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Abstract.  A structural theory of visual representations and an accompanying 
modelling notation are outlined.  The theory identifies three types of fundamental 
representational components, specified as cognitive schemas, that span internal 
mental and external physical aspects of representations.  The structure of diverse 
and complex example representations are analyzed.  Twenty-three requirements 
that a general theory of representations must address are presented.  The new 
theory satisfies the large majority of them.  The theory and notation may provide 
a basis for future methods to predict the efficacy of representations.   

Keywords: Representations, structural theory, compositional analysis, dia-
grams, notations, cognitive explanation.   

1 Introduction 

This sentence that your eyes are running over is a representation.  Figures 1, 2 and 3, 
which are explained in section 2, are other representations.  The set of numbers that 
index the section and subsection headings here is yet another.  All these examples are 
different, but they are but a small sample of the vast diversity of existing visual repre-
sentations.  What do all representations have in common that makes them representa-
tions?  How do they differ as representations irrespective of the domains they encode?  
Being able to answer these questions will allow us to study representations more sys-
tematically than is possible currently, and in the future to ask hard questions such as: 
How can we choose representations to suit individuals with different levels of domain 
knowledge and experience of representations, for specific problems, in particular do-
mains [24]?  How can we systematically invent novel representations [7]?   

The nature of representations is an enduring and important subject for study.  Clas-
sifications and taxonomies of representations have been proposed [18, 10, 11].  Ac-
counts of representations have been given in terms of formal attributes using formal 
languages [1, 13, 20, 23, 27, 28], cognitive properties [4, 8, 14, 17, 19, 23], graphical 
or perceptual attributes [2, 8, 29], and properties of information [5, 10, 21, 32, 33, 34].  
For sake of illustration each reference has been exclusively cited in just one of the in-
formal categories above, but many of them span multiple categories.  See [3] for a meta-
taxonomy of representation classifications.   
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Despite the numerous accounts of representations, none appears sufficient to address 
even the first set of challenging questions posed in the first paragraph.  None have the 
scope to systematically analyze any representation, for any domain, and at any level of 
user competence.  Thus, the first aim of this paper is to specify a set of characteristics 
for a general and operationalizable theory of representations; a set of stringent require-
ments that an adequate theory must satisfy (section 3).  The second aim of the paper is 
to outline a cognitive theory with an accompanying modelling notation for the analysis 
of notations and visual representations (section 4).  The theory posits three fundamental 
representational components from which all representations are built.  An demonstra-
tion of the utility of the theory and notation is provided (section 4) by using them to 
analyze the structure of the diverse examples of representations to be introduced in the 
next section.  The potential uses and limitations of the theory and notation are discussed 
at the end (section 6).   

2 Sample representations 

Here are some representations to serve as ongoing ex-
amples in the following sections.  

Simplest representations.  Fig. 1 shows some ele-
mentary representations.  Fig. 1a is a smiley from early in the history of email before 
the idea of a meta-comment on some text was extended to a whole range of emoticons 
(Fig. 1e).  Fig. 1b is a red dot on the frame of a painting in an art gallery indicating that 
it has been sold.  Fig. 1c was printed on a flier to capture peoples’ attention.  Fig 1d is 
one set from a Venn diagram.  Fig. 1f is a piece of litmus paper whose purple end 
registers a pH of 9.  Fig. 1g is a fuel gauge whose segments show that the tank is 4/10ths 
full.  Fig. 1h is an intersection of a two set Venn diagram.   

Equation representation.  Fig. 2 is the formula for the roots of the quadratic equation.  
It is primarily a sentential representation, a linear concatenation of symbols, that en-
codes mathematical meaning through the chosen symbols and syntactic rules.  Note that 
it has multiple occurrences of some variables and that it encodes two solutions.   

Thermodynamics graph.  Fig. 3 is a “monster” representation that engineers use to 
understand how the Second Law of thermodynamics determines the efficiency of steam 
engines [12, 25].  It is a graph with axes for entropy, s, temperature, T, and pressure, P.  
Under different conditions water will be liquid, vapour or a mixture of the two.  The 
bell curve, or saturation dome, marks the transition between these states.  Under the 
saturation dome, the dryness fraction, x, gives the proportion of vapour to liquid.  The 

 
Fig. 2. Solutions to the quadratic 

equation. 
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Fig. 1. Simple representations: (a) original smiley; (b) painting sold (c) “look there”; (d) set 

