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Abstract 
The Representational Epistemic (REEP) approach to the design of visual displays and 
notation systems advocates encoding the fundamental conceptual structure of a knowledge 
domain directly in the structure of a representational system.  It is claimed that 
representations so designing will benefit from greater semantic transparency, which enhances 
comprehension and ease of learning, and plastic generativity, which makes the meaningful 
manipulation of the representation easier and less error prone.  Epistemic principles for 
encoding fundamental conceptual structures directly in representational schemes are 
described.  The diagrammatic re-codification of probability theory is undertaken to 
demonstrate how the fundamental conceptual structure of a knowledge domain can be 
analysed, how the identified conceptual structure may be encoded in a representational 
system, and the cognitive benefits that follow.  An experiment shows the new Probability 
Space (PS) diagrams are superior to the conventional approach for learning this conceptually 
challenging topic. 
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Probably Good Diagrams for Learning:  

Representational Epistemic Re-codification of Probability Theory 

1. Introduction 
The Representational Epistemic (REEP) approach is being developed as a method for the 
analysis and design of complex representations and visual displays.  It has been used to 
design novel diagrams to support demanding task domains involving large quantities of 
information, including examination timetabling (Cheng, Barone, Cowling & Ahmadi, 2002), 
personnel rostering (Cheng & Barone, 2004) and manufacturing production and scheduling 
(Cheng & Barone, 2007).  Novel diagrammatic systems for learning in conceptually 
challenging topics in science have also been invented, including electricity (Cheng, 2002) 
and kinematics (Cheng, 1999).  The cognitive benefits of the novel representations have been 
successfully demonstrated in the laboratory (Cheng, 2002) and authentic instructional 
contexts (Cheng & Shipstone, 2003).  For example, after 120 minutes of instruction with the 
AVOW diagrams for electricity young adult participants with little prior knowledge were 
able to solve problems that are challenging for students who have completed conventional 
courses of instruction on the topic (Cheng, 2002).  
 Generalising over these studies, the central tenet of the REEP approach is that the 
fundamental conceptual structure of a target knowledge domain should be directly encoded 
in the structure of the representational system.  Fundamental conceptual structure refers to the 
principal invariants, regularities, symmetries, constraints and laws that essentially make the 
domain what it is, rather than some other domain.  It is claimed that when the fundamental 
conceptual structure of a domain is directly encoded, the representational system is likely to 
have semantic transparency and plastic generativity (Cheng, 2002; Cheng et al., 2002).  
Semantic transparency concerns the availability of the conceptual content of the domain; how 
easily concepts can be accessed through the representational system.  Plastic generativity 
concerns the ease of manipulating the components of a representational system to generate 
meaningful expressions during reasoning and problem solving.  Obviously, a representation 
that enables its users to readily comprehend the meaning of its expressions is a desirable goal 
for design, as is a representation that allows meaningful statements, and only meaningful 
statements, to be simply and quickly derived without error.  The REEP approach proposes 
four different design principles (Cheng & Barone, 2007), which will be enumerated and 
discussed in the third section of the paper.  These epistemic principles consider how the 
fundamental sets of concepts that constitute a domain should each be encoded in different 
representational schemes and how those schemes should be coherently interrelated.  
Representational schemes are things such as coordinate systems, hierarchical trees, syntactic 
notations, spatial configurations and geometric relations. 
 The primary goal of this paper is to provide further support for the claim that 
encoding the fundamental conceptual structure of a domain directly in the structure of the 
design of a representational system will yield an effective representation with semantic 
transparency and plastic generativity.  The REEP approach is used to re-codify the 
conceptually challenging domain of probability theory with the design of a novel 
diagrammatic system – Probability Space (PS) diagrams.  The creation of PS diagrams 
demonstrates how to analyse the fundamental conceptual structure of a domain and how the 
epistemic design principles may be applied.  An experiment is also reported to evaluate the 
relative benefits of PS diagrams and the conventional approach to learning about probability. 
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 The REEP approach differs from other techniques in terms of its assumption about 
what should be the basis for analysis and design.  Various approaches consider that the 
structure of task activities should be the focus (e.g., Vincente, 1996; Endsley, Bolté & Jones, 
2003).  They provide methods for identifying the hierarchy of goals for particular classes of 
tasks and give guidelines for the design of displays that make information needed to support 
those goals readily apparent.  In contrast, the REEP approach concentrates on the 
fundamental conceptual structure of the target domain and claims that representations design 
on this “higher” level may support a range of tasks in a domain, although not necessary as 
well as a bespoke display specially created for a particular problem.  Many approaches focus 
on the information dimensions of the target domain and attempt to map those types of 
information identified to visual properties or representational formats (e.g., Card, MacKinlay 
& Shneiderman, 1999; Zhang, 1996; Engelhardt, 2002).  In the REEP approach matching 
surface-level informational dimensions to graphical properties is a secondary concern, 
because the larger scale representational structures that it creates to directly encode 
fundamental conceptual structures provides stringent constraints on permissible lower level 
mappings of types of information to graphical properties.  
 Probability theory provides an interesting test case for the REEP approach for five 
reasons.  (1) It has a rich conceptual structure with a variety of underpinning laws that are 
applied to diverse situations.  (2) It combines two domains of knowledge: (i) set theory and 
combinatorics; (ii) the theory of chance or stochastics.  (3) There are alternative Bayesian and 
Frequentist interpretations of probability, and alternative measures of quantities of chance in 
terms of probabilities and odds.  (4) It is imaginable that the conventional representations for 
the topic constitute an effective encoding of the domain, because eminent mathematicians 
have worked on the notations for over three centuries.  Hence, creating a better representation 
will be an achievement for the REEP approach.  (5) The counter intuitive and paradoxical 
nature of the domain has been well documented in the literature (e.g., Kahneman, Slovic, & 
Tversky, 1982; Shimojo & Ichikawa, 1989; Austin, 1974; Falk,1992; Fischbein & Schnarch, 
1997; Garfield and Ahlgren, 1988; Shaughnessy, 1992; Shafir 1994) and approaches to 
support reasoning and instruction, including innovations with visual models, are yet to make 
an impact on the majority students (Cosmides & Tooby, 1996; Gigerenzer & Hoffrage, 1995; 
Shaughnessy, 1992; Ichikawa, 1989; Armstrong, 1981; Dahlke & Fakler, 1981).   
 The first of the following five sections will examine the conceptual structure of the 
domain as commonly portrayed in current courses on probability.  The second section 
considers the design of PS diagrams by initially analysing of the conceptual structure of the 
domain and specifies how the conceptual structure is encoded in the new representation using 
the epistemic design principles.  The third section is a theoretical comparison of the 
conventional approach and Probability Space (PS) diagrams in terms of their semantic 
transparency and plastic generativity.  An experiment is then presented that demonstrates 
some of the advantages of the PS diagrams.  The final discussion section draws out some of 
the wider implications of the central thesis that effective representations should encode 
fundamental conceptual structures. 

