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1  INTRODUCTION

Scientific discovery is a highly creative human endeavor well worth studying as an
example of creative cognition.  There is substantial research interest in the nature of the
processes of scientific discovery in cognitive science, many empirical investigations have been
undertaken, and numerous computational models have been constructed.  Langley et al. (1987)
have argued that scientific discovery can be viewed as problem solving by heuristic search and
in a series of simulation programs have shown how laws can be discovered inductively under
this conception.  Cheng (1992a) reviews the many different computational discovery systems
that now exist, and Shrager and Langley (1990) and Zytkow (1992) contain papers describing a
broad selection of the recent and current computational research.  The empirical work has
studied how subjects make discoveries in different simulated discovery environments; for
example, Klahr & Dunbar (1988), Qin & Simon (1990) and Schunn and Klahr (1992).
Gorman (1992) considers the empirical studies from the perspective of falsification in
discovery.

Although much has been learned about the processes of scientific discovery there are
aspects that still remain to be examined.  One of these is the role of multiple representations and
diagrammatic representations in discovery.  Shepard (1978, 1988) describes many examples of
creative imagery from the history of science and considers some of the developmental factors
that may be associated with the power of imagery.  Existing computational models and
empirical work have tended to focus on discoveries made with a single non-diagrammatic
knowledge representation despite the ubiquity of diagrams in scientific reasoning and discovery
and the wide acknowledgement of the need to examine the role of diagrammatic representations
(e.g., Langley at al., 1987; Shrager & Langley, 1990; Cheng, 1992a).  Research on multiple
representations and diagrams in discovery is still rather novel, even though there has been
significant progress on reasoning with diagrammatic representations more generally (e.g.,
Novak, 1977; Larkin & Simon, 1987; Larkin, 1989; Koedinger & Anderson, 1990; Tabachneck,
1992; Qin 1992; Narayanan, 1992).  With respect to discovery, Shrager (1990) has produced a
computer program that uses diagrammatic and propositional representations as two different
modalities that are grounded on sensory experience, to demonstrate his theory of common
sense perception.  Theory formation in this view employs processes that work within and
between the different modalities to compare and combine information in the different
representations.  

Our own work has investigated the role of discovery with diagrams in early physics.
Cheng (1992b) demonstrates the computational benefits that Galileo achieved in his kinematic
discoveries with diagrams over a more conventional approach using algebraic equations.
Galileo made many important discoveries but we noted that he never arrived at the principle of
conservation of momentum.  We were curious as to whether this was because, dealing only with
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gravitational force on a single body, he never had to introduce the concept of mass; or because
the algebraic and diagrammatic methods he employed didn't lead readily to the statement of
momentum conservation.  To satisfy our curiosity, we examined the reasoning methods of
Huygens and his contemporaries, and found that their diagrammatic methods were quite similar
to Galileo's, but also quite conducive to inferring the law of conservation of momentum.  Cheng
and Simon (1992) show how it was easier for those early physicists to discover the
conservation of momentum using diagrams than to induce the law directly from numerical data.  

This chapter describes our continuing investigation of the role of discovery with
diagrams in early physics by presenting a system that performs law induction using one-
dimensional diagrams.  The system is called HUYGENS and whilst we do not like to claim that
HUYGENS gives a specific description of the thought methods of the scientist, Huygens, it does
at least at a qualitative level, give some indication of the way in which diagrammatic
representations shaped thought early in the 17th Century.

The chapter will first give some examples of the creative use of diagrams in scientific
discovery and reasoning from the history of science.  Then as a further step towards
understanding the role of diagrams in discovery, the basis for one-dimensional diagrammatic
law induction is considered.  The regularity spotters, operators and heuristics used by the
HUYGENS diagrammatic law induction program are considered and one of its simulations of a
discovery is described.  The limitations of one-dimensional diagrammatic law induction are
discussed and the possibilities of diagrammatic discovery are considered more generally.

