bank
tellers".
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Consider situations in which there is repeated selections of objects.  Aspects of such cases
include: (i) combinations versus permutations of objects; (ii) numbers of objects, n, and
numbers of selections, k; (iii) numbers of particular combinations or permutations; (iv) whether
there is or is not replacement of objects.  How are these different aspects interrelated?  The
formulas for independent events, Equations 9 to 12, and formulas for combinations and
permutations, Table 1, can be used to begin to explore the relations among these things, but with
difficulty.

An approach with PS diagrams is to draw and interpret diagrams for particular cases and
to attempt to generalize any patterns found bearing in mind the constraints of the diagrams.
Figures 28a and 28b show the PS diagrams for selections with repetitions and without,
respectively, for successive values of k for the case of n=4.  The comparison of diagrams reveals
some interesting aspects of the two situations.

The number of permutations of events increases rapidly in both cases, as shown by the
number of distinct columns on successive rows.  In Figure 28a there is a geometric increase,
which is more rapid than the factorial increase in Figure 28b.  As the number of trials grows the
chances of a given permutation decrease in inverse proportion to the number of permutations,
which keeps the overall probability of the whole space at unity.  Only three trials are shown in
Figure 28a, because of the physical limits of drawing distinguishable segments given the
geometric decrease in the size.  All four trials can be shown for the case without repetition in
Figure 28b.

The shading in Figure 28a picks out one set of unique combinations, starting with
combinations on the left of the diagram and skipping over any columns that have combinations
which are already highlighted.  The number of combinations is clearly increasing, but the rate is
much less than the geometric increase for permutations.  Notice how the pattern of shading on
each successive row is generated from the previous row in a fractal-like manner.  Such patterns,
once spotted can be used as a method to enumerate the set of combinations for an arbitrary
number of trials.  Figure 29 shows the unlinked independent toss of up to six coins, showing a
similar fractal pattern.  Notice how just one new combination is added on each trial, which
mirrors the addition of just one new coefficient on each successive row of Pascal's triangle.

In contrast, in Figure 28b for no repetitions, on successive selections the number of
combinations initially increases from unity, to n, reaching a maximum, then dropping back to n

A B C D
B C D A C D A B D A B C

C D B D B C C D A D A C B D A D A B B C A C A B
CD BD BC CD AD AC BD AD AB BC AC AB

A B C D
A B C D A B C D A B C D A B C D

ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCDABCD

k

1
2
3

k

1
2
3
4

Figure 28.  Combinations and permutations in PS diagrams.
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and finally unity (corresponding to 4!/(4!0!), 4!/(3!1!), 4!/(2!2!),4!/(1!3!) and 4!/(0!4!)).  As
there are only four objects, by the fourth selection all have been picked, so each of the 24
(permutation) columns in Figure 28b must logically be the combination ABCD.  The logic of
the process of selection without replacement means that the number of permutations for k=n-1
selections is equal to that of permutations for k=n selections, because there is no choice for the
final selection.  This is shown by the lack of subdivision of the line segments between the
penultimate and ultimate lines in Figure 27b (k=3 and k=4).

On a given trial, the probability of any given permutation is less than the case where
there is no replacement than for when there is replacement.  By definition, the probability of the
selection of particular objects when there is independence and no linking is the same from trial
to trial, which is shown by the constant total length of the line for each object, despite the lines
being subdivided, Figure 28a.  Perhaps somewhat surprisingly, the same is true in the linked
case in Figure 28b, despite the fact that in different branches down the diagram the earlier
selections affect the possible choices of later selections.  Overall, the regularity that holds
horizontally across the diagrams means that the local differences in particular branches are
evened out for the PS diagram as a whole.

Sampling
Sample size affects the probability of permutations and combinations, although naive reasoners
often do not believe so (Shaughnessy, 1992).  For example, the probability of obtaining 3 heads
in 3 tosses of a coin is not the same as the probability of six heads in six tosses of a coin.
Figure 29 illustrates this using a PS diagram, with the width of the column for the combination
with all heads, to the left, decreasing with each new trial in the sample.

As each column in Figure 29 stands for a unique permutation, the diagram shows that
the chances of obtaining HHHHHH in order is no more or less likely than HTHHTT, even
though the latter permutation may appear as more representative to naive reasoners
(Shaughnessy, 1992).  Similarly, the fallacy of negative and positive recency effects is
demonstrated by the equal division of each line segment on each trial, irrespective of the number
of preceding trials.  This is required by the scaling rule for independent trials, which is applied
locally to each line segment in the diagram.  However, on a global scale the uniform application
of the rule means that the chance of a particular permutation, such as successive heads,
diminishes geometrically with the number of trials.

Figure 29 may be used as an introduction to the Binomial distribution.  After two trials
there is one set of HH, two of HT and one of TT.  After three trials the sets are: 1 HHH, 3 HHT,
3 HTT , 1 TTT.  By collecting series of outcomes in this manner the coefficients of the terms in
the binomial expansion can be found.  As the widths of the lines for unique events are equal on
a particular trial, the total width and hence probability of a given combination of events can be

H T H T H T H T H T H T H T H T

H T H T

H T

H T H T

H T

H H H H H H H HT T T T T T T T H H H H H H H HT T T T T T T T

H T

HT HT HT HT HT HT HT HT HT HT HT HT HT HT HT HT HT HT HT HT HT HT HT HT HT HT HT HT HT HT HT HT

3 trials

6 trials

Figure 29.  Three or six toss of a coin.
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found.  Thus, the PS diagram provides an illustration of the relation between the probabilities of
the possible outcomes and the form of the binomial distribution over different numbers of trials.

Hard Problems
PS diagram solutions to some classic problems in probability are presented to illustrate how the
diagrams can be used to model complex situations.

Testing Situations
The Cab problem gives many reasoners great difficulties.  As the situation is independent and
unlinked, the PS diagrams to model this case will have the same general form as Figure 25 but
lengths of the lines will stand for the given percentages, as shown in Figure 30.  Using the
scaling rule the base rate line is scaled to the lines for the correct and incorrect identifications of
the witness.  There are four possibilities, two for correctly identified cabs and two for incorrectly
identified cabs, with their respective probabilities (%) shown in Figure 30.  The answer is the
conditional probability that the witness was correct when saying "blue", P(Blue|"Blue"), which
is the ratio of the line for Blue&"Blue" (correct identification) to the sum of the lengths of the
lines where "Blue" was said irrespective of the truth of the identification (i.e., 12/(12+17)).  The
PS diagram configuration for the conditional is shown in Figure 30 by the medium lines and the
thick line projecting from it (cf. Figure 3iv/v).

The PS diagram for this problem has an advantage over the tree diagram, Figure 6, or the
contingency table, Figure 7, because it shows more clearly what calculation to do once the
intermediate probabilities (four products) have been computed.  The diagram reveals the implicit
conditional outcome that is hidden in the problem statement and makes it clear that the base rate
affects the chances of correct and incorrect identifications.  One might deliberately promote this
PS diagram configuration for independent unlinked events as a general model for test situations,
where there are possible false positives and false negatives, in addition to correct test results.  By
varying the base rate and the identification percentage students can explore the effects of the
reliability of alternative tests in different circumstances.