2. Extant Codification 
The analysis of the existing codification in the conventional approach involves elaborating 
the conceptual content of the topic, the representational schemes used to encode that 
knowledge and the procedures for problem solving.  This analysis is intended to be a general 
characterisation of how probability theory is taught to students up to an intermediate level in 
the latter years of high school or early in undergraduate studies in science and engineering.  
The sources sampled included a range of textbook books and web sites that use a variety of 
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different instructional strategies (e.g., Ball & Buckwell, 1986; Belsom, Dolan & Glickman, 
1991; Booth, 1993; Greer, 1992; Kent, Pledger, Medlow, Woodward, & Killick, 1996, 
McColl, 1995; Poskitt, 2001).   

2.1. Conceptual Content 
One difficulty faced in the analysis was to make sense of the overall shape of the conceptual 
landscape presented.  All the sources present groups of ideas in relative isolation from each 
other in a sequential fashion and do not give an explicit conceptual overview of the whole 
topic.   
 The topic involves both set theory and the domain of chance.  The more elementary 
courses rely upon students’ intuitive understanding of sets and use informal expressions for 
set relations or they give Venn diagram examples.  The advanced texts explicitly discuss set 
theory before considering probability theory, per se.    
 
Table 1.   Conceptual structure of probability theory in the conventional approach 

Singe events (A - event, U - universal set) 
(T1*)  P(U)=1  (T2*)  0≤P(A)≤1 (T3)  P(A)=1-P(~A) { (T4)  P(A)=P(A|U) } @ 

  
Multiple events (A, B - events) 

  Joint 
Relations Disjoint Independent Dependent 

Conjunction (T5)  P(A and B)=0  (T6) P(A and B) =P(A)P(B) (T7)  P(A and B)=P(A)+P(B)-P(AorB) 
(T8)  P(A and B)=P(A|B)P(B) 

Disjunction (T9*) P(A or B)=P(A)+P(B) (T10) P(A or B)=P(A)+P(B)-P(AandB) 
(T11) P(A or B) =1–P(~A and ~B) 

(T12)  P(AorB)=P(A)+P(B)-P(AandB) 

Conditional (T13)  P(A|B)=0, P(B|A)=0 (T14)  P(A|B)=P(A), P(B|A)=P(B) (T15)  P(A|B)=P(AandB)/P(B), 
            P(B|A)=P(BandA)/P(A) 

Complex        (T16)  P(A|B) =P(B|A)P(A)/P(B) 
  Equi-probable multiple events (N, M - possible outcomes) 

 (T17)  P(i)=1/N, ΣP(i)=1 (T18)  P(i,j)=1/(N.M), ΣΣP(i,j)=1  

Permutations†  
(T19)  No. of outcomes = nk 

(T20)  No. of outcomes =  
Combination†  (T21)  No. of outcomes =  

(T22)  No. of outcomes =  
Note: * — Axioms of probability theory, @ — Not normally stated explicitly, † — k selected objects from an initial set of n 
objects. 
 
 A codification of a domain portrays a particular conceptual structure, implying that 
certain concepts are fundamental and providing key conceptual divisions among the ideas.  
Table 1 summarises the overall structure of the conceptual content for intermediate level 
courses.  The organization of the table reflects the associations and categorisations that are 
found in the sources; in other words, Table 1 could be used a map of the concepts covered by 
many of the sources.   
 The entries in the Table are laws or relations for particular classes of probabilistic 
situation.  The top-level distinction is between single events and multiple events.  The 
multiple events category constitutes the majority of Table 1 and is divided into subcategories 
that concern relations between pairs of events and relations over multiple equally probable 
events.  A fundamental distinction is made between disjoint and joint events (mutually 
exclusive or not) and under joint events there are independent and dependent events.  All the 
sources consider conjunctive and disjunctive relations under the subcategory of multiple 
events.  

! 

n!

(n" k)!

(n + k !1)!

k!(n !1)!

n!

k!(n ! k)!
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Table 2.  Generic problem solution procedure for the conventional approach. 
Analyse 
A.1) If outcomes disjoint, then consider number of events: 
  A.11) if a single event, then consider nature of the probabilities of the outcomes: 
    A.111) if equal probabilities problem, then list items of interest: 
    A.1111) if simple problem, then list all items & select target outcome. 
      A.1112) if complex problem, then list relevant items & select the target outcome. 
    A.112) if unequal probabilities problem, then consider individual probability values: 
      A.1121) if simple problem, then list selected items with associated values and select target 

outcome. 
      A.1122) if complex problem, then draw up a 1-way outcome table and select target outcome(s). 
  A.12) if multiple events, then consider nature of the probabilities of outcomes: 
    A.121) if equal probabilities, then consider number of events: 
      A.1211) if two events, then generate a systematic list or use a 2-way outcome table and select 

target outcomes. 
      A.1212) if many events, then use a recursive tree diagram to enumerate relevant outcomes and 

select target outcomes. 
    A.122) if unequal probabilities, then list relevant outcomes with their probability values  and select 

the target outcomes. 
A.2) If events joint, address the relation between events: 
  A.21) if events dependent, then consider number of events: 
    A.211) if one event, then consider the nature of the probabilities of the outcomes: 
      A.2111) if equal probabilities, then consider number of types of outcomes: 
        A.21111) if one type of outcome, then use a Venn diagram. 
        A.21112) if two types of outcomes, then use a two-way table. 
      A.2112) if unequal probabilities, then use a Venn diagram to elaborate set relations and write 

target outcomes with probability values. 
A.212) if sequences of events, then use a tree diagram with dependent branches and values and 

select target outcomes. 
  A.22) if outcomes independent, then use a tree diagram with repeated branches & values, or 

contingency table, to select the target outcomes. 
Calculation 
C.1) If events are disjoint, then: 
  C.11) if equal probabilities, then count number of outcomes of interest and use T17 to find 

probability of each outcome. 
  C.12) if unequal probabilities problem, then use T5, T9, T13 depending on target relation.  
           continued 
C.2) If events are joint, then consider the number of events and outcomes: 
  C.21) if the number of events and outcomes are small, then consider nature of the relations 

between events: 
    C.211) if independent events, then consider nature of probabilities: 
    C.2111) if outcomes are equi-probable, then compute number of outcomes of interest and use 

T18 to find probability of each outcome. 
      C.2112) if unequal probabilities, then use T6, T10, T11 or T14 depending on target relation.  
    C.212) if dependent outcomes, then consider complexity of dependencies: 
      C.2121) if simple dependencies, then use T7, T8, T12 or T15 depending on target relations. 
      C.2122) if complex interconnected dependencies, then use Bayes theorem, T16. 
  C.22) if events and/or outcomes are numerous, then consider nature of probabilities: 
    C.221) if equal probabilities, then use T19-T22 depending on the natures of dependencies and 

the target relations. 
    C.222) if unequal probabilities, then use Bayesʼ theorem, T16. 
 