2  REASONING AND DISCOVERY WITH DIAGRAMS

There are several reasons why diagrams are useful to the scientist trying to make
discoveries.  At a general level, multiple representation gives the scientist the possibility of
switching to an alternate representation when an impasse is reached.  Diagrams have certain
properties that often give them advantages over other representations.  Diagrams can facilitate
problem solving by reducing the amount of computation required to search for relevant
information and by reducing the effort required for recognizing appropriate operators or
inference rules (Larkin & Simon, 1987).  Further, diagrams permit perceptual inferences to be
made that are easier than can be done with their more difficult logical counterparts (Larkin,
1989).
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Figure 1   Quickest Descent Problem - Proposition 30

Consider Galileo's kinematic discoveries described in his Two New Sciences (1974).
All the propositions described here are from the third section of that book.  The 30th
proposition considers the following situation: Given inclined planes, ramps, running between
two parallel horizontal lines, Figure 1, what is the inclination of the plane that will give the
quickest time of descent?  This will be called the "quickest descent" problem.  The acceleration
of the ball increases with greater inclination.  However, the total distance to be travelled also
increases.  The problem is to find when the two effects combined to produce a minimum.
Galileo considered this problem after he had discovered his law of free fall, the second
proposition, but he did not approach the problem by trying to apply the law directly to the given
situation.  Rather, he used a diagrammatic approach involving the sixth proposition, known as
"Galileo's theorem" (Drake, 1978).  

Galileo's theorem is concerned with the times of descent along inclined planes within a
vertical circle.  Figure 2 shows inclined planes running from points on the circumference of a
circle to the lowest point in the circle, and planes running to the circumference from the highest
point.  The times of descent on all such inclined planes are equal, which Galileo proves from the
law of free fall and the geometry of circles (by relating the law's square relation between
distance and time to the mathematical description of circles as the sum of two squares).  The
way Galileo solved the quickest descent time problem was to combine Figures 1 and 2, giving
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Figure 2  Galileo's Theorem - Proposition 6
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Figure 3.  The circle has been drawn with a radius equal to the distance between the parallel
lines with its bottom at the point of intersection of all the inclined planes.  From Galileo's
theorem it immediately follows that that the times of descent along the inclined planes within the
circle are equal; tEA = tHA = tKA.  However, as the inclined planes DA and FA are longer than

HA and KA, their times of descent must be greater than times for HA and KA.  Therefore, the
descent time between the verticals along the incline EA is the shortest; the inclination is 45
degrees.

Although it is quite feasible to do, there is no record that Galileo attempted to solve the
problem by the direct application of his various laws of motion using a more conventional
mathematical approach.  However, it is interesting to consider what is involved under that
approach as the contrast shows the ingenuity of Galileo's diagrammatic solution.  A general
inclined plane is represented by the triangle DAC, in Figure 4.  The time of descent down the
plane is given by the fifth proposition on uniform velocity motion from the Two New Sciences;

tDA = dDA / VDA , . . . (1)

where t, d, and V are time, distance and mean speed, respectively.  The mean speed is equal to
the maximum speed at the end of the descent, Vmax, divided by two, thus:

tDA = 2 . dDA / VmaxDA . . . . (2)

Galileo's law of free fall relates the time, t, for descents down an inclined plane to the
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Figure 3  Solution to Quickest Descent Problem
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Figure 4  Simple Inclined Plane
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vertical distance, h, travelled;

hST / hSY = tST
2 / tSY

2 , . . . (3)

where the subscripts refer to different parts of the descent from rest.  The terminal velocity at
the end of an inclined plane is thus proportionate to the square root of the height of the plane;
so:

tDA = 2 . dDA / √hDC , . . . (4)

where h is the height.  From Pythagoras's theorem, the length of the inclined plane can be
replaced by its height and the horizontal component of its length, giving:

tDA = 2 . √ (dAC2 + hDC2) / √hDC . . . . (5)

The final step is to find the relation between hDC and dAC that yields the minimum value
of tDA.  There are various ways to do this but none are straightforward and simple; for example,

it is possible to reasoning directly about the values of numerator and denominator of Equation 5
as hDC varies.  The solution is when the angle of the plane is 45 degrees, that is hDC =dAC.

