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Abstract.  A diagrammatic notation for algebra is presented – Hierarchical Al-
gebra Network Diagrams, HANDi.  The notation uses a 2D network notation 
with systematically designed icons to explicitly and coherently encode the fun-
damental concepts of algebra.  The structure of the diagrams is described and 
the rules for making derivations are presented. The key design features of 
HANDi are discussed and compared with the conventional formula notation in 
order demonstrate that the new notation is a more logical codification of intro-
ductory algebra.  

1 Introduction 

This paper describes novel notational system for introductory (school level) algebra – 
Hierarchical Algebra Network Diagrams (HANDi).  HANDi was invented as part of a 
programme of research that is developing the Representational Epistemic approach to 
the study of how notational systems encode knowledge and the potential cognitive 
benefits that novel codifications of knowledge may confer [1-3].  The core principle 
of the Representational Epistemic approach claims that notational systems designed to 
directly encode the fundamental conceptual structure of knowledge rich domains, 
using coherent notational schemes, will possess semantic transparent and thus en-
hance problem solving and conceptual learning (see [1-3]).   

This paper that has two purposes: (1) to provide a detailed description of HANDi, 
that includes a set rules for making HANDi derivations; (2) to highlight the main 
design features of the notation that attempt to more coherently encode the fundamen-
tal conceptual structure of 
algebra than the convention-
al formula notation.  Thus, 
the paper has the 4 follow-
ing main sections: section 2 
present the basic graphical 
structure the HANDi nota-
tion; section 3 describes the 
rules for manipulating ex-
pression in the notation; 

 
Fig. 1.  A HANDi equation comprising two trees 



section 4 provides examples of derivation using the rules; section 5 discuses the how 
the HANDi notation encodes the key concepts of the domain.   

2 HANDi expressions 

Fig. 1 shows an example of a Hierarchical Algebra Network Diagram for a quadratic 
equation in x that involves a complex number.  The equation in the conventional for-
mula notation equation is shown below the diagram.  This diagram consists of two 
trees, left and right, but other diagrams may have multiple trees.  The full interpreta-
tion of the diagram will become clear as the component parts of HANDi equations are 
introduced.  

2.1 Basic operators 

Fig. 2 shows the HANDi 
sub-tress for basic binary 
operators, which consist of 
a node, trunk and two 
branches.  At the end of 
each branch is either an 
argument leaf that consists of a number, a variable, or another a node for an operator 
(as in Fig. 1).  The trunk of a node is the line ascending from the top of the node.  A 
right-angle branch represents addition of the arguments (or node) at the end of the 
branch.  A right-angle branch with a horizontal bar represents subtraction of the ar-
gument at the end of the branch.  An arc branch represents multiplication, in the same 
way.  An arc branch with a diagonal bar represents division by the argument on the 
branch.  The different styles of lines distinguish addition and subtraction from multi-
plication and division.  The bars distinguish subtraction from addition and division 
from multiplication.  All this conveys the notation that division is to multiplication as 
subtraction is to addition.   

Different styles of branches may not be connected to the same node, and a diagonal 
bar may only be associated with an arc branch and a horizontal bar with a right-angle 
branch; Fig 3 shows three illegal diagrams.   

2.2 Equation 

Relations among numbers and 
variables are encoded as hierar-
chical networks, trees, composed 
of the basic operators.  The numer-
ical equality of trees is shown a 
double horizontal line connecting their topmost trunk; for example Fig 1.  (Inequali-
ties may be shown by a double horizontal line with a <, ≤, >, ≥ symbol written on the 
line.)  A tree may only have a single occurrence of each variable; there is just one 

 
Fig. 2. Trees for the elementary algebraic operators 

 
Fig. 3. Invalid tree and branch types 



letter ‘x’ in each of the two trees in Fig. 1.  This is a key feature of HANDi.  Howev-
er, there may be multiple instances of the same number in a tree, for two reasons: (a) 
the same numbers may stand for quantities that have different units, in which case 
they necessarily represent different things (e.g., 3 metres versus 3 seconds), so should 
have different symbols; (b) pragmatically, this provides a means to manage the com-
plexity of the diagrams, particularly in order to avoid crossing branches. 