A; (e) modern emoticon; (f) litmus paper; (g) fuel gauge, (h) intersection of two sets. 
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operation of steam engines (running Rankine cycles) are shown by the dashed rectan-
gles.  Each side of the rectangle stands for a thermodynamic process: 1-2 – pressurizing 
the mixture so it all turns to liquid; 2-3 – heating the water until it is all vapour; 3-4 – 
heat in the vapour is transformed into mechanical energy by a turbine, which turns the 
vapour back in to a mixture; 4-1 – further heat is released in a condenser to turn most 
of the vapour back in to liquid, so the cycle can repeat.  From the Second Law we can 
determine the efficiency of a cycle in two ways.  First, the energy put into the water by 
heating is given by the area under line 2-3 (down to T=0 K) and the heat extracted in 
the condenser is the area under line 4-1, so the energy produced by the engine is the 
area of the rectangle, hence the efficiency is that area divided by the total heat input, 
the area under line 2-3.  The second way to compute efficiency is to divide T2-T1 by T2, 
which can be computed by comparing the length of line 1-2 with the altitude of T2.  

 
Fig. 3.   A monster thermodynamics graph. 

3 Criteria for a theory of representation structure  

What should a general broad scope theory of representations encompass?  Five groups 
of requirements that a structural theory should address are considered, ranging from 
fundamental properties of representations to pragmatic concerns about their utility.  
Some of these are implicit common assumptions or just basic tenets of good science, 
but where they are explicitly identified in the literature references are given.   

3.1 Fundamental requirements 

These aspects are essential things that a theory must encompass, such that in their ab-
sence we would not consider the theory to be an account of representations. 
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R1. Represented world: a representation encodes knowledge about some domain, a 
represented world, including general information about objects, properties, val-
ues and relations.  [22] 

R2. Representing world: a representation has graphical parts, including icons and 
words, that do the encoding of the things from the represented world.  [22] 

R3. Compositional structures: represented and representing worlds are typically rich 
compositional structures, which are often hierarchical.  [16] 

R4. Semantics: a representation represents, so knowing the encoding relations be-
tween the things in the represented and the representing worlds is critical.  [26] 

R5. Syntax: a representation has rules that govern the valid configurations of graph-
ical parts that are potentially meaningful.  [10] 

R6. Supplementary structure.  A representation may include graphical parts that are 
not intended to encode domain information, and not covered by the representa-
tion’s syntax, but are an integral part of the representing world for practical rea-
sons (e.g., the typeface of this text and locations of the line returns).   

3.2 Interpretation requirements 
This set of requirements concerns the rich ways in which a representation may encode 
meaning, and constraints on such encodings, that a theory must recognize.   

R7. Parsimony: the theory should propose a small number of types of components 
that should be the same across all classes of representations.   

R8. Multi-level interpretation: as representations are compositional, their meaning 
can be interpreted at multiple levels; from domain elements, represented by 
graphic elements, through to high level general abstractions, represented by com-
plex expressions.  [1, 6] 

R9. Alternative interpretations: representations can support interpretations from dif-
ferent perspectives depending on the user’s goals and knowledge [14]: e.g., one 
may view a representation as a composition of its components, or one may think 
of mutually interacting constraints among components.   

R10. Alternative representations: a domain may be encoded in representations with 
different structures (e.g., 24 hour versus AM/PM time of day formats).    

R11. Alternative domains: the same representation may be used to encode quite dis-
tinct domains (e.g., mathematics is a domain general representation).   

R12. Cognitive theory compatibility: for human users of representations, a theory of 
representations must be compatible with our knowledge about human cognition 
in general, including perception, memory, thinking and learning.   

R13. Theories about information and knowledge: a theory of representations should 
be compatible with accounts of the nature of particular kinds of information and 
knowledge; e.g., Steven’s [31] analysis of quantity scales.   

3.3 Scope of theory requirements 
These are requirements about the coverage or scope of a theory of representations. 

R14. Representation scope: a theory should cover all types of representations, alt-
hough, below we focus on static visual notations and diagrams.  
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R15. Domain scope: a theory should address representations from any domain. 
R16. Complexity: a theory should span representations of all degrees of complexity; 

e.g., from Fig. 1 to Fig. 3, and beyond.   

3.4 Existing representational theory requirements 
This single requirement recognizes that much has been discovered about the nature of 
representations, some empirically verified.  So, a theory must either make equivalent 
predictions about previous findings or be able to interpret such existing accounts. 