The conventional mathematical approach is more complex than the diagrammatic
approach, because the bulk of the reasoning is centered around the abstract equations
expressing kinematic laws.  Four laws were combined to find Equation 5, which requires further
difficult reasoning to determine the minimum time.  Under the diagrammatic approach, the
minimum time was found by spotting the line that did not extend beyond the circumference of a
circle; a simple piece of perceptual reasoning.  Cheng (1992b) has modelled various Galilean
kinematic discoveries under the diagrammatic and the conventional mathematical approaches,
including this example, and has shown that the diagrammatic approach often requires less
computation than the conventional approach.

In the following sections the discovery of more complex laws using diagrams are
considered.  First, we consider the diagrams that the early physicists may have used to discover
the conservation of momentum.

3  CONSERVATION LAWS AS ONE-DIMENSIONAL DIAGRAMS

The momentum of a body is the product of its mass and velocity.  For two bodies
colliding in one-dimension the momentum conservation law is usually written as an equation:

m1.U1 + m2.U2  =  m1.V1 + m2.V2  ,  . . (6)

where, m1 and m2 are the masses of the two bodies, U1 and U2 are their velocities before
collision, and V1 and V2 their velocities after collision.  If energy is also conserved in the
collisions then the following energy conservation equation holds simultaneously;
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m1.U1
2 + m2.U2

2  =  m1.V1
2 + m2.V2

2  .  . . (7)

However, it is possible to encode the two laws in a diagrammatic form that embraces
both equations; three examples are shown in the first row of Figure 5.  The top line of the left
diagram shows that body 1 comes in from the left and impacts body two, which is initially
stationary.  Body 1 is bigger than body 2, as shown by the middle line.  The bottom line shows
that both bodies travel off to the right.  The speeds of the bodies are in proportion to the lengths
of their respective lines.  The center diagram shows a collision where the bodies approach from
opposite directions with equal speeds, but depart with different speeds in opposite directions,
because the masses have different magnitudes.  The right diagram shows that when the ratio of
the initial speeds, U1/U2 , is equal to the inverse of the ratio of their masses, m2/m1, then the
final speeds for each body is the same as it was before collision, but the bodies' directions are
reversed.  

Notice that the total lengths for initial and final velocity lines are equal, that is:

U1-U2 = V2-V1 (8)

This relation can be simply derived from Equations 6 and 7.  The lines for the masses are drawn
end to end with their total length equal to the length of the U1-U2 line.  The structures of the
laws are such that the ends of the lines, shown by the small circles, must always lie in a straight
vertical or diagonal line.  Huygens and Wren presented similar diagrams to the Royal Society
of London when they first described the law of the conservation of momentum (Hutton, Shaw
& Pearson, 1804).  In Huygens's diagrams, row 2 in Figure 5, A and B are the two bodies, their
velocities before impact are denoted by the lines AD and BD, the velocities after impact, by EA
and EB; and the masses of A and B by BC and AC [sic], respectively.  In the diagrams, the
lengths of DC and CE are always equal.  Wren's diagrams, row 3 in Figure 5, are essentially the
same, except for differences in notation and the fact that Wren explicitly states that the diagrams

U1

m2 m1

V1 V2

U2

m1

U1

m2

V1 V2

U2U1

m2 m1
V1

V2
1

A BCE D A BCD E A BDCE2

R Seao R Sa eo R Soae3

Figure 5  One-Dimensional Momentum Conservation Diagrams
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are reversible; that is, either Ro and So or Re and Se can indicate the initial velocities, with eR and
eS or oR and oS the final velocities, respectively.  