2.3 Identities and inverse operations 

Fig. 4 shows how a sub-tree with a single branch 
may be drawn in place of a binary tree that has the 
same argument and a particular identity element.  
Fig 4.1 is a sub-tree with a single branch, and no 
bar, that is equivalent to Figs. 4.2-4.5.  Figs. 4.6 and 
4.7 show that single branches with a diagonal or 
horizontal bar are equivalent to trees in which the 
argument is the divisor of one or is subtracted from 
zero.  Fig. 4.8 and 4.9 shows that an argument di-
vided by or subtracted from itself are equal to one or 
zero, respectively.   

2.4  Negative and imaginary numbers – unary turn operators 

HANDi provides a notational scheme that coherently unifies positive, negative and 
imaginary numbers; see Fig. 5.  A turn is a unary operator at the end of branch that 
indicates the extent of rotation of the argument in an Argand diagram.  A quarter turn 
(1/4 circle) represents an imaginary argument, a half turn (semi-circle) represents a 

 
Fig. 5. Positive, imaginary, 

negative, negative imaginary 
and positive arguments 

 
Fig. 4. Operations involving identify element 

 
Fig. 6. Turns in trees 



negative argument, a three quarter turn (3/4 circle) represents a negative imaginary 
argument, and positive argument is a branch with no turn or a complete (whole cir-
cle).   

2.5 Combined unary and higher order operators 

Fig. 6 shows unary turn operators in association with binary operators.  Addition, 
subtraction, multiplication and division operators may act upon negative numbers; 
Figs. 6.1 to 6.4.  HANDi makes an explicit distinction between negative numbers and 
subtraction in terms of the type of attachment to the branch, either a half turn or a bar, 
and in relation to the position of the attachment, either at the end or bisecting the 
branch.  Fig. 6.5 and 6.6 indicate how unary turn operator may be applied to trees.  
Notice how in Fig. 6.6 the minus sign and ‘i’ occur at opposite ends of a conventional 
formula, but the same information is encoded as a single three quarter turn symbol in 
HANDi.   

2.6 Repeated operations – recursive addition and powers 

Figs. 7 and 8 show HANDi expressions that involve repeated applications of an oper-
ator to an argument.  Fig. 7.1-7.4 shows multiple additions of a single argument, in-
cluding recursive applications.  Figs. 7.5-7.10 show how HANDi represents various 
power expressions for a single argument.  In cases where multiple branches of a tree 
converge on a single sub-tree below (Figs. 7.4, 7.9 & 7.10 and Fig. 8.5), each branch 
represents a repeated operation on the sub-tree: Fig. 7.4 shows two additions of 3a; 
Fig. 7.9 shows the product of three a3; Fig. 8.5 shows the product of two a×b.  Notice 
that the top tree in Fig. 7.9 is equivalent to the top tree in Fig. 7.8, which both repre-
sent the cube of their respective arguments.  Consider Fig. 7.10; raising an index of an 
argument (2 in a2) to a power (3 in a^23) is represented by a number of the hierar-
chical repetitions of the sub-tree for the index (2) by the magnitude of the power (3): 
there is a stack of three pairs of branches.  Fig. 8.4 shows that arguments raised to 
some power may be embedded as a sub-tree within a higher tree.  If all the branches 
of the tree have diagonal bars, which indicate division by the argument, then the tree 
represents a negative power, as in Fig. 8.1.   

 
Fig. 7. Repeated addition and powers 



To show non-integer fractional 
powers, branches that ascend as well 
as descend from the node are used.  
Fig. 8.2 has two ascending branches 
and one descending branch, so its 
power is 1/2 (square root).  Fig 8.2 
shows a2/3, because two branches point 
down and three point up.  By the same 
scheme, the two down and one up 
branches in Fig. 7.5 shows the argu-
ment raised to the “fractional” power of 2/1.  

That completes the description of the graphical structure of HANDi trees.   

3 Elementary HANDi transformation rules 

HANDi provides rules for the transformation of tree diagrams in to alternative forms.   
Elementary rules are the primitive transformations – considered in this section – and 
derived rules are more complex transformations composed by the successive applica-
tions of the elementary rules – considered in the next section.   