R17. Embody existing theories.  Three illustrative examples: Locational indexing: Di-
agrams are (sometimes) superior to sentential representations, because they use 
spatial associations to establish relations among elements [16].  Isomorphism: 
prefer representations that use just one distinct symbol in a display to stand for 
one distinct domain concept (i.e., isomorphic) rather than one-to-many or many-
to-one mappings [1, 13, 21, 32].  Separable dimensions: favour visual properties 
that are naturally separable, because they depend upon different perceptual pro-
cesses and so demand less conscious effort to distinguish [33]. 

3.5 Utility requirements 
This final set considers features expected of a valuable and effective theory. 

R18. Explanatory: the theory should provide analysis of representations that predict 
their likely efficacy and explain why they are so or otherwise.   

R19. Design patterns: the theory should identify general patterns of representational 
structures that serve similar functional roles, because they encode similar types 
of concepts in equivalent ways.   

R20. Precise components: the components of the theory should be well-defined and 
clearly distinct from each other.   

R21. Precise sub-components: similarly, subclasses of components should be well-
defined and clearly distinct from each other.   

R22. Analysis rules: clear operational rules to guide the analysis of representations 
should be provided.   

R23. Functional components: the theory should readily identify those components of 
a representation that are core to its function as a representation, in contrast to 
superfluous decoration or “chart junk”.   

In what follows, numbers in curly brackets, e.g., {R23}, refer to specific requirements.   

4 Structural theory of representations and modelling notation 

The proposed theory draws its inspiration from molecular theory in chemistry that ex-
plains the diverse properties of countless substances in terms of structures composed of 
distinct elements.  What are the representational elements – fundamental components 
– and how are they combined in representational molecules – representational struc-
tures {R3}?  Three types of fundamental components are proposed {R7}.   
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4.1 Preliminaries  

Before introducing the components, this sub-section gives some terminology.   
A topic is some part of a larger knowledge domain pertaining to a task on which a 

user is working with a representation {R1}.  The thermodynamic power cycles of a 
particular type of heat engine is the topic of Fig. 3.  Not all the concepts of the topic are 
necessarily encoded in the representation.   

A display is the external part of a representation in some physical medium, such as 
print on paper, pixels on a computer screen, or the raised lines on a tactile graphic {R2}.   

A concept is an idea, fact, category, property, or value of a property from the topic 
{R1}.  Ideas include things such as laws, classifications schemes, constraints, prototyp-
ical and extreme cases, which may be complex and hierarchically structured.   

A schema is a mental cognitive structure that encodes categorial information as a 
collection of slots, variables, that contain fillers, values [26].  The set of slots defines 
the category and a specific set of fillers instantiates a particular instance of the category.  
Schemas are widely used in cognitive science to explain how the mind systematically 
stores and organizes knowledge [26].  Specialized schemas are used for reasoning in 
domains that combine both propositional and diagrammatic information [6, 15].  The 
present theory generalizes the idea of such schemas to all representations {R12}.   

Graphic-objects and properties are visual entities that a viewer of a display takes as 
separate things or features of the display.  Elementary graphic objects are established 
by our perceptual systems (visual or haptic).  Parts of graphic objects may themselves 
be graphic objects {R7, R8}; e.g., the dryness axis is that part of the P curves that are 
under the bell curve in Fig. 3.  Graphic objects may be composites; e.g., an axis com-
prises a scale, tick marks and labels.  Similarly, different features of a graphical object 
may represent different concepts {R7, R8}; e.g., the height of a rectangle in Fig. 3 is a 
temperature difference and its area is an amount of heat.  The relative height of the two 
rectangles, with conscious effort, may be interpreted as a composite graphic object.   

4.2 Representational components 

Tokens, Representation-dimensions (R-dimensions), and Representation-schemes (R-
schemes) are the three proposed types of components {R7}.  The fundamental function 
of these components is to encode and associate information about the target domain and 
about the display.  Each is specified as a schema {R9, R12} and are represented, re-
spectively, in the modelling notation by particular shapes, Figs. 4b, c, & d.  The tablet 
shape icon stands for a whole representation; Fig. 4a.  Again, the main purpose of all 
three components is to coordinate {R4} things from the represented world {R1} with 
things in the representing world {R2}.  The form of the component icons reflects this 
fundamental idea: the top label of each icon names the encoded concept and the bottom 
label names the encoding graphic object (or property).   