Some of the points made above about the potential advantages of diagrammatic
representations can be seen with these diagrams.  For example, different configurations of
collisions may be distinguished when velocities of the balls have different signs, are equal,
unequal, or are zero.  How many different configurations exist?  This is not a simple problem
working directly from Equations 6 and 7, but using the diagrams it is simple to answer.  For
instance, when the masses are equal there are four configurations, see Figure 6.  Huygens and
Wren provided such series of diagrams in their expositions (Hutton, Shaw & Pearson, 1804).
Further, it is possible to do simple quantitative reasoning and reasoning about extreme cases
with these diagrams, using the fact that the small circles in diagrams must always lie in a straight
line, vertically or diagonally (row 1, Figure 5).  Figure 7A shows what happens when a
stationary ball (m1) is hit by another (m2) as the ratio of their masses tends to infinity.  The
maximum speed (V2) that the stationary ball can attain after the collision is just two times that of
the first ball (U1).  Similarly, Figure 7B shows what happens when two balls approach with
equal speeds from opposite directions as the mass of one tends toward infinity compared to the
other.  The maximum speed of the smaller ball after impact (V2) is three times its initial speed
(U2).

There are several different ways in which the conservation of momentum may have been
discovered.  One possibility is that the law was discovered in a theoretical fashion by derivation
from energy conservation and considerations of invariance of motion relative to Galilean
transformation of coordinates (Barbour, 1989).  A second possibility is that the law was
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U1

m2

V1 V2

U2
m1

U1

m2

V1 V2

U2

m1

U1

m2

V2

m1

U1

m2
V1

V2

U2

Figure 6  Configurations of Collisions
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Figure 7  Collisions in which the Ratio of Mass Tends to Infinity
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induced from sets of numerical data gathered in experiments.  This method of discovery is quite
feasible, as demonstrated by several systems that have modelled the discovery of the principle of
momentum conservation: for example, BACON.5 (Langley et al., 1987) and ABACUS
(Falkenhainer and Michalski, 1986).  These systems find the law by searching a space of
algebraic relations among the variables using the numerical data.  A third possibility also
considers that the law was induced from experimental data, but using diagrams rather than
working directly with algebraic equations.  Cheng & Simon (1992) have modelled the discovery
in this manner and have shown that it would have been easier for Huygens and Wren to have
made the discovery using diagrams than with the conventional mathematical methods available
at the time.  In the next section, general law induction with one-dimensional diagrams is
considered.

4  THE HUYGENS SYSTEM

Cheng and Simon's (1992) system simulated the discovery of the conservation of
momentum using one-dimensional diagrams, but some of its heuristics were specific to the
structure of the conservation law problem: specifically, the heuristics to deal with the two
independent variables (V1 and V 2).  Here a more general system for one-dimensional
diagrammatic law induction is described.  The system is called HUYGENS.  

It considers one diagram for each set of experimental data obtained from a single
experimental test (Cheng, 1991).  Variables are represented as line segments on the number
line.  The length of a line segment, or line for short, is in proportion to the magnitude of the
value of its variable and the orientation, positioning and relative sizes of lines encode different
algebraic relations between the variables.  HUYGENS operates by constructing diagrams from
sets of data using diagrammatic operators.  A group of diagrams is generated by applying the
same sequence of operators to the sets of data.   Relations that really exist are manifested as
patterns common to all the diagrams in a group and it is the job of regularity spotters to find
such patterns.  When a pattern is found, an algebraic law is simply inferred from the regularity
and the particular operators used to generate the diagrams.  HUYGENS employs cycles of
regularity spotting and operator application.  The various operators, regularity spotters and
heuristics that are used in the making of discoveries are described.