HANDi has twelve elementary rules for transforming trees and equations. 
Rule E0 specifies that horizontal positioning of argument and nodes is arbitrary so 

their relative positions may be swapped at will; for instance, to improve the clarity of 
a diagram.  The E0 labels on the double equality line in Figs. 15 and 23 (below) show 
the application of this rule.  

Rule E1 allows binary trees for 
operations on an argument and an 
identity element to be replaced by a 
single branch for the argument, as 
described above and shown in Figs. 
4.2-4.7.  In the case of Rule E1.1 
the single branches for the argu-
ments have no bars (Fig 4.2-5), 
whereas in Rule E1.2 each branch 
has a bar (Figs. 4.6 & 4.7).  The 
opposite also applies; a single 

 
Fig. 8. Assorted power diagrams 

 
Fig. 10. Nest operations that are equivalent to a 

tree with a single plain branch 

 
Fig. 9. Branch insertion or elimination 



branch may be transformed in to a binary tree (e.g., Fig 4.1 in to any of Figs. 4.2-4.6)  
Rule E2 also allows a binary tree to be replaced by a single branch, or vice versa, 

but in this case the argument on the branch is either one or zero, because the binary 
tree involves an argument divided by itself or subtract from itself, as described above 
and shown in Figs. 4.8 & 4.9.  

Rule E3 allows a single branch with no bar to be inserted (or removed) from a tree.  
Going from Fig. 9.2 to 9.1, or Fig. 9.5 to 9.4, an extra node and branch are inserted 
above the node in the tree indicated by the arrow.  Going from Fig. 9.2 to 9.3, or Fig. 
9.5 to 9.6, an extra branch and node are inserted below the indicated node of the tree.  
In the opposite direction (to Fig. 9.2 or to Fig. 9.5) the node and branch are eliminat-
ed.   

Rule E4 involves trees with single branches, Fig. 10.  The circles and capital ‘A’ 
stand for an argument or a sub-tree.  Three trees have two nested branches for the 
same type the operator (Fig 10.2-4) and one has two different operators (Fig 10.5).  In 
all cases the trees are equivalent to a single plain branch (Fig 10.1).  For instance, Fig 
10.4 states that taking the negative of a negative gives positive and Fig 10.5 shows 
that subtracting a negative is equivalent to a positive.  Thus, the variants of E4 allow 
such nested branches to be replaced by a single plain branch, or vice versa.   

Rule E5 concerns the movement of bars up and down branches, as shown in Fig. 
11.  A bar on a trunk can be move down to any branch that has no bar, but if a bar 
already exists on the branch it is cancelled out by the moved bar. The rule applies 
equally to right-angle and arc trees.  For example, Fig. 11.1 and 11.3 show that the 
bar on the b branch is eliminated and a bar added to the a branch, when the bar of the 
trunk is demoted.   

Rule E6 concerns the relation of right-angle trees to trees with arc branches.  Fig. 
12 is an example of how repeated additions of the same 
argument may be represented as a multiplication opera-
tion.  A tree with multiple right-angle branches for a single 
argument may be transformed into a binary tree with arc 
branches, one for the argument and another with a number 
matching the quantity of right-angle branches.   

Rule E7.  Depending on the type of tree, transforms in-
volving turns are governing by different conservation 
rules.  In a tree with right-angle branches (with or without 
horizontal bars), the number of turns in successive right-

  
Fig. 12. Multiplication 
and repeated addition 

 
Fig. 11. Promotion and demotion of bars  



angle branches must be preserved, with the proviso that one complete turn is equiva-
lent to no turn.  For example, for variable a in Fig. 13.1, there are no turns along the 
branches from the top of the tree down to the a leaf, so when a quarter, half and three-
quarter turn are introduced on the trunk, Figs. 13.2–13.4, the a branch must be aug-
mented with sufficient fractional turns that the total number of turns is the same, a 
complete turn (or none).  Similarly, with branches b, c and d, which start with a quar-
ter, half and three-quarter turn, respectively. 