There is a close similarity between this PS diagram and the “bar” representation for
this specific type of problem used by one of participants in Gigerenzer and Hoffrage’s (1995)
study.  Such visual representations appear to be used by some reasoners when probability
problems are presented in frequentist with an associated improvement in their quality of making
Bayesian inferences.  This suggests, indirectly, that PS diagrams may also improve reasoning
on problems about such “testing” situations.

Base
rate

Green Blue

Witness Correct Wrong

Green&”Green”
Blue&
”Blue”

Green
&”Blue”

Blue&
”Green”

P(Blue|”Blue”)

1585

80 20

3171268

12/29=0.41

Figure 30.  PS Diagram solution to the Blue cab/Green Cab problem.
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Complex Linking in Monty's Dilemma
Naive reasoners doing this problem often think that when Monty opens his door the probability
immediately increases from 1/3 to 1/2 and that sticking with the original door or switching will
have no further effect on the probability of winning.  Shaughnessy (1992) claims "this problem
highlights the difficulty with what is actually known, when it is known, and how the new
information obtained is used" (p. 475).  The solution with PS diagrams puts a different
perspective on why the problem is hard.

This problem is a fine example of the complex linking of events across trials.  The
linking occurs because (i) Monty makes a choice that is influenced by the contestant’s first
choice and (ii) contingent upon Monty's selection the contestant has three options: (1) stick with
the original door, (2) flip a coin to choose between the two remaining closed doors, (3) switch to
the other door.  The PS diagram solution is shown in Figure 31.  The three lines on the top row
are the contestant's (C's) possible choices.  The lines are labelled P, X1 and X2 for the prize and
the two dummies.  The second row shows Monty's, M's, choice contingent on C's choice.  If C
initially picks the door with the prize behind it, P, M can select either of the other doors, X10-2
or X20-1 (subscripts are of the form ‘n-m’ for the mth possibility of contestants nth option, as
shown in Figure 31).  Alternatively, if C initially picks a dummy door (e.g., X1) then M can
only pick the other dummy door (i.e., X20-3).

Option 1: The third row shows the consequences of sticking to the original choice.  The
probability of winning is still 1/3, not 1/2, even though C knows that X1 or X2 is a dummy.
There are two ways to explain this, either using global or local interpretations of this PS
diagram.  First, in terms of the whole probability space, M’s opening of a dummy door does not
eliminate any of the possible outcomes overall, because of the particular way the outcomes are
linked in a cross-wise fashion over the first three rows of the diagram.  P remains the same
proportion of the whole space.  For instance, M choosing X20-3, given C initially picked X1,
does not mean that C might not have initially picked X2 (and hence forced M to choose X10-4).
Second, consider the local conditional probability of C picking P given that M opened X1.  This
is given by the ratio of the length of P1-2 to X10-2 plus X10-4, which is 1/3.  Similarly, with P

P X1 X2
C’s initial choice

M’s choice X2 X1X1X2

C sticks X1 X2PP

C chooses
again at random

X2X1PP X1 X2 P P

C switches
P PX2X1

1

2

3

1 2 3 4

1 2 3 4

1 2 3 4

2 4 6 81 3 5 7

0

Figure 31.  The probability space for Monty’s dilemma
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given X2 (P1-1/(X10-1+X10-3)=1/3).  As both cases are 1/3 then the chances of P must also be
1/3.

Option 2: The fourth row shows the possible outcomes of randomly re-selecting one of
the closed doors, after M’s choice.  The chances of winning goes up to 1/2.  Again this may be
explained by global or local interpretations of the diagram.  First, to globally determine the
chances of C getting P, all the outcomes are enumerated for each of M’s choices.  For example,
if C initially picks P, then M can randomly choose either (a) X20-1 or (b) X10-2, which leaves C
with the choice of (a) P2-1 or X12-2 or (b) P2-3 or X22-4, respectively.  The sum of the length of
all the resulting P line segments (P2-1, 2-3, 2-5, 2-7) is one half the Unit line.  Alternatively,
locally examining the options C has after each of M’s choices, there is always an equal choice
between two events with one of them being P.  Hence, the probability of C winning is 1/2 as
every set of outcomes has a probability of 1/2.

Option 3: When C switches the probability of winning goes up to 2/3.  Yet again, this
may be explained globally or locally.  First, consider each of C's options in response to M's
choices.  If C initially picks P and M picks either X20-1 or X10-2, this means P will switch to
X13-1 or X23-2, respectively.  If C initially picks either X1 or X2, M picks X20-3 or X10-4,
respectively, so on switching, C will pick P3-3/3-4 in both cases.  Thus, two thirds of the
probability space is occupied by P on the fifth row.  Alternatively, the conditional probability of
C having P given M selecting X1 or X2, are individually 2/3, hence overall the probability must
be 2/3.

The examination of the problem space provides an explanation why this case is so hard
to comprehend.  The complex linking of events between trials, with some involving a forced
choice and others a random selection with the application of the scaling rule, makes the task of
following what is happening extremely difficult, because there are so many events and
contingencies to bear in mind.  Thus, even experts in the domain who attempt linear verbal
reasoning about the problem usually fail to cover all of the possible sequences of events.  Such
reasoning relies on the local consideration of particular sequences, but it is essential to consider
all the paths through the probability space in order to determine the overall probabilities of the
different outcomes.

Three Prisoners and Bayes' Theorem
Shimojo and Ichikawa (1989) contrast the correct Bayes' theorem solution to the 'problem of the
three prisoners' with the subjective theorems that they found that people often apply when
attempting solutions.  PS diagrams provide an alternative to Bayes' theorem that makes the
solution less counter-intuitive.

Problem of the Three Prisoners.  The people, A, B, and C were in Jail.  A knew that one
of them was to be set free and the other two were to be executed.  But A did not know
who was to be spared.  To the jailer who did know, A said, "Since two out of the three
will be executed, it is certain that either B or C will be, at least.  You will give me no
information about my own chances if you name the person, B or C, who is to be
executed".  Accepting this argument  after some thinking, the jailer said "B will be
executed".  Thereupon A felt happier because now either A or C would go free, so A's
chance had increased from 1/3 to 1/2.  Is A’s happiness reasonable?