 Although Table 1 captures the concepts that are essential to the domain, it is claimed 
that the structure is not a coherent codification of the conceptual structure of the domain.  
There are various manifestations of this.  (a) By definition the axioms of probability theory 
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(Equations T1, T2 and T9) are fundamental to the domain, but they do not appear to constrain 
the overall structure of Table 1.  (b) It is not obvious why the main conceptual distinctions - 
columns and rows in Table 1 – have this particular structure.  Why should the overall 
structure not be symmetric?  What about multiple events with unequal probabilities?  In some 
sources the main distinctions are made informally by reference to simple situations.  Other 
sources make the distinctions in a rather circular fashion by stating the Equations as 
definitions of the classes of relation and types of situation.  (c) Conditional relations (T13-15) 
appear to be special class of relations occurring just in the context of multiple events.  
However, the probability of all events is always conditional on something: even prior 
probabilities are conditionalized on the universe of interest.  T4 is included in parentheses in 
Table 1 to highlight this point.  It is claimed that this lack of coherence means that learners 
will acquire fragmented understanding that focuses on specific relations among events in 
particular types of situations rather than the underpinning concepts and large meaningful 
patterns.  
 Two main notational systems are used: (i) set theory notation, or natural language as 
proxy at intermediate levels of instruction; (ii) algebra to relate quantities of probability.  Set 
theory expressions are embedded within algebraic probability expressions; e.g., Equations 
T1-T18.  During problem solving activity typically switches between them but the sources 
provide little guidance for the coordinated manipulation of the notations.  Other 
representations are also used, including: informal lists of events; statements about particular 
relations or cases; outcome tables; contingency tables; Venn diagrams; tree diagrams.  One 
role of these supplementary representations is to disentangle reasoning about events in set 
theoretic terms from reasoning about probabilistic relations.   

2.2. Conventional Problem Solving Procedure 
The generic procedure for the conventional approach, see Table 2, was derived by examining 
problem solutions at various levels of difficulty in the instructional sources.  The procedure 
consists of rules in the form of a tree, with disjunctive alternatives at the same level (e.g., 
A.11 or A.12) and conjunctive sequences descending the levels (e.g., A.11 then A.111 then 
A.1111).   There are two main branches.  The first is the analysis of the class of the problem, 
which in effect involves finding the relevant section of Table 1, and the selection of an 
appropriate representation.  The second stage is to find the appropriate law or relation to 
apply to the given information; finding a specific equation in Table 1.  A solution may 
involve several passes through the procedure with different aspects of the given problem 
considered each time.  This procedure is representative of the approaches in the instructional 
sources and no claim is made that it is optimal for the conventional approach.   

 
Figure 1.  Outcome table for biased die problem 

 
 Consider a typical UK high-school level mathematics problem, which will serve as an 
ongoing example and is one of the test items used in the experiment below.  Biased die 
problem: A biased die is thrown once in which the chances of an odd number is twice that of 
an even number.  What is a probability of getting a 4 or a 6? Although seemingly 
straightforward it has the complication that the probabilities of the outcomes are given as a 
relation rather than as absolute magnitudes, which will test whether a student can apply the 

Number   1   2   3   4   5   6

  2x   x   2x   x   2x   x

Probability 2/9 1/9 2/9 1/9   2/9 1/9
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idea that all the disjoint probabilities of a trial must sum to unity.  Applying the solution 
procedure gives this solution:   

1) The situation involves disjoint outcomes (A.1) for one event (A.11) with unequal 
probabilities (A.112).  It is relatively complex (A.1122) so a 1-way outcome table 
enumerates the possible outcomes; Fig 1, top row.   

2) Relative magnitudes of the probabilities are given, so the outcome table lists the 
magnitudes using x as an unknown common factor.  This is operation specific to 
this type of problem. 

3) As the events are disjoint (C.1) the probabilities must sum to unity (C.11), 9x=1, so 
the common factor is x=1/9.  (Equation T17 is used, with odd numbers doubled up.) 

4) Probabilities for each outcome are put in the third row of the table (C.11, equation 
T17 again). 

5) The focus now shifts to the outcomes of interest.  The situation is now disjoint 
(A.1), with multiple (i.e., >1) events (A.12), of equal probability (A.121) and there 
are precisely two events (A.1211), so each target is highlighted in Fig 1.  

6) Finally, the probability for a pair of disjoint events is computed using Equation T9 
or T17.  The answer is 2/9. 

 Presented in this fashion the solution seems simple, but it is demanding for problem 
solvers who are uncertain of the many concepts and not in possession of Tables 1 and 2.  Five 
passes through the procedure, one special operation, and 12 decision steps must all be 
executed correctly.  See Cheng (2003) for the analysis of a more complex example.   

3. Probability Space Diagrams 
Fig 2 shows a sample Probability Space (PS) diagram to give an initial sense of the general 
character of PS diagrams.  It represents the situation of tossing a coin that is biased towards 
heads and then either the throwing of a fair die when a head appears or the tossing of a fair 
coin otherwise.  The total length of the two thick line segments relative to the overall width 
of the diagram represents the probability of obtaining either a head and an even prime 
number or two tails.  
 

 
Figure 2.  Sample PS diagram 

 
 This section begins with the analysis of the conceptual structure of the topic.  The 
representational structure of PS diagrams is then described in relation to the REEP epistemic 
design principles.  The generic problem solving procedure for PS diagrams then follows.   