 
Fig. 13. Conservation of turns along successive right-angle branches in equivalent trees 

The conservation of turns in trees with arc branches applies to the whole tree, so all 
the turns on all the branches are summed, but with the exception that turns on branch-
es that also have diagonal bars must be deducted.  In Fig. 14 all the trees have a total 
of one quarter turn.  In Fig 14.1 and 14.2 the quarter turn is associated with one argu-
ment or the whole tree, respectively.  In Figs 14.3-5 a quarter turn is associated with a 
branch that has a diagonal bar, variable c, which means that there must be a total of a 
half turn elsewhere in the rest of each of the trees, so that all the trees possess the 
same number of turns.  In Fig 14.6 the half turn associated with that branch will can-
cel most of the three-quarter turn on the middle branch (variable b) to leave the requi-
site quarter turn. 

 
Fig. 14. Conservation of turns throughout equivalent trees with arc branches 

Rule E8. This rule encodes the property of distribution of multiplication over addi-
tion.  In Fig 15.1 the topmost tree has arc branches, one of which is for the variable 
‘a’ and the other attaches to a tree with right-angle branches (b+c).  Now, as the arc 
branch attached to the right-angle tree has no bar, the right-angle tree may be promot-
ed and its branches attached to two sub-tree with arc branches below, as shown in Fig. 
15.2.  Note that the two new arc-branched trees now share the single variable (a) from 

a b 

a+bi+(-c)+(-di)  =  ((-ai)+b+ci+(-d))i =  -((-a)+(-bi)+c+di) = -(ai+(-b)+(-ci)+d)i  

d c a b d c a b d c a b d c 

1                                 2                                  3                                  4 
E7.1! E7.1! E7.1!

a b c a b c a b c a b c 

ai!b/c       =  (a!b/c)i      =    ai!bi/ci        = (ai!b/ci)i        = -(a!b/ci)      = a!(-bi)/(-c)   

a b c 

1                         2                         3                          4                          5                          6 

a b c 

E7.2! E7.2! E7.2! E7.2! E7.2!



the original arc-branched tree.  Figs. 15.4 and 15.3 are variants of Figs. 15.1 and 15.2 
that simply change the horizontal position of the variables according to rule E0.  This 
rule applies to right-angle trees with more than two branches and may be derived by 
repeated application of Rule E8 to successive right-angle branches.   

 
Fig. 15. Distributive property of multiplication over addition 

Figs 16.1 and 16.2 show further two valid applications of rule E8 that also involve 
the presence of bars and turns.  Again, note the absence of a bar on the critical arc 
branch, but the permitted presence of a turn on the branch in Fig. 16.2.  In both cases 
the redistribution of argument a does not directly affect the bars or the half turn, be-
cause they remain attached to their original branches.  In contrast Fig 16.3 shows 
when E8 cannot be applied, because there is a bar on the critical arc branch, which 
may not be re-distributed through the right-angle tree when that branch disappears.   

 
Fig. 16. Distributive property involving subtraction and division 

Rule E9 concerns the transformation of trees for a single argument that have mul-
tiple arc branches, which may be nested, such as those shown in Figs. 7.5-7.10 and 
Fig. 8.  Transformations of such trees should simply maintain the total effective num-
ber of branches.  For example, in Fig. 17.1 a single branch for the upper sub-tree con-
nects to a sub-tree with three arcs and a sub-tree with two arcs, hence there is a total 
of five branches overall, as shown in Fig. 17.2.  In Fig 17.4 there are three lots of 
three arcs, which may be redrawn as nine branches, Fig. 17.5, or as the recursive ap-
plication of a three-branch sub-tree to a lower level tree with three branches, Fig. 
17.3.  In general, successive sub-trees with multiple branches at different levels are 
multiplied, so as trees with upward pointing arcs represent fractional powers, we 
simply multiply by the appropriate fraction.  In Fig. 17.6 there is a sub-tree with a pair 

a b c b c a 

a!(b+c)     = a!b+a!c       =  a!b+a!c   = a!(b+c) 

b c a b c a 

E8 E8 E0 

1                       2                            3                     4 

No bar!
No bar!

b c a b c a 

a*(b–c) = a*b – a*c -(b+c)/a = -(b/a + c/a) 

b c a b c a 

E8 E8 

a/(b+c) ! a/b + a/c 

b c a b c a 

!"