4.1  Operators

The job of the diagrammatic operators is to construct or modify diagrams so that they
encode different relations between the variables.  Tables 1 and 2 show the diagrammatic
operators that are required in the cases of discovery modelled so far.  Other operators may be
needed in other cases of discovery.  Various conventions are used when drawing the diagrams.
The number line is assumed to increase towards the right.  The lines in the diagrams are
considered to lie on the number line, but for clarity they are drawn with vertical separation.
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When appropriate, the origin of a line is indicated by an 'o' and its point of interest (interest
point) by a 'x'.  An interest point is the end of a line; its position depends on the magnitude of
the variable, and is determined by the data.  Where appropriate, construction points are also
marked by a '|'; a construction point being an intermediate point identified and used by
operators in the construction of a line.  The lines are labeled with symbols for their variables.
HUYGENS's internal representations of the lines are in the form of triples of numbers for the
origin, the interest point and the construction point, if applicable.  These triples are stored
together in lists corresponding to diagrams, and diagrams are themselves stored together in lists
to form groups.  The overall organization of the data is equivalent to the structure of the
diagrams as if they were drawn on paper.  

An internal representation that is even closer to real diagrams (marks on paper) could be
employed.  For example, the lines and markers for the different points could be held in a bit
map.  The operators could be modified to generate lines in such a format, and the regularity
spotters modified to look for points on such lines.  However, the operators and spotters would
be functionally equivalent to those currently possessed by HUYGENS but would make the
implementation more complex, without contributing anything further to the present analysis.
HUYGENS does nevertheless use a simple routine to convert the sets of number triples into real
lines for display in its output trace.

Values of various attributes for each variable or line are recorded by HUYGENS.  The
values are initially given as part of the input to the system and the attributes considered are: (i)
the type, whether a line stands for an independent or dependent variable; (ii) the property of the
line, for example, velocity or temperature; and, (iii) the status of the line, whether or not it is a
new line just generated by an operator.  The properties of new lines are inherited from the
original lines in a manner appropriate to each operator employed.

Table 1 shows four elementary operators.  The PLOT operator takes a variable, X, and
draws a line with a length in proportion to the magnitude of X.  All the origins of all the lines
drawn by PLOT are at the same arbitrary position on the number line.  The opposite end of a line
is its interest point, because its location depends on the magnitude of X.  The ADD operator
finds the sum of two variables, X1 and X2, that have the same dimensionality by redrawing their

lines end to end.  The total length may be considered as a new variable or term, X', representing
the sum of X1 and X2.  The SUBTRACT operator finds the difference between the two variables,
X1 and X2, having the same dimensionality, by redrawing the X2 line with its interest point
coinciding with the interest point of X1.  The length of the new line in between the origins, X',
equals the difference between X1 and X2.  The NEGATE operation makes the inverse of a variable

by redrawing its line with the interest point on the opposite side of the origin.  ADD, SUBTRACT

and NEGATE assign to the new lines they generate the same property as the original lines.
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The five normalization operators, Table 2, are used to incorporate variables standing for
more than one type of property into a diagram.  They all require a pair of variables, Y1 and Y2,
for one type of property, Py, and a single variable, X, for some other property, Px.  X is taken as
the datum against which the other variables are standardized.  NORMALIZE is the simplest and
works by redrawing Y1 with its length equal to X, and then redrawing Y2 in proportion to Y1.  A
new term, X', for property Px is obtained with a value equal to X  times Y2/Y1.  The other

Name Operator Relation

Plot

Add

Subtract

Negate

X

X'

X'

X' = X1 + X2
X1 X2

X1
X2

X'
X' = X1 – X2

X' = – X

___X

X1

X2

X

X1

X2

Table 1  Elementary Operators

Name Operator Relation

Normalize Y1

Y2

X X

Y1
X' X' = (Y2/Y1) X

Y2

X' =      Y1       X  
          Y1-Y2 

Normalize-minus-2

Y2

Y1
X

Y1

X

Y2

X'