3.1. Analysis of Conceptual Structure 
The process of discovering of the “universals” of a knowledge domain in the REEP approach 
focuses on the prevalence of concepts across the conceptual dimensions that may be manifest 
in a domain (Cheng & Barone, 2007).  We propose seven classes of conceptual dimensions: 
entities; properties; time; structures; behaviours; functions; formal laws.  
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 The entities conceptual dimension is relevant here, because all considerations of the 
domain refer to entities, or objects, such as the face of a die, the outcome of a test, a 
particular suit and number of a playing card.  The properties conceptual dimension is 
pertinent as all entities have context specific attributes defined by the problem situation and 
all entities possess some magnitude of chance of occurring.  There are relevant aspects of the 
structural conceptual dimension relating to notions of collections and associations, because 
target entities may be meaningful sub-groups (e.g., 4 and 6) of parts of components (even 
numbers) of larger structures (die).  The first axiom, Equation T1 (Table 1), highlights the 
central importance of the idea of subdivisions of a whole, with the given problem situation 
treated as a universe in itself.  Conditional situations are also grounded in the same idea, with 
a portion of the universe of interest treated in relative isolation.  As noted above, even prior 
probabilities are strictly speaking conditional probabilities.  Conditional situations also 
invoke the functional conceptual dimension because they depend on the idea of contingency.  
In probability problems there is a sense of purposefully (functionally) doing something on the 
basis of something else being the case, or the deliberate organizing or differentiation of 
things.  Aspects of the formal laws conceptual dimension are the underpinning role of set 
theoretic concepts and the mathematic definitions and relations that hold among quantities of 
probability.  
 In contrast to all the others, the temporal and behavioural conceptual dimensions are 
secondary.  Some situations are described temporally, with things happening in sequence or 
simultaneously, but the full richness of the temporal concepts are not typically invoked (e.g., 
periods, absolute time).  The behavioural conceptual dimension, which covers notions such 
as movement and change, occurs relatively rarely; for instance, with the notation of repetition 
in selection problems.  As considerations of the domain almost always involve all but two of 
the conceptual dimensions, coordinating these related perspectives will be a challenge when 
dealing with the conceptual structure of probability theory.   
 This analysis draws out aspects of the domain that are not explicit in the conventional 
approach, including: (a) the underpinning idea of subdividing given situations into isolated 
packages for local consideration; (b) the existence of distinct functional relations and 
structural perspectives; (c) the extent to which concepts from alternative conceptual 
dimensions mutually provide contexts for each others interpretation.  Hence, the new 
codification adopts alternative sets of core ideas as the essential conceptual foundation of the 
new codification.  These are: 
 (1) Probability space captures the idea that situations in probability problems can be 
carved up into parts for separate examination and recombination as new patterns, by using the 
physical space of the representation as a medium for modelling.   
 (2) Trials and outcomes replace the more general concept of event.  In modelling a 
probabilistic situation a trial is one action, such as making a selection, conducting a test, or 
throwing or flipping something (die/coin).  All the possible results of the action of a trial are 
the possible outcomes and one particular result of interest is a target outcome.  Trials are 
separate things that can potentially happen at different times, whereas possible outcomes are 
potential alternatives that might occur at a particular instant. 
 (3) Arrangements are concerned with the fixed structural relations among the possible 
outcomes of a single trial, which in turn depends on the properties of objects that are deemed 
to be of interest by the given situation.  
 (4) Linking encompasses the functional relations that span multiple trials, which may 
associate particular outcomes and affect their probabilities, as defined by the given situation.  
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Figure 3.  PS diagrams. (a) Generic example with (b) and (c) superimposed conceptual 

dimensions. 
 

3.2. Epistemic Design Principles: Encoding Conceptual Structure 
The purpose of the principles is to guide the creation of a new representation that will directly 
encode the core sets of fundamental concepts.  To help explain them Fig 3 shows a PS 
diagram that models patients attending an imaginary heart clinic.  The observation of 
symptoms, S, and a blood test, T, are two trials.  The possible outcomes of S are high blood 
pressure, H, low blood pressure, L, and irregular pulse, P.  The possible outcomes of T are 
infections: viral, V; fungal, F; bacterial, B.  The region between the vertical bounding parallel 
lines defines the overall probability space for this situation.  The possible outcomes of the 
second trial do not overlap (they are disjoint); as are H and L in the first trial.  H and L are 
complements.  P partially overlaps H and L.  V always coincides with H, and F or B may be 
associated with L.  If F is diagnosed then L and P will be symptoms.  For this example, letters 
also represent the properties, but PS diagrams may in general have separate property labels.  
The prior probability of an outcome is represented by the length of its line in proportion to 
the overall width of the space.  H, P, L and V are all equi-probable and both F and B are less 
likely but approximately equal to each other.  The conditional probability of F given L is 
given by the ratio of the lengths of their respective line segments, which is greater than the 
prior probability of F, as it is conditionalised over the whole space.  The conditional 
probability of H given V (or V given H) is unity.  Fig 4 illustrates more fully some of the 
situations that PS diagrams can model (rows) and how different relations among possible 
outcomes are encoded (columns).  It will also now help to explain the principles.   
 (a) For each set of core concepts a different representational scheme should be used 
in order to differentiate the sets of concepts from each other.  In other words, concepts 
associated with different conceptual dimensions can naturally be distinguished by the 
different ways in which each representational scheme encodes information.  Fig 3b and c 
show schematically the schemes that are used to capture the different primary sets of 
concepts.  The spatial distribution of representing entities encodes the structural concepts, 
with horizontal and vertical space used for different classes of structures; as depicted in Fig 
3b and by the columns and two groups of rows in Fig 4.  Structural relations, including the 
identification of sub-spaces, are horizontal arrangements of sub-regions relative to each other 
or relative to the overall space.  Specific set theoretic relations are represented by particular 
configurations of outcome segments, with the line segments on a trial line serving like a 1D 
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Venn diagram (e.g., Fig 4, columns 1 and 2; Fig 3c, top).  Entities that are possible outcomes 
are labelled line segments to which additional labels for specific properties may be added if 
required (Fig 3c, left).  The quantities of the domain, probabilities of outcomes, are encoded 
by the scheme that the length of each line segment for an outcome stands for its magnitude, 
in proportion to the whole space or a given sub-space (Fig 3b, bottom).  Functional relations 
use the scheme of relative vertical alignment in order to encode linked outcomes across trials 
(Fig 4, bottom half).  The arithmetic and algebraic laws that relate quantities of probability 
are captured by geometric relations among the outcome segments within or between trial 
lines (e.g., Fig 3c, left). 
 

 
Figure 4.  Models of probabilistic situations and relations.  The thick black line in each PS 

diagram is the probability of the relation given at the head of the column. 
 