1                                                            2                                                                 3 

Bar!
No bar! No bar!



of arcs and above another with half an arc (two upside down arcs), thus the total 
number of branches is one, as shown in Fig. 17.7.  Further, the transition from Fig. 
17.1 to 17.2, and from Fig. 17.4 to 17.5 may also be interpreted as multiple applica-
tions of E3, which allows branches to be eliminated from trees.  

 
Fig. 17. Transformation of power expressions 

 
Fig. 18. Transformations to main trunks of equal trees 

Rule E10. So far all the transformation rules have applied to individual trees.  
Consider now the transformation of multiple trees connected by the double horizontal 
line (for algebraic equality).  This set of rules permits the same operation to be ap-
plied to all the trees attached to the double line, with some provisos.  Rule E10.1 al-
lows a horizontal or diagonal bar, or any turn, to be added to the top of both trees, or 
removed from both trees.  Fig 17.1 shows this schematically, where the trees are rep-
resented by the circle and the pentagon and the grey squares stand for the same type 
of bar or number of turns that are to be added or removed: Fig. 17.2 is a particular 
example with diagonal bars.  Rule E10.2 warrants the transformation of a tree with 
the incorporation (removal) of the same branch into both trees, as shown by the dia-
monds in Fig. 17.3 & 17.4.  The one restriction is that the argument must not be a 
zero when the branches are curves, as this could yield trees are not equivalent (e.g., 
2*0=3*0 but 2≠3).  Further, Rule E10.3 states that the introduction of the operator 
must produce trees with equal overall numbers of turns, as illustrated schematically 
by the two grey circles and the two grey semi-circles on either side of Fig 17.5.  Fig. 
17.6 shows an invalid application of Rule E10.3, in which two trees with an equiva-

a! a! a!

a3!a2 = a3+2 = a5 a32
 = (a3)3 = a3!3 = a9 

a! a a a!

(a2)1/2 = a
 

E9 (E3) E9 (E3) E9 E9 
!""""""""""""""""""""""""#""""""""""""""""""""""$""""""""""""""""""%"""""""""""""""""""""""&""""""""""""""""""""""""'""""""""""""("

a!

2                                                                4                                                                      6 

E10!

E10! E10!

E10!
1                                                               3                                                                           5 

E10!

"!#!!

a!
a  !  -a             a2 = (-a)2     

a! a!

| | 



lent number of turns (right) are operated on to produce two new trees that do not have 
equal numbers of turn (left).   

Rule E11. To calculate magnitudes of trees whose leaves are numbers, one may 
simply replace nodes with the number that results from applying the operators to the 
given values.  For multi-level trees the process is performed in a recursive manner 
starting with the leaves. 

Table 1 summarizes the 12 elementary rules for transforming HANDi expressions.  

Table 1. Elementary HANDi transformation rules 

Rule Summary 
E0 Horizontal position of arguments/nodes is arbitrary. 
E1 Swapping a single branch with binary tree involving identities: 

 E1.1) Single branch with no bar, Figs. 4.1-4.5. 
 E1.2) Single branch with a bar, Figs. 4.6 & 4.7. 

E2 Introduce/eliminate an argument with a pair of inverse operators: 
 E2.1) Arc branches, Fig. 4.8  E2.2) Right-angle branches, Fig. 4.9 

E3 Branch insertion/elimination at a node, Fig. 9. 
E4 Equivalence of nested operations on successive single branches: 

 E4.1) Two bars, Figs. 10.2 & 10.3; or two half turns, Fig. 10.4. 
 E4.2) A horizontal bar and half turn, Fig. 10.5. 

E5 Promotion/demotion of bars up/down equivalent branches, Fig. 11. 
E6 Multiplication is repeated addition, Fig. 12.   
E7 Conservation of number of turns with respect to: 

 E7.1) Successive right-angle branches within a tree, Fig. 13. 
 E7.2) Whole tree of arc branches (diagonal bars = subtraction), Fig 14. 