There are obvious similarities between the structure of this problem and Monty's
Dilemma.  Consider first the solution using Bayes' theorem.  This requires the prior
probabilities, which are assumed to be equal,

P(A) = P(B) = P(C) = 1/3 . 15
Also, the conditional probabilities of  the jailer saying "B" given the different options of the
person who might be released are,
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P("B"«A) = 1/2 , 16a

P("B"«B) = 0 , 16b

P("B"«C) = 1 . 16c
If A is to be freed the jailer has a 50-50 chance of whether to say "B" or "C".  If C is to be freed
the jailer has one choice and if B is to be freed there is no choice.  To compute P(A|"B") this
version of Bayes' theorem is applied,

P(A«"B") = P("B"«A) P(A)
P("B"«A) P(A) + P("B"«B) P(B) + P("B"«C) P(C)

 . 17

Substituting the values from Equations 15 and 16a-c yields a probability of 1/3.
One approach to the solution to the problem with PS diagrams is to enumerate all six

possible sequences of events of who might be spared or executed and then to eliminate those
sequences that are false, because it is known that B will be executed.  Then conditional
probabilities among the remaining outcomes can be considered.  This general strategy was used
in Figure 31 for Monty's dilemma.  A simpler alternative is to consider the outcomes and work
backwards.  Figure 32 shows the PS diagram solution to the problem.  The first row shows the
possible outcomes, in terms of who will be free.  The second row shows who the jailer can say
will be executed, given that he will not say it is A.  When the jailer says "B" there are thus two
possibilities of who else will be executed as shown by the two thick lines in the third row.  Thus,
the chances of A being freed are not greater even when it is known that B will be executed.

The problem can be made even more counter-intuitive by changing the prior
probabilities of each person being free such that P(A)=1/4, P(B)=1/4 and P(C)=1/2 (Shimojo
and Ichikawa, 1989).  In this case the chances of A being freed drop to 1/5, surprisingly.  The
application of Bayes' theorem does not easily explain why.  Figure 33 is a re-drawn PS diagram
for this situation, showing how the different prior probabilities alter the probabilities lower in the
diagram.  Note that the lines B and C are equal under A, because it is assumed that who the
jailer will say is to be executed is random and unrelated to the relative prior probabilities of the
B and C.  If for some reason it was in proportion to the prior probabilities, then the application

Figure 32.  PS diagram for the Problem of the Three Prisoner

Figure 33.  PS diagram for the Three Prisoner Problem with unequal prior probabilities
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of the scaling rule would make the chances for A even worse.
This example also demonstrates that PS diagrams may be used to counter the Falk

Phenomenon (as described by Shaughnessy, 1992) — the reluctance of naive reasoners to
entertain the possibility of conditional probabilities in which the conditionalizing datum, the
given, occurs later in time than the item of interest.  Although it is sometimes useful to arrange
successive rows vertically in the same order as the temporal occurrence of the trials in the cover
story, this is not essential in PS diagrams.

ALGEBRA VERSUS PS DIAGRAMS

PS diagrams have been introduced and a range of examples considered to demonstrate the
scope and coherence of the system as a representation for probability theory.  This section
makes predictions about the potential benefits of PS diagrams for problem solving and learning,
in comparison to the traditional algebraic approach, on the basis of each of the six characteristics
of effective representations.    These psychological predictions about the representations are
made by considering the formal structure of the notation they employed in relation to the
general nature and constraints of human reasoning and learning.  Different cognitive
implications flow from the formal differences in the representations.

G1 Integrating Levels of Abstraction
The levels of abstraction are not well integrated in the traditional algebraic approach, because
information at different levels of abstraction are distributed over separate expressions. Sets of
equations are used to encode the abstract laws and others used to assign values to particular
variables.  As in any complex domain, it is common for learners to lose sight of the concrete
interpretation of what is happening whilst they are doing the manipulation of formulas needed to
meld the laws and values.  For example, in the Cab problem there is no simple explanation as to
how the base rate information interacts with the witness's accuracy.  The algebraic formulas for
independent events do not make this evident, because there are many combinations of events to
consider, which is why contingency tables (Figure 7) or tree diagrams (Figure 6) are used to
help co-ordinate the information.  Bayes' theorem is an alternative method, but it too is
semantically opaque, because formulas such as Equation 17 do a good job of obscuring the
underlying structure of the problem and hence effectively separating the levels of abstraction.

In PS diagrams information about the abstract laws and values for particular cases are
incorporated into the same expressions.  The laws are encoded in a diagram by geometric and
spatial constraints, such as the overlapping lines for joint sets and the scaling rule for
independent events.  The elements in the same diagram also represented magnitudes as the
lengths of lines or by the simple ratio of lengths.  The comparison of Figures 32 and 33, shows
how, in the complex Three Prisoners problem changing certain values (base rates) affects the
final outcomes, but within the context of the overall structure of the situation as determined by
the laws of probability (scaling rule for independent situations and linking of contingent events).
Similarly, Figure 30 for the Cab problem shows the solution for particular values of a situation,
but the overall structure of this diagram stands as a general model for problems involving the
testing of hypotheses when false positives and negatives are possible.

PS diagrams integrate levels of abstraction better than the algebraic approach.  Thus, it is
predicted that users of PS diagrams will find it easier to derive implications of the laws for
particular situations and to generate explanations of specific cases based on the laws.  In turn,
the users are more likely to obtain an understanding of the domain that is structured more by the
laws than by superficial features of different cases.  Given the same amount of instruction, it is
anticipated that learners using PS diagrams will have more expert-like categorization of
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problems whilst the users of the conventional algebraic approach will be more novice-like (cf.
Chi, Feltovich and Glaser’s (1981) physics experts).

G2 Globally homogenous and locally heterogeneous representation of concepts
Global homogeneity.  The algebraic approach generally lacks interpretative schemes that use the
structure of its expressions to encode overarching laws or constraints that hold across the whole
domain.  There are many examples of this.  Many fundamental concepts are given as a single
equation or formula that have little direct role in the generation of expressions, such as the first
axiom of probability, Equation 3.  The necessity of measuring all magnitudes of chance against
a datum, including prior probabilities against the unit probability of the universal set (S), is a
foundational concept that is not acknowledged in the structure of the algebraic expressions.
There are different types or styles of equations for the basic laws of probability.  Some laws use
only elementary mathematical operations (Equations 2-14), whilst others use more complex
operations, such as factorials in the formulas for the numbers of permutations or combinations
in repeated trials (Table 1).  The need for Venn diagrams, tree diagrams, contingency tables and
outcome tables adds to the lack of global homogeneity, because they use different
representational schemes (e.g., node-link diagram, table) that are each largely arbitrary with
respect to the underlying structure of the domain.  Patterns that reflect the same general
conceptual distinctions will be different in each of the representations, because they have
different formats.  All these things taken together are likely to obscure the underlying
conceptual coherence of the domain from learners and to be the sources for acquiring erroneous
conceptual distinctions.

However, the algebraic equations for probability do represent one important concept in a
global homogeneous manner. The notion that all measures of chance apply to some well-
defined states of affairs, is shown by means of a set theoretic expression in the parentheses of
every probability formula.  But compared to PS diagrams this is a minor feature.