 (b) To coherently interrelate the different representational schemes that encode each 
set of core concepts an overall global interpretive framework should be employed.   More 
precisely, the representational schemes that encode sets of core concepts should themselves 
be related to each other at a higher level in a manner that captures the way that sets of 
concepts are related to each other in the domain.  PS diagrams integrate the orthogonal 
representational schemes for the core concepts by sharing graphical objects but exploiting 
different graphical properties of those objects for each set of core concepts.  For any line 
segment standing for a given outcome all of these concepts are co-present and can be readily 
related to each other: information about the trial to which it belongs (vertical position); its 
specific properties (labels); its probability (relative horizontal length); its relation to other 
outcomes in the same trial (degree of overlap); its relation to outcomes of other trials (vertical 
alignment).  Thus, we see how multiple constraints interact to determine the magnitudes of 
probability, as illustrated by the intersection of columns and rows in Fig 4.  For instance, 
when there is no overlap in a single trial then the probability of A and B and of A given B are 
both zero (row 1, column 1 and 3).  In the case of multiple trials, the probability of the 
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conjunction of A with B depends upon the nature of the linking (rows 4-6) and whether the 
relation is a simple and or an and then (column 1 and 4, respectively).  
 The value of a thoroughgoing interpretive framework to coordinate the different 
schemes for sets of concepts can be seen in way that it drives the generation of PS diagrams.  
For example, although we might at first attempt to draw the case of taking the sum of two 
identical dice thrown simultaneously as a single trial, the global framework tells us this will 
not work.  Two trials are necessary for functional linking relations, i.e. taking the sum.  Of 
course, had the problem given all of the possible outcomes and their magnitudes, then one 
could treat this situation as a single trial.   
 (c) The individual representational scheme for each set of core concepts should 
coherently encode the various levels or aspects of those concepts.  This principle concerns 
the encoding of one set of core concepts in one representational scheme: the different aspects 
of the concepts should be captured by the scheme in a way that consistently differentiates and 
yet coherently interrelates the concepts in the set.  This parallels the previous principle but at 
a lower level.  Consider how this principle applies to some of the sets of core concepts 
identified above.  (a) A representational scheme based on the length of line segments and the 
width of spaces encodes the fundamental concepts associated with probability values.  Within 
this scheme particular concepts relating to the alternative measures probability are 
interrelated and also differentiated.  From the Bayesian perspective a magnitude in the range 
[0,1] is given by the length of the target outcome segment in proportion to the whole width of 
its space.  Under a Frequentist reading the width of the space represents the total number of 
entities and the length of a segment gives the number of entities of its type.  For Odds 
measures of probability, which range  from 0 to ∞, a magnitude is given by the ratio of the 
length of the target outcome line segment to the length of its complement (e.g., H:L=1:1 in 
Fig 3a).  All these alternative conceptions are related under the single scheme yet also 
differentiated through the alternative readings of the scheme.  (b) The scheme for the 
structural set of concepts uses the distribution of elements in space and within it vertical and 
horizontal space, respectively, differentiate trials versus subspaces or possible outcomes.  In 
terms of Fig 4, this distinction maps to (i) rows in the upper and lower halves versus (ii) the 
column headers.  (c) The scheme for functional relations uses vertical alignment between 
trials and different concepts that constitute alternative types linking relations have different 
alignment patterns: such as repeating situations (no linking); varying magnitudes of 
probability; varying the possible set of outcomes (Fig 4, bottom left).  
 (d) Sets of concepts for secondary conceptual dimensions should be integrated within 
the global interpretive scheme.  The representational scheme for a secondary set of concepts 
should augment the representational schemes for the primary sets of concepts in a manner 
that encodes the relation between the primary and second sets of concepts.  An example is 
temporal concepts in PS diagrams.  The medical situation modelled in Fig 3 did not specify 
whether S or T, occurred first, but if it had the spatial representational scheme for trial 
structures could have been supplemented with a time dimension running from top to bottom 
(Fig 3b, left), or vice versa depending on the order of the trials. 

3.3. Solution Procedure 
The generic problem solution procedure for PS diagram is different to that of the 
conventional approach.  Table 3 shows its three phases for modelling, interpretation and 
calculation.  The first stage involves drawing a PS diagram that models the outcomes on each 
trial.  If there is more than one trial care must be taken with the alignment and scaling of the 
outcomes across the trials in order to preserve the nature of the linking.  The second phase 
involves selecting the outcomes of interest and the relations that hold over them, which may 
or may not take into account the order of occurrence of the trials.  The final phase is the 
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calculation of the required probability as the ratio of the length of the target line segment(s) 
to the overall width of the probability space or the relevant subspace. 
 
Table 3.  Generic PS diagram problem solution procedure 

Modelling situation: 
M.1) If single trial: 
  M.11) identify all outcomes and construct line for the trial: 
    M.111) if equal probabilities, then segments equal for outcomes. 
    M.112) if unequal probabilities, then make segment proportional to their probabilities. 
M.2) If multiple trials: 
  M.2a) choose an order of trials and consider each trial in turn: 
  M.2b) draw first trial using rule M.1 
  M.2c) for second and subsequent trials: 
    M.2c1) if trials unlinked, then repeat the trial drawn to scale under each outcome of previous trial. 
    M.2c2) if trials linked, then draw the next trial under each outcome consistent with local problem 

constraints: 
      M.2c2a) if outcomes are linked across trials, then change the possible set of outcomes. 
      M.2c2b) if probabilities linked, then change relative length of outcomes. 
Interpretation: 
I.a) Identify target outcome(s) or sequences of outcomes: 
  I.a1) if single trial, then select target outcome. 

    I.a2) if multiple trials, then consider nature of outcomes of interest: 
    I.a21) if particular outcomes in some of the trials are of interest, then select those outcomes. 
    I.a22) if outcomes across trials are of interest, then consider sequences down the diagram: 
      I.a221) if permutations, then consider segments down diagram in order. 
      I.a222) if combinations or conjunctions, then consider columns containing the target in any 

order. 
I.b) Select outcome relation of interest:  
  I.b1) if outcome/sequence or its complement, then it is the target. 
  I.b2) if union, then the target encompasses outcomes/sequences of interest. 
  I.b3) if intersection, then the target is the overlap of outcomes/sequences. 
  I.b4) if conditional, then identify subspace for target segment. 
  I.b5) if permutation, then the target is the desired sequence. 

Calculation: 
C.1) Compute the probability by comparing the line segment length of the target in proportion to the 

width of the (sub)space. 
 
 Fig 5 shows the PS diagram solution to the biased die problem.  The three solution 
phases are: 

1) Modelling: a trial line is drawn (M.1) by incrementally adding segments for each 
outcome (M.11) whose relative lengths are in proportion to the relative likelihood of 
the outcomes (procedure M.112, Table 3).  The overall width of the probability 
space is found; e.g., 2+1+2+1+2+1 =9 drawing units. 

2) Interpretation: the target outcomes are highlighted (I.a1, I.b2) 
3) Calculation: their lengths are summed and compared with the overall length of the 

trial line (e.g., (1+1)/9=2/9) (C.1). 
 