E8 Distribute arc branch over a right-angle tree, Figs. 15 & 16. 
E9 Equality of the total number arc branches for one argument, Fig. 17. 
E10 Operations applied to (removed from) top trunk of equal trees, Fig. 18. 
E11 Replace nodes with values calculated from number arguments. 

4 Derived proofs and composite transformation rules 

The elementary transformations of HANDi diagrams presented in the previous section 
can be applied to derive proofs or generate composite transformation rules.  This sec-
tion considers a few examples. 

Fig. 19 shows the two applications of elementary 
rules: rule E1.1 turns a single branch tree into a binary 
tree by introducing a second arc branch with the number 
1 as its argument; rule E2.1 then converts the 1 into to a 
further binary tree that involves the simultaneous multi-
plication and division of a new variable.  For the pur-
pose of a further example below that uses this deriva-
tion, it will be called composite rule C1.  

 
Fig. 19. Composite rule C1 



Under the conventional approach the notion that addition and multiplication are as-
sociative is typically introduced in as fundamental property of algebraic formulas.  In 
contrast, in HANDi the associative property may be treated as a composite rule that is 
derived from the elementary rule E3, for the insertion or elimination of a branch at a 
node.  Fig. 20.2 may be redrawn as Fig. 20.1 or 20.3 by inserting a new right-angle 
branch to create a sub-tree.  A diagram equivalent to Fig. 20.1-3 may also be drawn 
with arc braches for the associative property of multiplication.  As E3 applies to any 
node, a branch may be inserted into a diagram with bars, for instance as shown in Fig. 
20.4 and 20.5.  However, branches with bar may not be inserted in this fashion, so 
Fig. 20.6 is not a valid transformation of Fig. 20.4 or 20.5: division is not associative.  
A diagram equivalent to Fig. 20.4-6 may also be drawn with right-angle branches 
showing the non-associative property of subtraction.   

 
Fig. 20. Addition (& multiplication) is associative and division (& subtraction) is sometimes  

Fig. 21 shows the proof that subtracting an argument is equivalent to applying the 
negation operator to the argument.  Fig. 21.1 encodes elementary rule E4.2 that states 
that a positive argument is equal to the subtraction of the negative of the argument.  A 
branch with a single horizontal bar may be inserted in both trees according to rule 
E10.2, so that left has one bar and the right has two, as shown in Fig. 21.2.  Now, rule 
E4.1 permits the cancellation of the two bars on the right, so we obtain Fig. 21.3, 
which has just a half turn, the negation operator, to match the bar on the right, as re-
quired.   

 
Fig. 21. Subtraction is equivalent to negation 

The derivation of the product of two sums is shown in Fig. 22.  This proceeds by 
applying the distributive transformation, rule E8, three times in succession.  The parts 
of the diagram that are changed by each application of the rule are highlighted, which 
have the characteristic patterns found in Fig 15.1 and 15.2 (or their mirror image).  In 

a b c a b c a b c 
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the last step of the proof, Fig 22.4 to 22.5, all the unnecessary right-angle branches 
are eliminated, by rule E3, to reveal the four products of the variables.  Of course, one 
may treat Figs. 22.1 and 22.5 as a composite transformation rule that simply says 
draw arc sub-trees for each combination of variables in the two right-angle trees and 
joint them all together with top level right-angle tree. 

 

Fig. 22. Expansion of the product of two sums 

Fig. 23 shows how the sum of reciprocals may be transformed by a diagrammatic 
procedure equivalent to cross multiplication.  The first step is to form a sub-tree for 
each reciprocal in Fig. 23.1 with the variable of the other reciprocal by applying com-
posite rule C1 (defined above, Fig. 19) to give Fig 23.2.  The position of the pair of 
nodes may be swapped (applying rule E0) whilst the variables remain in place to yield 
Fig. 23.3, in which the interchanged nodes have been highlighted.  Rule E3 may now 
be applied twice, as shown in Fig. 23.4, to introduce new branches to separate the arcs 
with bars from the ones without.  As each sub-tree in Fig. 23.4 has branches with 
bars, the bars may be promoted to the next level by applying rule E5 (Fig. 23.5).  The 
pairs of sub-trees in Fig. 23.5 are equivalent, so we have a situation like Fig 16.2 
(right), where the sub-trees here map to ‘a’ in that figure.  Thus, rule E8 may be ap-
plied to coalesce the sub-trees to generate Fig. 23.6.  With a little experience one 
learns to compose steps in similar proofs, for example jumping straight from Fig. 23.4 
to Fig. 23.5 or even to Fig. 23.6.  Again, the initial and final diagrams (Figs. 23.1 and 
23.6) may be treated as a composite transformation rule.   