 
Fig. 4.  Icons for (a) representations, (b) Tokens, (c) R-dimensions, (d) R-schemes, (e) multiple 

Tokens, (f) multiple R-dimensions.   
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A Token is a “fixed” component that 
pairs (A) one concept and (B) one 
graphic object.  It’s icon is lozenge 
shaped, Fig. 4b.  Examples include: (i) 
Figs. 1a-d and their associated concepts; 
(ii) a letter and its domain variable (e.g., 
T – temperature); (iii) a rectangle and a 
cycle in Fig. 3; (iv) the whole equation in 
Fig. 2 and two quadratic equation solu-
tions; (v) in Fig. 1h, the middle zone of the Venn diagram and an intersection.  

A Token schema has seven slots.  One pair of slots is for the concept and the graphic 
object {R4}.  Three slots hold Tokens, R-dimensions and R-schemes that are directly 
associated, children, of the Token.  This captures local connections that on the large 
scale define the overall network structure of components {R3} (see below).  The other 
slots differentiate further features of a token {R21}.  The function slot specifies the role 
of the token in the representation.  A semantic filler means that the Token encodes a 
domain concept.  A Token whose function is to pragmatically aid the interpretation of 
the representation but is not itself semantic has auxiliary as a filler {R6}: e.g., commas 
grouping triplets of digits in long numbers; the size and position of circles in a Venn 
diagram (whereas an overlap of circles is semantic).  An arbitrary filler indicates the 
Token is neither semantic nor auxiliary, so merely serves a decorative or aesthetic pur-
pose.  In an icon for a concept-less Token, the concept label is replaced by a ‘##’ sym-
bol.  The explicit slot specifies whether a Token’s graphic object is physically present 
in the display or is to be imagined by the user; e.g., envisage a new P curve in Fig. 3 
between a pair of printed isobars.  In icons for such imagined concepts, a ‘##’ symbol 
is used in place of a label to denote the absence of a graphic object.   

A Representation-dimension (R-dimension) is a component that deals with “vari-
ation” in a class of Tokens.  It pairs (A) a concept that can take alternative values of 
one domain property with (B) some means of encoding alternative values {R4}.  The 
R-dimension icon is a trapezium, Fig. 4c.  R-dimension examples include: (i) pH values 
as colours; (ii) metered quantities as numbers of bars on a scale, Fig. 1g; (iii) alternative 
emotions depicted by different emoticons; (iv) the basic relations between sets encoded 
by spatial configurations of circles (separate, overlapping (Fig. 1h), embedded); (v) 
values of some property as a x-coordinate (horizontal) position in a graph; (vi) quanti-

ties of energy as areas 
of rectangles in Fig. 3; 
(vii) a list of some facts.   

The R-dimension 
schema has eleven 
slots.  The first three 
concept slots name the 
concept, specify its type 
of quantity scale, and 
give selected attributes 
of the quantity {R1}.  

Concept: 1 object, instance or value 
Graphic: 1 graphic object 
Function: semantic, auxiliary, arbitrary 
Explicit: yes, no 
Tokens: 0 or more  
R-dimensions: 0 or more 
R-schemes: 0 or more 

Fig. 5. Token schema.  Slot names in bold. 
Names of specific fillers in italic.   

 

Concept: domain property 
Concept-scale: nominal (N), ordinal (O), interval (I), ratio (R) 
Concept-attributes: e.g., max, min, magnitude range, % 
Graphic: graphic property, axis, sub-notation (see text)  
Graphic-scale: nominal (N), ordinal (O), interval (I), ratio (R) 
Graphic-attributes: e.g., graphic range, type (linear, logarithmic) 
Scope: global, local 
Function: semantic, auxiliary, arbitrary 
Explicit: yes, no 
R-dimension: 0 or more R-dimensions as sub-dimensions 
Tokens: 1 or more 

Fig. 6. R-dimension schema.  Specific fillers values in italic.   
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Three matching graphic slots do the same for the means of encoding {R2}.  For a con-
cept-scale or graphic-scale slot, the fillers are one of Steven’s [31] types of quantities: 
in the icon the letters following the concept and the graphical object names give the 
scale type (i.e., replace S in Fig. 4c, with N, O, I, or R).  The scale types of the concept 
and graphical object may differ.  Forms of encoding may be graphic properties and also 
more complex graphic structures, such as an axis of a Cartesian graph or a sub-notation 
(e.g., a numeration system or an indexing scheme) {R5}.   