 
Figure 5.  PS diagram solution to the biased die problem 

 
 The solution to this problem is straightforward with just one pass through the solution 
procedure involving relatively few decision steps.  See Cheng (2003) for a more complex 
example that also requires a single pass through the solution procedure.  Some evidence of 

1 2 3 4 5 6
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the efficacy of PS diagrams has been obtained by using them to provide solutions to infamous 
puzzles, such as Simpson’s Paradox and the Monty Hall dilemma, that dissolve their apparent 
counter intuitiveness (Cheng & Pitt, 2003). 

4. Theoretical Comparison 
This section aims to theoretically demonstrate that PS diagrams have greater semantic 
transparency and plastic generativity than the conventional approach and that this is 
consequence of directly encoding the fundamental conceptual structure of probability theory.  

4.1. Semantic Transparency 
A representation has semantic transparency when the meanings of the contents of the domain 
are readily accessible from the representation.  
 (1) One form of semantic transparency occurs when the terms used in the 
representation are unambiguous and coherent.  Because PS diagrams directly encode the 
notations of trials, outcomes, linking and overlapping using one-to-one mappings of the 
concepts to distinct types of graphical features, PS diagram appear to have this form of 
semantic transparency.  This is manifest in the way that every item of Fig 4 clearly reflects 
the structure of the component diagrams and the verbal labels in the headers of its row and its 
column.  The conventional approach appears to lack conceptual coherence.  It uses technical 
terms to denote theoretically distinct concepts, but the terms also have everyday meanings 
that are similar (e.g., joint, union, dependent).  Although the concepts of trial and outcome 
are sometimes used in the conventional approach, the definition of probability relations in 
terms of events predominates (i.e., Table 1).  The relative absence of this form of semantic 
transparency is also revealed by the fact that the verbal labels in the column header of Table 1 
seem arbitrarily related to the specific forms of the equations below.   
 (2) The size of the conceptual gulf between abstract general laws and specific 
concrete cases is another aspect of semantic transparency.  The axioms and relations of 
probability theory are built into the fabric of PS diagrams, which means the conceptual gulf is 
small.  For example, first and second axioms are always readily apparent, because the first 
relates to the overall width of the probability space and the second demands that any 
subspace or outcome must be located entirely within the overall space.  In the conventional 
approach the supplementary representations, such as Venn and tree diagrams, are needed as 
bridges to span a conceptual gulf between the algebraic laws and the concrete details of a 
problem.  
 (3) Integrating different conceptual perspectives present in a domain is another aspect 
of semantic transparency.  The prime example here is the relation between set theory and 
probability ontologies.  Set theoretic expressions are simply nested within probability 
expressions in the conventional approach, but they do not mutually support each other’s 
interpretation.  Constraints external to the expressions must be imposed to ensure the 
association is valid.  In contrast, PS diagrams integrate the perspectives by directly mapping 
the different ontologies to alternative graphical features of the same objects.  Hence, any 
transformation of a PS diagram will simultaneously reveal changes to probability concepts 
and to set theoretic concepts.  The simultaneously encoding of different measures of chance 
is also another example of this form of integration.  
 In a similar fashion it may be argued that PS diagrams have greater semantic 
transparency as they (4) integrate of the various scales of granularity that are present in the 
domain and (5) interrelate and distinguish prototypical, special and extreme cases.   
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4.2. Plastic Generativity 
An effective representation should allow meaningful expressions that meet problem solving 
goals to be readily generated but in a fashion that is constrained.   It is claimed that a 
representation that directly encodes the fundamental conceptual structure of its domain is 
likely to have plastic generativity.  The comparison of PS diagrams and the conventional 
approach provides some support for the claim.  
 PS diagrams appear to have greater plastic generativity in various ways.  (a) They 
require a small number of procedures for manipulating expressions; compare Tables 2 and 3.  
(b) PS diagrams yield a smaller and less complex problem state space for many tasks.  The 
greater number of decision points and operations in the conventional approach increases the 
potential for selecting and pursuing unproductive solution paths.  A single pass through the 
ideal PS diagram procedure is typically sufficient but the convention approach often applies 
the procedure recursively.  (c) PS diagram solution procedures are more uniform than for 
conventional approach as they revolve around one representation.  The diverse strategies of 
the conventional approach is a consequence of the need to navigate its complex conceptual 
structure and due to the requirements of managing the two primary notations and the 
supplementary representations.  (d) The conventional approach often demands a well-formed 
overall strategy to be selected before beginning a solution attempt.  In contrast, problem 
solving with PS diagrams can proceed through the gradual exploration of the structure of the 
problem with the incremental modelling of the given situation before any interpretation is 
needed in terms of potential target relations.  

4.3. Limitations of PS Diagrams 
The complexity of the problems that PS diagrams can model in a single diagram is naturally 
limited to, say, no more than four trials with several independent outcomes, although 
particular strategies can be used to overcome this limitation in some cases, such as the 
grouping of combinations of outcomes.  The generic procedure for PS diagrams works for 
simple quantitative problems.  However, more advanced problems that involve the derivation 
of a relation amongst different quantities, or finding the maximum value of some parameter, 
may be easier to solve with the conventional approach, because full machinery of algebra and 
differential calculus can be brought to bear on the relations in Table 1.   

5. Empirical Evaluation 
An experiment was conducted that involved teaching basic probability theory to naïve 
learners using either PS diagrams or the conventional approach; PSD and CON groups, 
respectively.  It was predicted that the PSD group would acquire a better conceptual 
understanding of the domain, which will be revealed by greater gains in their ability to solve 
probability problems, particularly on more difficult test problems and transfer problems.  If 
PS diagrams are effective tools for thinking about the domain and easier to use, then 
compared to CON group using their own representations after instruction the PSD group 
should be using PS diagrams more and with a higher success rate.  