As a final example, consider how laws of indices may be derived.  Fig. 24 shows a 

a b a b c d 

(a+b)(c+d)     =  a(c+d)+b(c+d)   =   a(c+d)+(bc+bd)         =     (ac+ad)+(bc+bd)       =      ac+ad+bc+bd 

a d b c c d a b c d a b c d 

1                                2                                     3                                            4                                          5  

 E8!  E8!  E8!  E3!

 
Fig. 23. Sum of two reciprocals  



cubed variable divided by the square of the same variable.  The proof simply in-
volves: (i) demoting the diagonal bar on the trunk of the binary tree to its branches by 
applying E5 to give Fig. 24.2; (ii) eliminating branches of the upper tree using E3 
twice, Fig. 24.3; (iii) eliminating pairs of arc branches with and without a bar to give 
branches ending in 1 by applying E2 twice, Fig. 24.4; and, (iv) deleting the branches 
ending in 1 by applying E1 twice, Fig 24.5.  

That completes the introduction of HANDi and its transformation rules. 

5 HANDi design 

The main motivation for the 
creation HANDi was to fur-
ther test Representational 
Epistemic ideas about how to 
design notational systems to 
encode knowledge [1-3].  The 
core claim of this approach is 
that effective notational sys-
tems should directly encode the fundamental conceptual structure of their knowledge 
rich domains, within coherent notational schemes, and thereby possess semantic 
transparency that will enhance problem solving and conceptual learning [1-3].  Hav-
ing presented HANDi in some detail above, this section makes explicit the design 
features of the new notation that attempt to achieve such a direct encoding of the 
knowledge of algebra.   

HANDi attempts to provide a more rational codification than the conventional 
formula notation by coherently encoding fundamental concepts and properties of 
algebra.  The notational schemes used to capture these concepts and properties will be 
considered in turn and contrasted with the conventional approach.   

Representing variables and numbers, and relations among them, is obviously fun-
damental to algebra.  HANDi uses individual sub-trees composed of a node, a trunk 
and branches to encode single relations among arguments.  This is done for two rea-
sons.  First, a sub-tree is an explicit composite iconic symbol that stands for an opera-
tion among arguments, or other sub-trees (Fig. 5).  Second, it is feasible to limit to 
just one instance the occurrence of letter standing for a variable in a tree.  As the con-
ventional notation (largely) relies upon the linear concatenation of symbols to capture 
relations among arguments, multiple occurrences of letters are often necessary, which 
means that the identity of arguments participating in a particular relations cannot al-
ways be read directly from the formula, so detailed examination of the arrangement of 
symbols in the formula is needed to determine the mathematical structure of the ex-
pression.  In cognitive terms, HANDi exploits some of the well-understood benefits 
diagrams (e.g., [4]): information for each and every relation is co-located in the indi-
vidual sub-trees of HANDi and the presence of just one letter for each variable in a 
tree reduces amount of deliberate search that is needed to match symbolic labels.   

 
Fig. 24. Simplifying a power expression 



Relations in algebraic expression are hierarchical, so knowing the specific level of 
sub-expressions is essential to the correct interpretation and transformation of formu-
las.  HANDi specifically uses the network structure of sub-trees, with nodes spatially 
distributed in the vertical dimension, to show the hierarchal structure.  In contrast, the 
conventional notation makes the hierarchical structure of expressions rather opaque, 
because it relies upon nested parenthesis to define sub-expressions or requires the 
reader to mentally apply parsing rules (e.g., “BODMAS”).  Both of these schemes in 
the conventional notational clearly demand more mental effort than the direct visual 
inspection of HANDi expressions (e.g., the levels of the nodes in Fig. 1 is more obvi-
ous than the levels of the expressions in the formulas below the diagram.) 