The global homogeneity of PS diagrams is apparent, even at a superficial level, in the
relatively uniform structure of the diagrams and by the lack of supplementary representations.
PS diagrams support all the functions of the supplementary representations in the other
approach.  More importantly, they provide an explicit unified conceptualization of the
conceptual underpinnings of the domain in terms of probability space.  (1) The association of a
magnitude of probability with every event is achieved by each event being represented by a line
whose length is in proportion to its probability.  (2) The first axiom of probability theory is
inherent in the definition of the probability space and is represented by the width of each PS
diagram.  (3) The concept that every probability is a conditional probability is reflected by all
values of probability being ratios of the length of some line to the length of its base line.  In the
case of prior probabilities, an event is conditional upon the universe of interest, U, that is the
width of the probability space.  These features of PS diagrams may help learners make
connections between related concepts and gain an overall sense of the overall conceptual
coherence of the domain.

Local heterogeneity. The traditional algebraic approach substantially lacks a local
heterogeneous representation of concepts, because the notational structure of expressions for
different concepts are sometimes the same.  The expressions for basic set relations all have the
same general notational form:

N!op!M , 18
where N and M are sets and op is a symbol for the set relation, '«', '»', or '|'.  The expressions
for different relations are distinguished just on the meaning attached by convention to the op
symbol.
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Similarly, the notational structure of the probability formulas for "and" and "or"
relations are the same in the case of dependent and independent events (i.e., Equation 8 and 9,
and Equations 7 and 10).  Their general forms are, respectively:

P(Sand)=P(S1) x P(S2) , 19
and

P(Sor)=P(S1) + P(S2) - P(Sand), 20
where Sand and Sor are expression for "and" or "or" relations between events, and S1 and S2 are
simple or conditional expressions for particular events.  With regard to the major dimensions of
probabilistic situations, there is nothing in these expressions that acknowledges the difference
between dependent and independent situations, unless attention is shifted to the embedded set
theory expressions.

Given the similarity in the notational structure of these formulas, learners are likely to
find them rather indistinguishable from each other and, importantly, unlikely to find good cues
to associate them with different parts of the space of concepts underlying this topic.  To
illustrate this point, suppose the right hand sides of Equations 5 to 14 were removed from the
text above and listed in a random order.  It is a challenging task to correctly sort them out and
replace them where they belong in the text.  Repeating this task with certain probability
textbooks is even more daunting as the representations used are even less locally heterogeneous,
because the symbols for set relations («, », |) are used for independent as well as dependent
situations.  Here, the introduction of alternative symbols (&, v, «) for independent events is an
attempt to make the conventional algebraic formula satisfy the requirement for the locally
heterogeneous representation of concepts a little better.

In contrast, PS diagrams have a more heterogeneous representation of concepts locally,
because different diagrammatic constraints encode the various dimensions and sub-dimensions
of probabilistic situations (Figure 3).  For example, dependent events are a single row in a PS
diagram and are distinguished from independent events that have multiple rows for successive
trials to which the scaling rule has been applied (Figure 24).  Disjoint dependent events are
distinguished from joint dependent events by the occurrence of overlapping lines (Figures 19
and 20).  PS diagrams for unlinked independent situations have lines that are the same as
previous lines (similar-unlinked, Figures 26a, 28a, 29) or that are completely different
(dissimilar-unlinked, Figures 25, 30).  Linked independent situations, however, have lines that
share some features of previous lines but differ in other respects, such as the selection of
segments (set-linked, Figures 26c/b, 28b) or different relative lengths of segments (probability-
linked, Figure 26d) or both (set-and-probability-linked, Figure 26e).  Unlike algebraic
expressions, there is usually some notational means to locate where in the conceptual space of
the domain (Figure 3) a given diagram belongs.

PS diagrams have a globally homogenous but locally heterogeneous representation of
concepts, but the reverse is true for the conventional algebraic approach.  Thus, it is predicted
that users of PS diagrams will more easily identify conceptual connections between related
concepts and will more clearly differentiate concepts that are dissimilar.  In turn it is expected
that they will gain a better comprehension of the overall structure of the conceptual topology of
the domain (Figure 3) and will have better recall of expressions that are applicable to given
problem situations. It is possible that PS diagrams for different parts of the conceptual space
may stand as icons for the relations that hold in different contexts.

G3 Integrating Perspectives
There are three levels or different perspectives to be integrated in any effective representation for
probability: ontological, alternative measures, and viewpoint.
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Under the traditional approach, at each level, separate representations or expressions are
used for each perspective, and additional notational techniques or coordinating expressions are
needed to link the alternative perspectives.  For the set theory and probability theory separate
representations for the two ontologies are used (e.g., Equation 18 versus Equations 19 and 20),
and they are coordinated by the embedding of the expressions of set theory within the
probability formulas (e.g., S1, Sor in Equation 20).  The different interpretations of measures of
chance (probability, odds, frequency) has its own set of equations to encode relations and
additional equations are also needed to interrelate the perspectives (e.g., Equations 13 and 14).
The same is true for different viewpoints within a problem situation.  Individual equations
capture particular relations, such as Equation 7 for the union of disjoint events.  However, to
change the viewpoint, say, to consider the union of the negation of the same events, other
probability equations and set theory relations must be applied, including the formula for
complementary events (Equation 6) and de Morgan's laws (Equation 2a/b).

The multiple sets of representations, and the different techniques needed to coordinate
the alternative perspectives at each level, are likely to prevent users reinterpreting problems to
resolve impasses by switching perspectives.  In turn, the lack of coordinated application of the
alternative perspective is likely to mean learners fail to make good conceptual connections
between the different ways of conceptualizing the domain.

In PS diagrams all three levels of perspective are well integrated.  At the ontological
level, set theory and probability theory both use the same diagrammatic means to represent (i)
sets and relations among sets and (ii) events and probabilistic relations among events.  A single
notational system is employed rather than two coordinated but otherwise independent
representations.  This is possible because different diagrammatic features of the same notation
are used to encode information from the two perspectives: relative position for set theory and
length for probability theory.

The different measures of chance are also well integrated in PS diagrams.  Accessing a
particular interpretation requires different readings of the same expression, rather than separate
expressions.  It is likely that the particular way of reading a PS diagram will focus attention on
different geometric relations between lines and take lengths to stand for different types of
quantity.  Under a relative frequency interpretation a line represents a number of equivalent
things and its length is compared to the line for the number of elements in the universal set.
Figure 18 provides probability and odds interpretations of the same diagrams.  Both measures
are ratios that compare the lengths of two lines, but a different line in each diagram is used as
the "denominator" for the two measures.

The same is true of different viewpoints within the same diagram.  In a PS diagram of a
dependent situation, focusing on the overall length of two lines may give the probability of the
union of their events, whilst looking at their overlap gives the probability of their intersection,
but comparing the overlap to any one of the lines gives the conditional probability — all in the
same diagram.  Figure 16 encodes the individual probabilities of an event and its complement
and also shows that the probabilities sum to unity.  The local and global interpretations in each
of the options in the PS diagram for Monty's dilemma is another case in point.