5.1. Experiment 
Measures of learning.  Twenty probability problems (Q1-Q20) were adapted from UK school 
mathematics texts for 16 year olds (Greer, 1992; Kent, et al., 1996).  They had five 
alternative answers, with four incorrect answers that were plausible alternatives generated 
through common errors.  The same problems were used in the pre-test and post-test.  The 
biased die problem, above, is a representative item (Q5). 
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 Three transfer problems followed the post-test: (1) the card problem involved a 
complex conditional situation (Cheng, 2003); (2) the cab problem, a typical base-rate 
problem; (3) the infamous Monty Hall dilemma.  It was not expected that participants would 
obtain correct solutions to them; rather the aim was to examine the extent to which the 
participants would use the methods they had learnt.   
 Materials.  Mini-curricula were devised for each of the representations.  For the 
conventional representation a popular modern school mathematics text was adapted (Greer, 
1992).  The sub-topics covered included: the notion of probability; the probability scale; 
relative frequency; (in)dependent events; (not) mutually exclusive events, including Venn 
diagrams; tree diagrams and repeated trials.  Although the content was largely unaltered, the 
presentation was modified to suit individual study, with sections introducing a particular 
topic interspersed with worked examples, practice exercises and their solutions.  At an 
abstract level, the PS Diagram curriculum covered the same general content but the specific 
topics and their sequence were designed to suit the novel representation.  The project team 
developed of the mini curriculum without specialist advice from experts in the pedagogy of 
this topic.  The same overall style of instruction was used.  Presumably, the pedigree of the 
conventional text used to develop the mini-curriculum biases the experiment against the PS 
diagrams approach.  
 Participants. Thirty three undergraduates, 25 female and 7 male, were recruited from 
arts and humanities degree courses at a UK university and were paid to participate.  All the 
participants had a GCSE mathematics qualification (UK high school examination at age 16 
years) but none had a higher mathematics qualification.  The mean age of the participants 
was 19 years 4 months (range 18 to 23 years).  They were randomly assigned to the PSD 
Group or the CON group.  Three participants left the study for reasons unconnected to the 
experiment leaving 15 in each group. 
 Procedure.  The experiment was conducted over four sessions of approximately 50 
minutes at weekly intervals, with the pretest and posttest in the first and last.  The middle two 
were instructional sessions.  All the test and instructional materials were presented in 
booklets and plain paper was used for writing solutions.  In the posttest participants were 
requested to talk aloud whilst working as audio and video recordings were made, although 
these are not analysed here.  Participants were encouraged to make two attempts at the 
transfer problems.   

5.2. Results 
Learning gains.  On the basis of mixed design 2X2 ANOVA there was a significant main 
effect of time (F1,28=9.01, p<.01, MSE=33.8), but there was no main effect of group and no 
significant interaction.  The mean learning gains (and S.D.), of the PSD group given by the 
number of correct posttest minus pretest answers was 2.0 (2.7) and was 0.8 (2.9) for the CON 
group, but this difference is not significant (by a t test).  However, from the proportion of all 
participants correctly answering each problem in the pretest, a binary split identified the ten 
hardest and easiest problems.  Fig 6 gives the mean scores for the two levels of problem 
before and after instruction for both groups.  The hard problems reveal an interesting effect, 
with a mixed design 2X2 ANOVA, on group by time of test, showing a significant main 
effect of time (F1,28=17.9, p<.001, MSE=43.4) and a significant interaction (F1,28=4.3, 
p<.05, MSE=10.4).  The increase PSD group score from 3.87 (SD=2.13) to 6.40 (2.38) is 
significant by a t test, p<.001; but the increase of the CON group from 2.60 (1.81) to 4.47 
(2.03) is not.  The difference between the two groups at pretest was not significantly 
different, but it was at posttest, p<.05.  Repeating the analysis with the hard category 
including 1/3 or 2/3 of the hardest problems, the same overall pattern of better PSD group 
performance was evident. 
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Figure 6.  Learning gains of the two groups 

 
 Representation use.  The PSD group drew more PS diagrams than whatever 
expressions the CON groups wrote, with mean proportions of use (and SDs) of 80.7 % 
(29.3%) versus 55.3% (17.0%); which is significant at p<.01 by a t-test.  When 
representations were used on a problem the mean proportion of correct answers was 72.8% 
(13.5%) for PSD group and 53.0 % (25.2%) for the CON group; which is significant at 
p<.01.  When correct answers were given, then the mean proportion of times that PS 
diagrams or conventional representations had been used was 81.0% (20.6%) and 52.8% 
(29.1%), respectively; which is again significant at p<.01. 
 

a    

 
 

b         
 

 
Figure 7.  CON group solutions to the die problem: (a) most complete attempt (CON 9); (b) 
typical attempt (CON 12) 
 
 The participants work scratchings provide further evidence that the diagrams drawn 
by the PSD group were instrumental to their success on the problems.  Their solutions to the 
biased die problem (Q5) in the posttest is a representative example.  In the CON group: 14 
wrote something for this problem; 3 identified possible outcomes; 5 noted that the chances of 
an even number was twice that of an odd number; 4 gave the common divisor as 1/9; 4 wrote 
mathematic expressions; 8 got the correct answer, but 2 admitted it was a guess.  In contrast, 
of the 15 PSD participants: 13 drew something; 13 included a trial line; 13 showed segments 
for possible outcomes; 13 drew segments for odd numbers longer than even numbers; 12 
highlighted the target; 13 gave the correct answer; none reported guessing.  Fig 7 and 8 each 
show two sample solutions from each group.  Fig 7a is the solution closest to the ideal 
solution given in Fig 1, and Fig 7b is a typical CON participant’s solution.  Although Fig 8a 
and b have been chosen to show the full range of PS diagram solutions, their similarity to the 
ideal solution, Fig 5, and to each other, is obvious.  The PSD group are modelling the 
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problem situation and then interpreting the constructed diagram to find the answer; a pattern 
that is common to the other problems. 
 

a

        
 

b
   

 
Figure 8.  PSD solutions to the die problem: (a) best solution (PSD 4); (b) typical solution 
(PSD 6). 
 
 Transfer problems.   Consider first the card problem that involved a complex 
conditional situation.  The CON group were able to identify and record the information given 
in the problem, but were unable to do anything meaningful with it.  However, one third of the 
PDS group solved the card problem correctly, which constitutes a significant difference 
compared to the CON group (Fisher exact test, p=.021).  Nearly all the PSD group 
participants were able model the given situation correctly and over half considered the 
conditional target relation.  
 No participant in either group solved the cab base-rate problem or the Monty Hall 
problem, but for both problems thirteen participants in the PSD group drew diagrams that 
were clearly PS diagrams, whereas none of the CON group used a tree diagram or a 
contingency table, which would have been appropriate.  The CON group solution attempts 
were idiosyncratic notes and calculations, with little co-ordination of the problem information 
in the external representation.   

5.3. Discussion of Empirical Evaluation  
The results are consistent with the general prediction of the superiority of PS diagrams.  PS 
diagrams supported learning better than the conventional approach, as made apparent by the 
greater improvement on the harder test problems and some success on one of the transfer 
problems.  Because the harder problems require the participants to accurately construct 
models of relatively complex probabilistic situations and to make interpretations involving 
interconnected relations, this suggests that the PSD group may have developed a higher level 
of conceptual understanding.  The difference between groups is noteworthy for four reasons.  
First, this was the first attempt to develop a curriculum for probability theory using PS 
diagrams, whereas the materials for the CON group were based on the third edition of a 
established mathematics text.  Second, the design of the PS diagram materials was not done 
by experienced mathematics teachers.  Third, a conventional “book learning” pedagogic 
approach was taken without any individual scaffolding of the material for the learners.  
Fourth, there were no instructional interactions with the participants other than on minor 
points for clarification.  
 There is some evidence that PS diagrams supported the acquisition and use of 
effective problem solving procedures: there was extensive use of the PS diagrams on the 
posttest problems; PS diagrams were used in many attempts on the transfer problems; the 
proportion of correct answers given the use of a PS diagram was greater than for the 
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conventional representations; solution methods of the PSD group were largely consistent with 
each other, whereas the CON group solutions were often idiosyncratic.  The minimal use of 
the conventional techniques by the CON group in the posttest and transfer problems implies 
that the participants had either not acquired the conventional methods or that they did not 
know how to apply them effectively.   