The four elementary arithmetic operators possess important conceptual similarities 
and differences.  In HANDi the respective shapes of branches, arc versus right-angle, 
captures the similarity between multiplication and division but distinguishes it from 
addition and subtraction.  Bars on branches are not only used to distinguish subtrac-
tion and division from addition and multiplication, but also encode the asymmetric 
nature of the former two operations.  The perceptive reader will have noted that no 
explicit rule relating to the commutative property was included among the elementary 
rules.  The explanation for its absence is that it is built directly into HANDi by the 
particular design of branch shapes and bars.  The benefits of this scheme reach further 
by providing a single definition of the circumstances in which the distribution rule 
holds when subtraction, division and negation operators are present, as shown in Fig. 
16.  Distribution is valid whenever the arc branch above the right-angle tree does not 
have a bar.  For example, the asymmetry of trees determined by the location of the bar 
neatly encodes the validity of the right distribution of division but not the left distribu-
tion (i.e., (b+c)/a, Fig. 16.2, versus a/(b+c), Fig. 16.3].  

Powers and imaginary numbers extend the range algebraic operations.  In the con-
ventional formulas supplementary notation devices are built on top of the basic for-
mulas: superscripts for powers and the ‘i’ symbol as the imaginary unit.  Each device 
has it own particular set of rules.  In contrast, the approach in HANDi is simpler.  To 
encode power relations HANDi exploits the idea that powers are operations that re-
peat multiplication, so the hierarchical network of sub-trees in the diagrams naturally 
encodes repetitions of arc branches at the same level and by recursively spanning 
levels (Fig. 7).  HANDi has a single unified scheme to deal with imaginary numbers 
and negative numbers, Fig. 5, 13 and 14, that builds the fundamental relations that 
exist among positive, negative and imaginary numbers into the design of the notation 
at a foundational level.  In both the case of powers and imaginary numbers, HANDi 
does not require the introduction of unique sets of rules associated with supplemen-
tary notations.   

A potential disadvantage is that HANDi expressions are more complex in terms of 
the sheer number of symbols, when considered at the level of nodes, branches and 
bars.  However, with a little experience one quickly begins to read HANDi expres-
sions at the level of sub-trees or higher, in which case its complexity is comparable to 
the conventional notation.  Taking this notion further, one potentially significant dif-
ference between the two notations, in cognitive terms, is the extent to which HANDi 
may allow its users to exploit perceptual operators to recognize meaningful patterns 



and to make inferences (c.f. [4]).  The primary notational scheme of the conventional 
approach is the linear concatenation of symbols, including parenthesizes, which tends 
to mask characteristic configurations of symbols.  The network structure and princi-
pled design of the symbols (branches, bars, turns) of HANDi aims to provide distinc-
tive patterns to associate with particular concepts.  Thus, many of the HANDi trans-
formation rules involve spotting patterns and drawing new configurations, such as the 
multiple application of the E8 distribution rule in Fig 15.   

It has been argued that HANDi may be a more rational encoding of algebra than 
the conventional formula notation.  However, reactions to a new notational system are 
sometimes negative, for at least two reasons.  First, one may initially feel that HANDi 
expressions are arbitrary and its rules complex compared to the existing formula nota-
tion.  However, such immediate judgments should be treated with caution, because 
one’s relative expertise in the familiar notation masks the effort required to learn the 
notation in the first place, which is what one is experiencing during initial encounters 
with HANDi.  Which notation better supports learning and problem solving is an 
empirical question, so studies to evaluate HANDi are planned.  The second common 
negative reaction is to think that this is not what subject is “truly” about, because 
algebra is the writing and transformation of formulas.  However, this falsely assumes 
that a topic and its notation are inseparable, perhaps because one has only experienced 
algebra in the one notation, and that there is a single valid codification of a topic.  The 
scope of HANDi expressions and rules of derivations presented here provides an ex-
istence proof that an thoroughgoing rigorous alternative codification of algebra is 
feasible.  HANDi is not a mere visualization of the formula notion, but a generative 
notation that re-codifies the content of this topic   This, of course, opens up wider 
epistemic and pedagogic questions that must, unfortunately, be considered elsewhere.  
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