Three further slots are used to define types of R-dimensions {R21}.  The function 
slot is the same as the function slot in the Token schema; for example, position in a 
simple unordered list is an auxiliary R-dimension, because positions merely differenti-
ate Tokens but do not encode a domain concept.  The function slot is important because 
it has a key role in distinguishing sentential from diagrammatic representations (see 
below).  The explicit slot specifies whether the R-dimension is physically represented 
in the display or must be imagined; e.g., no fills the slot for the R-dimension standing 
for areas beneath curves in Fig. 3, because the origin of the T axis is below the s axis 
scale.  The scope slot specifies whether the R-dimension covers the whole display or is 
more localized (e.g., in Fig. 3, T, s, and P are global, whereas x is local).  The Token 
slot holds at least one token whose value is encompassed by the R-dimension.  The R-
dimensions slot identifies any subparts of an R-dimension that happen to be specifically 
meaningful (e.g., the excess revs red zone of a tachometer.) 

A Representation-scheme (R-scheme) is a “structural” component that pairs (A) a 
conceptual structure of the domain with (B) a graphical structure that is more complex 
than an R-dimension.  Examples of R-schemes include: (i) a graph co-ordinate system 
(e.g., in Fig. 3 T-s is Cartesian); (ii) a table’s grid of rows and columns; (iii) Hindu-
Arabic numbers that exploit digit position as power and digit shape as numerosity [33]; 
(iv) the coordination of labels and zones in a Venn diagram (e.g., Fig. 1h); (v) the com-
bination of location and shapes of icons in a map; (vi) multi-dimensional index systems 
(e.g., Library of Congress book classification scheme).  

The R-scheme icon is rectangular, Fig. 4d, and its schema has nine slots.  The con-
cept-structure and graphic-structure slots name their respective target structures {R4}.  
Again, the schema has function, scope and explicit slots that are equivalent to those 
slots in R-dimensions {R21}.  The Tokens, R-dimensions, and R-schemes slots hold the 
constituents of the R-scheme.  The relations among an R-scheme’s components may be 
complex, so the names in the concept-structure and graphic-structure slots are pointers 
to descriptions of them (e.g., in the modelling notation or text).  The Organization slot 
contains a description of how con-
cept structures and graphic struc-
tures are related {R4}.  A R-
scheme cannot contain a single R-
dimension alone; it would be an R-
dimension.  An ordered list is an R-
scheme, because it combines a cat-
egorical R-dimension to identify 
different items with an ordinal R-
dimension for the priority of the 

Domain-structure: relations among domain concepts 
Graphic-structure: graphical structure 
Function: semantic, auxiliary, arbitrary 
Scope: global, local 
Explicit: yes, no 
Tokens: 0 or more 
R-dimensions: 2 or more, 1 if also ≥1 Tokens 
R-schemes: 0 or more 
Organization: specifies relations among components 

Fig. 7. R-scheme schema. 
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items.  The reading directions of text, such as 
top-to-bottom then right-to-left in traditional 
Chinese, is an auxiliary function R-scheme.   

4.3 Modelling notation 

The modelling notation supports the explica-
tion of the relations between Token, R-di-
mensions and R-schemes through the con-
struction of network diagrams to show their 
organization {R3}.  A tablet icon for the rep-
resentation tops what is generally a tree-like 
structure.  Below each icon for a schema, further schema icons are drawn for the con-
tents of its Token, R-dimension and R-scheme slots.  Imagine a simple a bar chart for 
income in three age bands: Fig. 8 shows one possible interpretation of its structure.  
Below the representation icon, Fig. 8 (a), it possesses an R-scheme (b) that is a bar chart 
assembly for data.  The graph has a coordinate system R-scheme (c1) in which data 
values, drawn from a nominal scale R-dimension (c2), are plotted.  The coordinate sys-
tem has an ordinal scale R-dimension for age-bands (d1) and a ratio scale R-dimension 
for income (d2).  The bars for three cases are the Tokens (e1-e3).  Fig. 8 may be viewed 
as a design pattern for this class of representations {R19}. 

For compactness in the diagrams, multiple instances of Tokens or R-dimensions of 
the same kind may be represented with a dashed perimeter, Figs. 4e & 4f, and an ex-
pression (replacing n) indicates the number of instances.  For complex domains, addi-
tional information, not defined in the schemas themselves, can be encoded using sup-
plementary notational elements between icons as required (see below).   