PS diagrams provide a better integration of the three perspective levels.  Thus, it is
predicted that users of the representation will find it easier to switch between perspectives and
thus are more likely to use alternative interpretations to constrain the search for problem
solutions or to resolve impasses during problem solving.  Easy access to the alternative
perspectives of probability may mitigate the effects of biases in reasoning that are strongly
exhibited under particular ontologies.  In turn, it is likely that learners will develop good
conceptual connections between perspectives at the same level and within levels of the same
perspectives.  The triangulation of the alternative ontologies, measures and viewpoints may
provide a deeper understanding of the domain.
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G4 Malleable Representations
The generative nature of both the traditional algebraic and PS diagram approaches to probability
is clear.

However, the representations under the traditional approach are not malleable, some
parts being too flexible and others too rigid.  On the one hand, the algebraic representation, per
se, and the set theory representation are both highly fluid.  Given any expression, many new
expressions can be generated using the respective operations of the systems.  Choosing the
most appropriate operation requires knowledge about the nature of the notational system itself,
in addition to some understanding of the domain.  For the inexperienced user of the
representations, the stream of derived expressions can flow in unexpected directions away from
the desired goal.  On the other hand, the supplementary representations for the traditional
approach are examples of rigid representations.  For example, Figure 8 shows the outcomes of
throwing two fair dice, but it cannot be directly modified to deal with the probability of different
outcomes when two biased dice are considered.

Compared to the algebraic approach, PS diagrams constitute a malleable representation
rather than a fluid or rigid system.  There are three main reasons for this.  First, typically one or
two expressions need to be considered when reasoning with PS diagrams, rather than the
multiple expressions under the algebraic representation.  Thus, the combinatorics of
manipulating expressions to derive further expressions are less of a concern.  For example, in
the PS diagram solution to Monty's dilemma, Figure 31, one large expression is produced by
gradually adding new lines for successive trials, whereas under an algebraic approach numerous
equations are written for every event of every trial and must then be combined using a tree
diagram, for instance.  Second, each correct instantiation of a PS diagram represents some
possible state of affairs under probability theory, which means that constraints determined by
the semantics of the problem under consideration are readily imposed.  The chances of selecting
expressions that will be irrelevant to the gaols of problem solving are likely to be less with PS
diagrams than with the algebraic representation, because algebraic equations are often harder to
interpret with respect to the specific requirements of a given problem.  Third, PS diagrams
perform the function of outcome tables like Figure 8 (e.g., Figure 28 and 29) but they are not
rigid.  PS diagrams can be directly modified to show related outcomes; for example, the
changing of the base rate in the problem of the Three Prisoners from Figure 32 to Figure 33, or
modifying Figure 26c to deal with a biased die and coin in Figure 26e.

Thus, for people with the same level of knowledge with respect to domain content, it is
predicted that the overall size of the space of (psychological) problem states for reasoners using
PS diagrams will be, in general, smaller than the space for users of the conventional approach.
The problem space for the conventional approach will be larger because it has flexible and rigid
components.  Flexibility, by definition, means that many expressions can be generated, so it is
more likely that a problem solver will visit more states that each correspond to a particular
expression.  Substantial rigidity means that supplementary representations must be used and as
each system of representation introduces a new sub-problem space, the overall size of the search
space will be increased.  A smaller problem space means the user of PS diagrams may pursue
fewer unfruitful searches, may find it easier to recover from impasses and make less syntatic
errors.  In turn, this means the learner may see more correct instances and will have more time
and opportunity to make conceptual connections.

G5 Uniform procedures
The procedures under the traditional algebraic approach to probability are relatively complex
both in terms of their lack of uniformity and compactness.  PS diagrams, in contrast, have
relatively uniform and compact procedures.

One major reason the algebraic approach does not possess uniform procedures is that
supplementary representations are employed, which each require their own particular set of
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procedures.  Constructing a Venn diagram, drawing a contingency table and deriving an
algebraic equation all use different sets of operations.  With regard to the main representation,
the procedures are not uniform because many different techniques are needed in the
manipulation of algebraic formulas.  This is not just an issue for problems dealing with
conceptually distinct parts of the domain, but is a concern for problems in similar situations that
merely differ in terms of their complexity.  For instance, simple set-linked independent events
can be computed by simple application of the basic laws of probability (e.g., throwing a die or
tossing a coin on the particular outcome of the toss of an initial coin).  However, for a problem
that is simply more complex (e.g., Three Prisoners problem), but which is also a set-linked
independent event problem, Bayes theorem is a more effective method to use.

Given that PS diagrams integrate all the perspectives that are necessary for reasoning
about the domain into a single representation, they naturally have a relatively uniform set of
procedures for making inferences and doing problem solving.  Whether the diagram is being
constructed to encode a certain relation among different sets (e.g., Figure 13), to show various
odds ratios (Figure 18), or to capture the complex linking between independent events (Figure
26), the procedures always involve the construction of the probability space with lines arranged
horizontally and vertically to model the given relations and situation.

There are two general approaches that may be adopted in the construction of PS
diagrams: (1) assemble the diagram from component line segments for events; (2) subdividing
the probability space to obtain partitions of the universal set.  Further, there will be detailed
differences between procedures for alternative relations or situations, because they have different
structures, by definition.  Nevertheless, these procedures all use a small set of spatial and
geometric operations, so the variety of procedures is substantially less than the gross differences
among the methods needed for the multiple representations under the algebraic approach.

Thus, for problem solvers with the same level of competence, on a broad range of
problem types, it is predicted that the variety of procedures that problem solvers using the PS
diagrams will exhibit will be smaller than that of users of the conventional approach.  With PS
diagrams, common sets of procedures are likely to be found across different classes of
problems, solution strategies and individuals.  In turn, learning may be enhanced, because there
will simply be fewer procedures to master to cover the same content of the domain.

G6 Compact Procedures
One reason that the algebraic representation is inevitably not compact is the distribution of
problem solving information among many expressions.  Much of the processing of the
representations is needed merely to marshal the information into canonical forms that are
amenable to available methods of computation.  For example, constructing the tree diagram or
contingency table for the Cab problem are such activities.  For the Bayes theorem solution to the
Three Prisoners problem, intermediate expressions for the prior probabilities (Equation 15),
conditional probabilities that the jailer will say "B" (Equations 16a-c), and Bayes theorem
(Equation 17), typically have to be generated.  To compute a different outcome events many of
the same inferences must made but for different combinations of given events.

In contrast, PS diagrams are relatively compact, because all the information needed for
problem solving is usually assembled in one diagram.  For example, each translation of the
information from the problem statement of the Three Prisoners goes directly into the "final"
solution expressions as successive lines of Figure 32 (or 33), building directly on the previous
lines.  Once drawn, the same diagram may be used to examine alternative outcomes merely by
focusing on different combination of lines within the same diagram, without the need to
construct a new diagram.

For a small part of the domain the algebraic procedures are more compact than those for
PS diagrams, specifically the calculation of numbers of permutations and combinations for
independent events.  Table 1 gives the formulas that can straightforwardly be used to calculate
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the numbers.  To obtain the same information with PS diagrams requires diagrams like Figures
28 and 29 to be constructed, using relatively long-winded procedures involving the construction
of PS diagrams and the counting of selected events.