Normalize-add-2

Y2

Y1
X

Y1 Y2
X'

X
X' =       Y1      X
          Y1+Y2

Normalize-add-1

Y2

Y1
X

Y1 Y2
X'

X
X' =  Y1+Y2   X
            Y1

X' =   Y1-Y2   X  
              Y1

Normalize-minus-1

Y2

Y1
X

Y1

X

Y2

X'

Table 2  Normalization Operators
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normalization operators are similar to NORMALIZE but they take the sum (or difference)
between Y1 and Y2 and use Y1+Y2  (Y1-Y2 ) or Y1 alone as the basis for standardization of X;

see Table 2.

The application of an operator usually reduces, and never increases, the number of lines
in a diagram.  Each operator generates a new line that stands for a variable or a term that
expresses a potential relation among the variables for the old lines, as shown, for example, in the
third column in Tables 1 and 2.  Groups of diagrams are generated by different sequences of
operators.  A sequence of operators that successfully encodes a regularity in the data will
produce the same pattern in every diagram in its group.  Determining whether any relations
really exist by looking for such patterns is the job of the regularity spotters, which are
considered next.

4.2  Regularity Spotters

The regularity spotters look for patterns that are common to every diagram in a group.
The spotters examine the interest points in the diagrams, because these reflect any patterns that
are present in the data.  Table 3 and Table 4 present regularity spotters required in the cases of
discovery so far modelled.

The precise spotters, Table 3, look for exact patterns in diagrams.  The EQUAL regularity
spotter identifies when two lines are equal in length in every diagram in a group.  The relation
inferred is that Z1 is equal to Z2.  The CONSTANT regularity spotter identifies when the
difference between two variables is a constant for all the members of a group.  The MEAN

spotter identifies when a variable has a magnitude equal to the mean of the two others, for every
diagram in a group.  When a regularity is found, the relations can be written as an equation with
appropriate symbols for the variables, as shown in column 3.

Table 4 presents two more regularity spotters.  They are relative spotters that seek
patterns based on the relative lengths of lines, rather than their exact lengths.  The BETWEEN

spotter identifies when a variable always has a magnitude between those of two others, in any

Name Pattern Relation

Equal Z1 = Z2
Z1
Z2

Constant C = Z1 - Z2C
Z1

Z2

Mean Y = (X + Z)/2
X
YZ

Table 3  Precise Regularity Spotters
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order.  The NEGATIVE spotter identifies when a pair of lines has interest points on opposite
sides of a common origin.  The main use of the relative spotters is in heuristics that suggest
when different operators may be appropriate to consider (discussed in the next section).

The regularity spotters look for patterns across pairs or triplets of lines in each diagram
in a group.  How the pairs and triplets of lines are chosen for consideration and how the
regularity spotters suggest the use of certain operators are considered.  

4.3  Heuristics

HUYGENS needs heuristics to limit the size of the search space of diagrams.  There are
various places where appropriate heuristics are employed; they are considered in turn.
Examples of these heuristics can be seen in the simulation of a discovery that is described
below.

First, when HUYGENS is looking for a common pattern within all the diagrams from a
particular group, pairs and triplets of lines have to be identified for the regularity spotters.
Rather than consider all combinations of pairs and triplets, HUYGENS uses a strategy that takes
into account the type, property and status attributes of the lines.  Different combinations of the
attributes are considered by the SELECTION-BY-ATTRIBUTE heuristic: (i) status and property; (ii)
type and property; and (iii) property alone.  For each combination HUYGENS finds the total
number of pairs and triplets that can be generated when the lines have matching (non-nil) values
for the specified attributes.  For example, when the type and property combination is
considered, only lines in a diagram standing for the same property and that are exclusively
independent or dependent variables are taken as potential pairs or triplets.  The set of pairs and
triplets chosen is the one that has the greatest number of pairs plus triplets not exceeding the
number of lines in the diagram.  