4.4 Analysis guidelines 

From the experience of analyzing more than a dozen disparate representations, here are 
ten representation analysis guidelines: a step towards {R22}.  (1) Consider a target user 
with a particular level of knowledge of the domain and a certain degree of experience 
of the class of representation in question.  (2) From the perspective of the target user, 
catalogue domain concepts noting the levels of abstraction and granularity at which 
they occur, in particular what concepts are fixed and variable things, and what concepts 
are relations.  (3) Select typical examples of displays appropriate to the competence of 
the target user.  (4) Catalogue all the graphical parts of the display that have semantic 
and auxiliary functions, plus any other parts that may be arbitrary but important; for 
instance, because they are likely to be misconceived by target users.  (5) Using the two 
catalogues, define schemas for Tokens, including those at higher levels of abstraction 
or granularity.  (6) From the list of Tokens and the catalogues, specify R-dimensions 
for sets of similar tokens, paying special attention to concept-scale and graphical-scale 
slots of the schemas.  Unless a token is solitary and stands for an unvarying concept, it 
will be an instance of some R-dimension.  (7) Identify the R-schemes using two ap-
proaches.  (a) Propose configurations of R-dimensions, perhaps with anchor Tokens, 

 
Fig. 8.  A sample representation structure. 

Income profile
–––——
Bar chart

Age-income
—————

Coordinate system

Age-bands, O
———

X-axis, O
Income, R

———
Y-axis, R

Elderly-£8k
–––––—
Right bar

Adult-£20k
–––––—

Middle bar
Teen-£1k
–––––—
Left bar

Data points, N
———
Bars, N

Age-income-data
—————
Bar chart

a

b

c1

c2
d1 d2

e1 e2 e3



10 

for the primary conceptual relations of the topic, such as its sets of underpinning laws.  
(b) Sets of R-dimensions, and Tokens, with strong conventional associations may con-
stitute R-schemes.  (8) Alternate between bottom-up composition from Tokens and top-
down decomposition from R-schemes {R8}.  (9) In a drawing package, construct a 
model with icons for each schema, whilst iteratively working through steps (1) to (8).  
(10) Revisit steps (1) and (3) in order to explore alternative interpretations of the rep-
resentation.  Consider the overall coherence and parsimony of the structures in order to 
judge the plausibility of particular interpretations {R9}.   

The next section analyses the representations presented in section 2.    

5 Examples analyzed 

The structures of the examples are modelled in fine detail to demonstrate the rigour of 
the theory and utility of the notation.  However, the reader need not track all the tech-
nicalities of the analyses in order to follow the discussion of the implications below.   

5.1 Icons and indicator scales 

The representations in Fig. 1 are simple.  In the historical context of its first use as a 
meta-comment on some text, the smiley was just a Token without a R-dimension as no 
other types of this Token existed.  The later coining of related emoticons created an R-
dimension.  In their typical use, “sold” dots (Fig. 1b) are also Tokens, because alterna-
tive colours are not used for “unsold” or “under offer”.  Figs 1c, d, f, & g have R-
dimensions that, respectively, vary across (c) gaze direction and pupil position, (d) sets 
& labeled circles, (f) pH and colour, and (g) fuel level and number of bars.  Fig. 1h is a 
Token with an R-dimension for set relations encoded by degrees of overlapping circles, 
and in turn is a part of a larger R-scheme for sets and Venn diagrams.   

5.2 Equations 

Fig. 9 is a representation structure model for Fig. 2, assuming a user who is competent 
in mathematics.  The representation icon is located at C1 in the figure’s coordinate 
system.  Overall, the model encodes the idea that the equation is a sentential represen-
tation based on a linear concatenation of symbols.  Nested R-schemes encode succes-
sive layers of expressions that includes R-dimensions and Tokens for mathematical op-
erators, variables, numbers and signs.  The overall equation consists of a left hand side 
(LHS) formula, the equals sign, and a right hand side (RHS) formula, which are en-
coded by a R-scheme (B3), a Token (C3) and another a R-scheme (F3), respectively.  
The arrow (D3) indicates the nodes below are ordered.  The LHS formula is an elemen-
tary expression (Elem exp) (B3) consisting of a R-dimension for a sign (A4-5) and a R-
dimension for a variable or number (Var/num) (B4-5), in this case x.  An additional R-
scheme for two subscripts that identify alternative solutions is anchored to the x Token 
(B6-C8).  The comma between the numbers is an auxiliary Token (B7).   
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The equation’s RHS is a formula R-scheme (F3), whose LHS is another elementary 
expression R-scheme (D4-E6).  Unusually, the operator of the RHS formula’s is not a 
Token but a R-dimensions (F4) because it provides options of plus or minus Tokens 
(F5, G5).  The RHS of the formula is a R-scheme (I4) and notably includes a Token for 
the square-root that anchors 
another formula R-scheme 
(H6).  The rest of the de-
composition follows in a 
similar fashion.  