However, the PS diagrams do provide an explanation as to why the numbers of
permutations and combinations are the size they are in terms of the processes that generate the
possible outcomes.  The algebraic formulas in Table 1 do not, and to obtain such an explanation
under the traditional algebraic approach would require the construction of an outcome table such
as Figure 8.  These things are consequences of the satisfaction of three semantic transparency
criteria for effective representations by the PS diagrams but not by the algebraic representation.

Thus, for problem solvers with the same level of competence, over a broad range of
problem types, it is predicted that the solutions that users of PS diagrams produce will be
shorter, and contain fewer manipulation errors, than the solutions generated by problem solvers
under the conventional approach.  In turn, this may enhance learning because procedures with
few steps are simple to learn and more of the learners attention can be focussed on the
conceptual content of what they are doing, rather than concentrating largely on executing a
complex procedure.

Clearly, there are some trade-offs to be made among the characteristics in the design of a
representation.  As conceptual learning was the particular focus in the development of PS
diagrams, rather than pure ease of use of the representation, satisfying the three semantic
transparency guidelines had a slightly higher priority than the three plastic generativity
guidelines.  Nevertheless, PS diagrams appear to meet all six guidelines at least as well as, and
in most cases far better than, the representations of traditional algebraic approaches.

DISCUSSION

It is predicted that PS diagrams will be a better representational system for problem solving and
learning than the traditional algebraic approach, based on the differences between the systems
on each of the six characteristics/guidelines for effective representations.  This section considers
more generic issues about representations for learning and about the nature of probabilistic
reasoning, which build upon the representational analysis in the previous sections.  The various
claims and observations made in this section are consistent with, and advance the general thesis
about, the structural properties of representations significantly determining how effectively they
support learning.

Utility of the design criteria for LEDs
The development of PS diagrams provides some evidence of the potential utility of the criteria
for the design of LEDs listed above.  It is not claimed that the criteria are a necessary and
sufficient set for the design of effective LEDs for any domain.  Rather, the possibility of
specifying such criteria, which placed useful constraints on the successful development of a
novel LED with potential to support learning in a complex domain, lends weight to the main
thesis of the paper.  The features of PS diagrams that were eventually selected to satisfy each of
the five criteria are considered in turn.

The need for simple mappings from the things in the domain to the elements in the PS
diagrams (criteria Ca), was satisfied by the use of line segments.  Each line segment (usually)
stands for one event or outcome and its length represents the probability of the event in a linear
fashion.  The laws of probability were then encoded using simple geometric and spatial relations
(Cb).  Sums and differences of probabilities are the overall lengths of segments and
multiplication of probabilities is achieved by scaling lines with respect to each other.  Different
cases are apparent from the structure of the diagrams (Cc), because the configuration of the
diagram is determined by the relation that is encoded (e.g., Figures 19 and 21).
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The fourth criterion (Cd), that specified that the first three criteria should be met at
different levels in the domain, is satisfied.  For instance, there is one row for each trial in
independent situations (Ca).  Relations between independent events are captured by simple
diagrammatic constraints (Cb) involving the scaling of the lines and the various ways segments
may be associated across trials for unlinked and linked events.  Alternative situations have quite
different structures (Cc), as discussed at length above.

The constraints at the different levels are largely compatible (criterion Ce) with, for
instance, the probability of a combination of events equaling the overall length of the lines for
the permutations that constitute it.  However, there is a minor problem with this as more than
one line segment stands for the same event in a particular trial (e.g., Figures 12, 13), which is
contrary to criterion Ca at a local level.  But this compromise is necessary to allow different
permutations and combinations to be distinguished at the more general level in the domain (e.g.,
Figures 28, 29).

The various trade-offs that had to be made between the criteria indicates that the
representational issues are not only concerned with differences between different classes of
representations, such as diagrammatic versus sentential.  Consideration must also be given to the
precise organization of elements in the structure of the notation.  This is further illustrated by
the reasons for rejection of area as a basis for measures of probability in the development of PS
diagrams.  The use of bounded regions on the plane to represent events and area for magnitudes
of probabilities has been advocated by some (e.g., Armstrong, 1981; Dahlke & Fakler, 1981).
This is equivalent to taking areas in Venn diagrams to represent probabilities in addition to sets.
For example, in Figure 1 the chances of the conjunction of A«B«C being true is about the
same as obtaining A«B«~C, as area 2 is about the same size as area 1.

However, this general approach was rejected for three reasons.  First, Venn diagrams are
cumbersome to manipulate, as illustrated by the difficulty of extending Figure 1 to show all the
possible combinations when another set is added, Figure 2.  Second, the mappings from things
in the domain to elements of the diagram are often complex (failure to meet criterion Ca).  It is
sometimes hard to pick out an area for a particular event in a diagram with many overlapping
regions.  Third, a simple means of encoding the relations among independent events is not
feasible (failure of Cb), as demonstrated by the problem of representing independent events
using Venn diagrams, discussed above (Figures 4 and 5).  A diagram is needed for each trial of
independent situations with, for instance, some complex arrangement of arrows to indicate the
linking relations between different areas in the diagrams.  These failures to meet criteria Ca and
Cb occur with respect to both the set theoretic and the probabilistic aspects of the topic, and so
implies a failure of criterion Cd that concerns the application of the other criteria of the different
levels of a domain.

Ichikawa (1989) presents a 'roulette representation' as a visual model for Bayesian
problems.  The representation has some of the same basic methods to encode relations as PS
diagrams but uses an underlying circular metaphor that is similar to the notion of probability
space in PS diagrams.  Employing an equivalent approach to representational analysis to that
used in the previous paragraphs on the area form of representation, a comparison of PS
diagrams and Ichikawa's representation clearly predicts that the use of concentric circles for the
trials in a situation is likely to be a substantial disadvantage of the roulette representation.

The benefits of the linear representation in PS diagrams, rather than a circular or an area
based system, has been anticipated by the pictorial analog for a specific type of Bayesian
problem that was invented by one of the participants in Gigerenzer and Hoffrage’s (1995)
studies.  The pictorial analog is equivalent to the PS diagram in Figure 30 and the algorithm
given by Gigerenzer and Hoffrage for generating the pictorial analog is restricted to the class of
problem given in Figure 30.  PS diagrams, however,  constitute a fully specified representational
system covering the full range of probabilistic relations and situations.
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The contrast between PS diagrams and other diagrammatic systems for probability
highlights the importance of detailed representational analysis in the evaluation of different
approaches to the learning of a given domain.

Supplementary representations
The traditional algebraic approach to probability theory was developed over an extended time in
the history of mathematics.  So it is reasonable to speculate that some aspects of the overall
approach will have evolved to cope with the cognitive demands of solving problems and learning
the domain, over and above the formal mathematical requirements of the topic.  Such
developments will include those aspects which address difficulties inherent in the
representations themselves.  A good example is the need for supplementary representations to
support the basic algebraic representation.