6. Discussion 

6.1. Scope of PS Diagrams and pedagogic implications 
The theoretical comparison showed the conventional approach to be poor in plastic 
generativity terms, which was revealed in the experiment by participants often reaching 
impasses, abandoning their given representations, and often reverting to informal verbal 
reasoning.  In contrast, PSD group appeared to generate meaningful expressions that met 
problem solving goals but in a fashion that was constrained.  The solutions were often 
complete and their similarity across participants suggests that PS diagrams have semantic 
transparency.  
 Overall, PS diagram do appear to support problem solving and learning better than the 
conventional approach, at least for the level of complexity of the problems considered here.  
PS diagrams do not extend well to modelling situations in which there are many possible 
outcomes over multiple trials, because the diagrams become unwieldy.  For situations with 
two trials and multiple possible outcomes the conventional approach has an advantage that a 
two-dimensional outcome table may be used.  However, for more complex situations a 
strategy such as focusing on the subset of outcomes must be used, as would be the case with 
PS diagrams.  No claim is made that PS diagrams are in general more effective than the 
conventional approach, rather for problems of relatively low complexity they have greater 
semantic transparency and plastic generativity, which means that they may provide learners 
with a superior conceptual grounding in the domain. 
 If PS diagrams are superior in some ways, then an obvious pedagogic question is 
whether they should supplant or supplement the conventional approach.  The answer depends 
on one’s instructional goals rather than an assessment of which approach is in general more 
effective cognitively.  For a basic fundamental grounding PS diagrams may alone suffice, but 
if the learners are expected to eventually model complex situations or to perform 
sophisticated analyses, then transition to the conventional approach will be required.  
Fortunately, a consequence of directly encoding the fundamental conceptual structure of the 
domain under the REEP approach is that PS diagrams are mathematically compatible with 
the conventional approach.  The spatial and geometrical rules that govern the diagrams 
capture the laws of set theory and probability theory; all the equations in the top half of Table 
1 can be mapped directly to particular configurations in PS diagrams.  Hence, it is feasible to 
create a curriculum that begins with PS diagrams to give a solid conceptual understanding 
before transitioning to the full mathematical power of the conventional approach.  Whether 
this is an effective overall pedagogic strategy is an open question.  

6.2. REEP Implications 
The design of PS diagrams and the demonstration of their efficacy provides some further 
support for the validity and utility four REEP design principles, which attempt to give 
representations semantic transparency and plastic generativity.   
 In order to re-codify the knowledge of a domain we must break a representational 
vicious circle: somehow the fundamental conceptual structure of the target domain must be 
analysed, but our understanding of it is grounded in conceptual structures provided by the 
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extant representation that we wish to re-design.  The notion of conceptual dimensions in the 
REEP approach is an attempt to provide a “language” for the interrogation of conceptual 
structures in a relatively domain and representation independent manner.  Probability theory 
was particularly challenging compared the previous domains that have been re-codified 
(mentioned in the Introduction), because of the extent to which the meanings of the 
fundamental concepts are closely tied to the definitions of the conventional approach.  Hence, 
the successful re-codification provides some further support for the utility of this form of 
analysis.  
 The learners using PS diagrams appear to have benefited from a better comprehension 
of the concepts of the domain and had more successful problem solving procedures.  Greater 
problem solving success may have enhanced learning by exposing learners to a greater 
proportion of complete and correct cases: a better signal to noise ratio of learning episodes.  
This provides some further support for the claim (Cheng, 2002) that the representational 
system used for learning not only affects the ease of learning but also determines how 
learning occurs, the structure of the knowledge that develops and the problem solving 
procedures acquired.  
 Some accounts that posit the challenges of probability theory arise from the intrinsic 
characteristics of the domain, such as the abstract aleotoric concept of chance (Gigerenzer & 
Hoffrage, 1995; Cosmides & Tooby, 1996) or the need to reason through disjunctions 
(Shafir, 1994).  The re-codification of the domain in PS diagrams, which enabled better 
performance on the hard and transfer problems, suggests an alternative view.  Probability 
theory may not intrinsically be difficult to learn.  Rather the codification of the conventional 
approach puts up barriers, which are not inevitable, that hide the fundamental nature of the 
domain and so demands deliberate effort to overcome.  In other words, learners’ efforts that 
could be expending on comprehending the domain are diverted to the acquisition of skills to 
manage the representations in themselves.  
 All this provides some support for the central claim of REEP approach that an 
effective representational system should encode the fundamental conceptual structure of its 
knowledge domain.  At a fundamental level probability theory is relatively simple; there are a 
small number of axioms that underpin set theory and probability relations.  By capturing 
these laws and invariants in the structure of the PS diagrams this inherent simplicity seems to 
have been preserved.  Hence, the intricacies of modelling particular situations with PS 
diagrams appears to be a reflection of the interactions and contingencies of the modelled 
situation itself rather than an artefact of the structure and function of the representational 
system.  The drawing of a PS diagram is, in effect, reproducing the steps that occur in the 
situation itself and the elegance that some PS diagrams appear to possess may be interpreted 
as manifestation of the way the underlying symmetries and laws of the domain are directly 
encoded in this diagrammatic representation. 
 The focus on re-codifying the fundamental conceptual structure of knowledge 
domains is the main way in which the REEP approach differs from other methods to the 
design of visual displays that are based on task oriented perspectives (e.g., Vincente, 1996; 
Endsley, Bolté & Jones, 2003) or that address the overt informational dimensions of a 
domain (e.g., Card, MacKinlay & Shneiderman, 1999; Zhang, 1996; Engelhardt, 2002).  
However, the REEP approach is compatible with such approaches in that it is appropriate to 
apply them at the level of the third epistemic principle proposed above, because this principle 
deals with how individual representational schemes should coherently encode a set of 
concepts for a single conceptual dimension.  Nevertheless, the REEP approach suggests that 
principles at the cognitive level should take a secondary role in the overall design of 
representational systems for complex domains, because effectively encoding the conceptual 
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structure may produce representations that naturally have semantic transparency and plastic 
generativity over a greater range of the domain.  
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