Some noteworthy fea-
tures of the model include: 
(i) the large number of R-
schemes; (ii) ##s note the 
absence of graphic objects 
for the multiplication (×) 
Tokens (e.g., K6); (iii) sev-
eral concepts are repre-
sented multiple times as de-
noted by the dotted lines.   

A key feature of the the-
ory and notation is its abil-
ity to support alternative in-

 
Fig. 9.   Representation structure diagram for the equation in Fig. 2 (repeated top right).   
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Fig. 10. Representational structure of equations. 
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terpretations of a representation {R9}.  To illustrate this, Fig. 10 gives a representation 
structure diagram for algebraic equations that abstracts away from all the detail in Fig-
ure 9.  The overall structure is a tree whose leaves are Tokens for variables, numbers, 
signs (+/-), or operators.  Nodes are R-schemes for expressions or R-dimensions for 
those Tokens.  The top level R-scheme (F2) encodes the relation between two formulas 
encoded as R-schemes (D3, G3).  Various graphical devices are used to concisely en-
code expressions and recursive structure.  A pair of *s on a left branch (E3) and on a 
corresponding right branch (G3) of a node indicates that the structure on the left is 
repeated on the right (similarly, C4–F5).  The loops from the bottom of a R-scheme to 
its top (C3-4, E3-4) signify the potential for building expressions recursively.  The pos-
sible relations between the equation’s formulas are held in a nominal R-dimension (F3) 
and one is the chosen Token (F4).  The description of the rest of the model is similar to 
the lower parts of Fig. 9.  Overall, the model captures the idea that equations may be 
described by a generative set of syntactic rules {R5} .   

5.3 Thermodynamics graph 
Fig. 11 is the model for Fig. 3.  It assumes a user whose is familiar with both thermo-
dynamics and power cycle property graphs.  The primary R-scheme (C2) is a x-y-z 
graph coordinate system, consisting of ratio scale R-dimensions for variables T, s and 
P (B3, D3, E3), in to which data point Tokens are plotted from a nominal scale R-
dimension (A3).  The P z-axis is encoded by the isobar curves.  Vast numbers of Tokens 
for data points are depicted in Fig. 3 (A4) but just two are specifically noted (C4, D4).  
The saturation curve, bell dome, is a Token (G4) composed of many data points.  The 

 
Fig. 11.   Representational structure of the thermodynamics graph in Fig. 3.  
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thick arrow to that Token specifies that it, and subsequent components, inherit all the 
structure of the T-s-P R-scheme.  The dome (G4) and critical point (D4) are anchor 
Tokens for two local nominal R-dimensions (C6, J4).  The first of these R-dimensions 
(C6) encodes state transitions and has two Tokens for the liquid (B7) and the vapour 
boundaries (D7).  In turn, these Tokens serve as anchors for a nominal scale R-scheme 
(C8), which has four tokens for the states themselves (A9-E9).  One of those Tokens, 
the mixture Token (C9) is an anchor for the local ratio scale dryness fraction R-dimen-
sion (C10) and its many possible values (BC11).   

The second R-scheme (J4), anchored by the saturation dome, encodes the two power 
cycle Tokens (J5).  Two cycles are presented so that efficiencies can be compared.  An 
R-scheme (J6) is attached to both cycles, which has three R-dimensions for quantities 
of energy (G7), process stages (J7) and transitions between those stages (M7).  The 
process stage R-scheme provides four Tokens (H8-L8).  The ordinal scale transitions 
R-scheme has four Tokens (I8).  Areas defined by the energy ratio scale R-dimension 
(G7) and certain process Tokens definer quantities of power, W (F9), and heat, Q (H9).  
From these an efficiency ratio scale R-dimension (G10) is defined and Tokens for effi-
ciency are given (G11).  Further, from just two of the process Tokens (J8, L8) another 
efficiency R-dimension (K9) is defined on the basis of temperature differences.  The 
two efficiency values (G11, K10) are equal, shown by the grey dotted line.    

Fig. 9 is complex because Fig. 3 is complex, but the model reveals interesting things 
about that complexity.  First, Fig. 3 is actually relatively simple as it has only two R-
schemes compared to the quadratic solution’s nine (Fig. 9).  Second, it is a relatively 
coherent representation: the global coordinate system permeates nearly all aspects of 
the representation, with all graphical objects interpretable in terms of T, s and P.  Fur-
ther, the second, local, R-scheme is fully embedded within that main coordinate system.  
The diagram has multiple R-dimensions for specific aspects of the topic but mappings 
between the concepts and graphic elements is isomorphic.  A seeming exception is the 
efficiency of the cycles, the dotted line between two Tokens (G11-K10).  However, 
they and their R-dimensions refer to two quite different ways to compute thermody-
namic efficiency from the Second Law.   