Algebra does not provide the means to simply keep track of the interactions of events
and possible outcomes, as information needed for problem solving from different levels of
abstraction or from different perspectives is typically distributed over many different equations.
Substantial cognitive effort is required to remember which terms and which relations are
required in, for instance, the solution of the Cab problem when the algebraic representation is
used alone.  This difficulty can be explained in terms of the analysis of representations provided
by Larkin and Simon (1987).  Algebra is a sentential representation that employs a method of
indexing information among the expressions that is essentially arbitrary.  To find particular
expressions containing the required information for a particular inference requires significant
amounts of search through the list of the previously generated expressions.  The order of the
expression in the list reflects the sequence in which they were produced rather than anything
directly to do with their information content.  Further, a cumbersome process of symbolically
matching labels in each expression is required to find the target expression.  In contrast, Larkin
& Simon (1987) argue that diagrams are computationally more efficient than informationally
equivalent sentential representations, because they use locational indexing of information.
Information that is often used together is likely to be found at adjacent locations in a diagram.
This reduces the amount of search in problem solving and alleviates the need for laborious
symbolic matching of labels.  Thus, it is not surprising that supplementary representations
introduced under the traditional algebraic approach with the role of recording and ordering
critical information are tree and other diagrams.

The introduction of supplementary representations, and specifically diagrammatic ones,
is a good example of how the cognitive difficulties due to the formal structure of a
representation requires modification to the overall system of representations to mitigate those
difficulties.  On a larger scale, the introduction of PS diagrams aims to eliminate many of the
inherent problems of the traditional algebraic approach.

Internal and external separability of dimensions
Zhang and Norman’s approach to representational analysis considers how different dimensions
of information in a domain are represented using different visual-spatial properties of notational
systems (Zhang & Norman, 1994a, 1994b; Zhang, 1997).  In particular they highlight the
importance of the external separation of the dimensions of information using different
properties of the external representation.  Lack of external separability means additional
information must be retrieved from the internal representation, which increases the difficulty of a
task.  If different dimensions of the information are externally distributed among the
quantity/size, position, shape or colour of elements in the external representation, then external
separability will be achieved.  The domains they have studied include isomorphs of the Tower of
Hanoi and Tic-Tac-Toe, and numeration systems.  In the Arabic numeration system shape and
position are the visual properties respectively used to represent the base dimensions (i.e., digits
'0' to '9') and the power dimension (i.e., right to left 'column' position of digits).  By contrast, the
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Greek system uses shape to represent both the base and power dimensions, with severe
consequences in tasks such as large number multiplication.

This approach to representational analysis can be applied to PS diagrams and the
traditional algebra approach.  In the algebraic representation, the shape and position of visual
properties are used for a mixture of important dimensions of information, as considered in
Equations 18-20.  Shape is used to represent elements of the domain (i.e., events and
probabilities) and it is used for relations between elements (e.g. shape of the 'given' or division
symbols, '|' and '/').  Position also has a role in expressing relations (e.g., the order of the
alphanumeric symbols in 'S1|S2').  Set theory and probability perspectives are coordinated using
both shape and position in the form of parentheses to contain the set expression following the
'P' in the expression for probability terms.

Several properties of diagrammatic elements are used in PS diagrams.  The length of a
line represents magnitudes of chance, under whichever measure is being considered.  Separate
line segments indicate different sets and their relative positions indicate such relations as their
disjointedness (e.g., overlapping or not) or occurrence on different trials (i.e., vertical separated
groups of horizontal lines).  Shape and quantity of elements also plays a role.  When line
segments are labelled, the shape of the labels carries information identifying particular things in
the problem situation.  In Figures 28 and 29 the quantity of columns for similar sequences of
events are counted in the computation of permutations or combinations.  The overall patterns of
lines is also used to encode different relations, such as the two different set commutativity
relations (Figure 10) or the patterns for various probability relations (e.g., Figure 19).

Although it appears, superficially, that PS diagrams may be the better representational
system, because it uses the greater variety of visual spatial properties, under a Zhang and
Norman’s representational analysis neither system possesses straightforward mappings of
particular dimensions of information into unique visual-spatial properties.  This lack of external
separation of dimensions of information means that there is little basis for considering that one
representation would be better than the other.  Similarly, this approach would not predict that
LEDs for the domains of particle collisions and electricity would be better than traditional
approaches using algebra.  However, there is evidence that such a differentiation in the
effectiveness of LEDs and algebra exists (Cheng, 1996c, 1999b).  This is not to claim that
Zhang and Norman’s hypothesis about the external separation of dimensions of information is
wrong.  Rather, it appears that its scope is limited to relatively simple representational systems
for domains that have just a few orthogonal dimensions of information on one level, such as the
numeration systems and puzzles studied by Zhang and Norman (Zhang & Norman, 1994a,
1994b; Zhang, 1997).  PS diagrams, and the other complex representations mentioned, have
many dimensions of information arranged in a more hierarchical structure.

The notion of the separability of dimensions may nevertheless be applied to complex
domains by identifying whether different representational techniques are used for different
dimensions at the same general level within the domain.  These techniques need not be simple
visual-spatial properties, but may be different classes of geometric or spatial relations.  For
example, with respect to the different classes of probabilistic situations, Figure 3, PS diagrams
have greater external separation of the dimensions, because the representation uses different
methods of encoding for each dimension, whereas the algebraic approach does not.

There is a similarity between the notion of the external separability of dimensions of
information and the idea of locally heterogeneous representations of concepts, which is one half
of the second characteristic in the semantic transparency set proposed above (G2).  This
emphasizes the point that for complex representational systems, higher level diagrammatic
properties of such systems are to be considered when assessing the effectiveness of
representations.  Simple analysis that match basic visual-spatial properties to simple dimensions
of information may be suitable for straightforward cognitive tasks in simple domains, but for
complex problem solving and learning in substantial domains characteristics like those
proposed here are necessary.
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Clarifying the conceptual structure of probability theory
Whilst designing the PS diagrams, reference was made to the algebraic formulations of the laws
as the set of relations that needed to be covered by the system.  However, some major
conceptual difficulties were encountered when thinking about the conceptual relation between
the two dimensions: (1) independent versus not independent events, and (2) disjoint versus not
disjoint events.  Several iterations on the basic design of PS diagrams were required to achieve
consistent interpretation of the constraints of the domain with the satisfaction of the design
criteria, especially the criterion of compatibility of the constraints over different levels in the
domain (Ce).  During this work it was realized that there was a lack of conceptual coherence in
the way most textbooks discuss these dimensions, which had to be clarified before the design
process would produce a consistent and coherent system of Law Encoding Diagrams for the
domain.

In textbooks on probability, the concepts relating to the two dimensions are usually
introduced with examples and followed by definition in terms of Equations 5, 7, 9 and 10.
There is typically no explicit consideration of the conceptual relations and distinctions among
the dimensions.  Thus, it is possible on first sight to gain the impression that these two
dimensions are orthogonal.  They are not.  In the conceptualization of the domain established
for the design of PS diagrams, shown in Figure 3, the second dimension, disjoint versus joint
events, is a sub-dimension of the dependent events.  The primary distinction in Figure 3 is
between independent versus dependent events, and on this basis it was realized that quite
different methods were needed to encode these different classes of situations.  Thus, the general
use of symbols from set theory for relations was abandoned, and new symbols (&, v, «) for
independent processes introduced.  Further, given these classes of situations, new terms for the
relation between independent events were introduced ('linked' and 'unlinked') to avoid confusion
with relations within dependent events ('joint' and 'disjoint').  This distinction is also one that is
not clearly made in probability textbooks.

A possible explanation for this lamentable state of affairs in many probability textbooks
is poor semantic transparency of algebra as a representation for probability.  The algebraic
conceptualization does not, in itself, make these conceptual distinctions explicit, so instructors
who implicitly understand the underlying structure of the domain may not consciously
appreciate the need to address the distinctions in their writing.  When they do acknowledge this
issue, such as in the selection of sets of exercises, the typical use of algebraic expression of the
laws does a poor job of making plain the inherent structure of the domain.

Again, the pivotal role of the structure of representations in themselves for complex
cognitive processes is highlighted.

Informal reasoning and internal representations
There has been extensive work on the nature of peoples' informal probabilistic reasoning, which
has asked whether such reasoning is rational.  Using tasks such as Monty's dilemma, the Cab
problem and the Problem of the Three Prisoners many studies seem to demonstrate that
peoples’ informal reasoning in probability is flawed (e.g., Kahneman, Slovic and Tversky, 1982;
Shimojo and Ichikawa, 1989; Falk, 1992; see Shaughnessy (1992) and Evans (1992) for
reviews).  People do not conform to the canons of probability theory, because of the biases they
possess, or because they use informal heuristics or subjective theorems.  However, others (e.g.,
Cosmides and Tooby; 1996) have argued that much of the counter-intuitiveness of the problems
is due to the particular framing of the problems rather than any inherent inability of people to
deal rationally with probabilities.

Addressing these issues in detail is beyond the scope of this paper, but the
representational implications of the work are relevant here.  The studies on informal
probabilistic reasoning have dealt with the internal mental processing of information given in the
problems, by focusing on biases and heuristics.  Johnson-Laird (1994) has proposed that his
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theory of mental models will be extendible to probabilistic thinking.  The focus of the present
work clearly differs in that it is, in addition, dealing with the role of external representations.
There are benefits of using an external representation or doing display-based problem solving
(Larkin, 1989; Scaife and Rogers, 1996), such as reductions of working memory demands and
the off-loading of some mental computation onto the representation.

A good example of this is seen in the Figure 31, the PS diagram solution to Monty's
dilemma, in which the many pieces of information are neatly organized.  Further, Shafir (1994)
suggests that one reason probability problems are hard is that they often include disjunctions,
which people are typically reluctant to think through.  Faced with a disjunction people tend to
travel down just one branch and suspend judgement when they reach a node.  This is often the
case with Monty's dilemma.  PS diagrams may alleviate this difficulty, because each drawing
represents the whole probability space, so missing combinations of events are readily identified.
Figure 25 shows complete PS diagrams with all the possibilities enumerated whilst Figure 24
shows partial diagrams.  Tree diagrams are likely to be less effective because they require the
reasoner to think through the disjunctions in the first place before the tree diagram can be
drawn.  Unlike PS diagrams, there is no external indication of how completely all the branches
have been explored.

Cosmides and Tooby (1996) and Gigerenaer and Hoffrage (1995) present evidence to
argue that the apparent difficulties that people have with information in probabilistic reasoning is
due, in large measure, to the epistemic ontology of the perspective implicitly adopted in the
framing of the problems; i.e., in terms of degrees of belief or chances of single events.  When
the same problems are rewritten to emphasize frequencies or numbers of events under the
aleotoric ontology, peoples' judgements approximated well to the normative laws of probability.
This implies that for learners of probability the frequentist/aleotoric perspective should be
emphasized and transition to a Bayesian/epistemic conception has to be treated with care.
Textbooks on probability typically adopt the epistemic ontology and usually deal tangentially
with aleotoric approaches.  The notation for relative frequencies is somewhat more cumbersome
than the common notation of the epistemic perspective (because two quantities must be given to
state a frequency).  If those advocating aleotoric oriented approaches are correct, then PS
diagrams may have an advantage over the traditional algebraic approach, because PS diagrams
can equally well be interpreted in aleotoric as well as epistemic terms, or even both
simultaneously.

The use of algebra as an external representation, as opposed to informal verbal
reasoning, has implications for internal cognitive processing that extend beyond basic claims
about the use of the representation as a form of external memory.  A different representation
will mean that an alternative set of internal representations and processes will be invoked.
Ideally, when the algebraic representation is correctly used, reasoning will conform to the
canons of probability theory and problems due to biases and associated with the use of
heuristics will be circumvented.  However, such problems are manifest in the reasoning of
people who have studied probability theory (Shaughnessy, 1992).  This may, in part, be
attributed to the inherent representational problems of the traditional algebraic approach.  The
representation does not constitute a semantically transparent system nor does it have plastic
generativity.  Thus, on meeting impasses, problem solvers often find it easier revert to informal
mental inferences rather than struggle with the difficult external representation.

In the same vein, the internal cognitive counterparts to the external aspects of PS
diagrams are likely to be quite different to the internal representation and processes used for the
traditional algebraic approach.  PS diagrams, being LEDs, will in this regard be similar to other
LEDs.  The framework of schemas for LEDs (Cheng, 1999a), mentioned above, proposes that
there are different classes of schemas for concepts at different levels of abstraction and for
different levels of complexity of a domain. LEDs for kinematics and dynamics (Cheng, 1999a)
and LEDs for electricity (Cheng, 1988a, 1999b) appeared to be acquired and processed as
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perceptual chunks, thus it is plausible to predict that the internal representations that will
underpin learning with PS diagrams will also be some form of perceptual schemas.

CONCLUSIONS

The main thesis of this paper is that in conceptual learning, the nature of the chosen
representations significantly determines how easily concepts are learnt and the structure of the
network of concepts that is acquired.  Analyzing the ontological, structural and functional
properties of representations is essential to understanding how they can effectively support
learning or can pose substantial formal and cognitive hurdles for the learner to overcome.  Here,
support for the thesis was provided by: (i) the development of a novel representational system
for probability theory using design criteria for LEDs and general characteristics of effective
representations; (ii) the analysis of the potential of the new system in comparison to the
traditional algebraic approaches to the domain; (iii) the explication of selected representational
issues.

This work extends previous work in three ways.  First, representational analysis is
applied to conceptual learning in addition to problem solving.  Second, complex representation
systems for complex domains rich in conceptual structure are being considered.  Alternative
characteristics or properties of representations are needed to explain what makes an effective
representation in relation to levels of abstraction, alternative perspectives, and extensive
processing of external expressions not found in less substantial domains.  Third, the identified
characteristics of effective representations have not only been used to analyze representations,
but have in effect been operationalized in the design of a new representation.  This provides a
stringent test of the coherence and utility of the characteristics.
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