6 Discussion 

A theory of representational structure has been proposed with an accompanying mod-
elling notation.  The theory is novel in various respects.  First, it proposes that all rep-
resentations are built from just three core components.  The fundamental function of 
these components is representational: they serve to integrate domain concepts with 
graphical structures.  Second, the theory focuses on modelling the multi-level structure 
of representations as relations among Tokens, R-dimensions and R-schemes, rather 
than positing properties of whole representations as has been common in the literature 
[e.g., 18, 27].  The guidelines in section 4.4 suggest the possibility of developing sys-
tematic approaches to the analysis of representations supported by software tools.  
Third, in contrast to other approaches that focus on the formal or computational analysis 
of representations in terms of the composition of basic graphic elements [e.g., 20, 28], 
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the components proposed by the present theory are cognitive schemas posited as psy-
chological entities, whose existence and impact might be empirically tested [e.g., 19, 
15, 23].  Further, the present theory occupies the middle ground between descriptive 
classifications and formal accounts, whilst being usable without extensive formal train-
ing.  Fourth, the scope of the theory is intended to cover all representations of any com-
plexity {R16}, from any knowledge domain {R15}, and in any type of format or display 
{R14}.  Fifth, the theory can be used to model alternative interpretations of representa-
tions for users with differing levels of domain knowledge and familiarity in specific 
graphical formats, rather than providing a single canonical characterization {R9}.   

The theory and notation appear to satisfy most of the 23 requirements given in sec-
tion 3, so it might be superior to previous accounts.  A definite assessment demands a 
systematic review of the previous theories in terms of the requirements.  The satisfac-
tion of the requirements by the theory may partially be attributed to the compositional 
structural approach using just three core cognitive components that are fundamentally 
defined as things that represent.   

The examples above suggest that the theory and notation may provide a means to 
systematically contrast disparate representations across classes of format.  For instance, 
the above examples allowed us to compare the relative complexity of a diagram and 
sentential representation that are not informationally equivalent (cf., [16]).  Although 
the formula is simpler graphically than the thermodynamics graph, the latter is simpler 
and more coherent in various ways.  (1) It employs just two R-schemes rather than the 
equation’s nine.  (2) All of its concepts are explicitly represented, whereas some of the 
equation’s graphic objects are absent from its Tokens.  (3) The equation has multiple 
Tokens for some concepts, whereas the graph is desirably isomorphic {R17}.   

The author has applied the theory and notation to over a dozen other representations, 
with interesting results.  For example, revisiting Larkin and Simon’s [16] seminal work 
by modelling their alternative representations for the pulley system problem, reveals 
that although the depth of the sentential representation’s structure is similar to that of 
the diagram, it is branchier and composed of more R-schemes.  This observation might 
yield a complementary explanation to the benefit of diagrammatic representations: they 
demand fewer R-schemes than sentential representations.  This mirrors the observed 
contrast between the quadratic solution equation and the thermodynamics graph.   

The representation structure diagram reveals the hidden complexity of Fig. 2, of 
which someone proficient in algebra may no longer be consciously aware.  Fig. 9 could 
serve as a guide to an instructor of all the features of the equation that must be explained 
to learners.  Similarly, Fig. 11 might be used to guide instruction on Fig. 3. 

Analysis of further representations by others is required to fully evaluate the utility 
of the theory and notation.  In particular, are the three proposed components sufficient 
and are their slots necessary and sufficient?  The “sketch” in the title acknowledges that 
the theory has only been outlined here: some aspects of the theory and notation need 
further development.  The compatibility of the theory with existing theories about the 
efficacy of representations must be established {R17}.  For example, considerations of 
isomorphism [13, 21] can be examined through occurrence of repeated Tokens and by 
the presence of components with concepts but no graphic objects, and vice versa.   
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Finally, it is noted that the theory and notation may be able to address theoretical 
implications about the cognitive cost in representation choice {23}, or might be used to 
investigate how alternative representations might impact learning.  The relative number 
of R-dimensions and R-schemes, whether models are simple hierarchies rather than 
more complex networks, and the extent use of auxiliary R-schemes and R-dimensions 
are potential avenues for exploration {R6}.   
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