All three attribute combinations consider the property of the lines, because it is not valid
to compare quantities for different properties.  The status and property combination is included
because it is worthwhile looking for patterns among new lines that have just been generated.

Between X > Y > Z
or

X < Y < Z

Negative
X > 0 & Y < 0

or
X < 0 & Y > 0

X
YZ

X
Y

Name Pattern Relation

Table 4  Relative Regularity Spotters
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The type and property combination is included because it is sensible to consider first the
independent lines together, before complicating matters with the inclusion of the dependent lines
too.  The property attribute alone is included in case the other combinations do not yield any
pairs or triplets.  

Before applying the regularity spotters to the pairs and triplets of lines, HUYGENS

attempts to focus the spotters on those pairs and triplets whose lines have the same property as
the dependent line, using the DEPENDENT-PROPERTY-FOCUS heuristic.  The simple rationale
being that it seems sensible initially to seek relations for lines with the same property as the
dependent line(s) before making things more complex by considering lines with other
properties.

Regularity spotters are then applied to the selected pairs and triplets of lines to find any
patterns that are common to all the diagrams in a group.  The PREFER-PRECISE-SPOTTERS

heuristic gives priority to the precise regularity spotters, because they identify exact relations
between the lines.  If on a particular cycle HUYGENS finds a group of diagrams with a precise
regularity and another with a relative regularity, then only the precise group is considered in the
next cycle.  Depending on the regularity found and whether there are further lines to consider
HUYGENS will apply different operators; the SPOTTER-OPERATOR-MATCH heuristic.  When a
precise regularity is found and there are no other lines left in the diagrams to be considered,
HUYGENS states a law was found.  However, when a precise regularity is found and lines
remain, HUYGENS will apply the normalization operators, using the regularity found as the basis
for standardization.  

For example, when the CONSTANT regularity spotter is true and there are remaining
lines, HUYGENS will use the distance found (labeled C in Table 3) as the basis against which to
compare the remaining lines when applying the normalization operators.  The two relative
spotters are considered if no precise regularities are found.  When a relative regularity is found,
the SPOTTER-OPERATOR-MATCH heuristic suggests that particular operators may be
appropriate.  For example, suppose the BETWEEN regularity holds for three variables, A, B and
C, so that B is always between A and C .  Now, if other variables need to be considered,
NORMALIZE-ADD-2 is a good choice, with the difference between A and C as the basis for
standardization (i.e., labeled X in Table 2).  The new term formed by this normalization
operation will always be between the ends of A and C, so it is likely to be directly related to B.

The possibility exists that no regularity will be found in a group of diagrams.  In such
cases HUYGENS will apply the ADD and SUBTRACT operators to the selected pairs as a default.
This is the DEFAULT-OPERATORS heuristic.
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Table 5 provides a summary of HUYGENS's heuristics.  We now consider how the
diagrammatic operators, regularity spotters and heuristics work together to make discoveries.

4.4  Simulation of a Discovery

In this subsection HUYGENS simulation of the discovery of the conservation of
momentum is considered.

Symbol Property Type Case 1 Case 2 Case 3

m1 mass independent 2 1 3

m2 mass independent 1 2 1

U1 velocity independent 3 3 3

U2 velocity independent 0 -3 1

V1 velocity dependent 1 -5 2

V2 velocity dependent 4 1 4
Table 6  Momentum Conservation Law Data

Heursitic Action

SELECTION-BY-ATTRIBUTE Select the most reasonable number of pairs and triplets of
lines by considering those that match under different
combinations attributes.

DEPENDENT-PROPERTY-

FOCUS

Choose pairs and triplets of lines that have the same
property as the independent line(s).

PREFER-PRECISE-SPOTTERS Give regularities found by the precise spotters a higher
priority than those found by the relative spotters.

SPOTTER-OPERATOR-

MATCH

Specifies particular operator(s) when a particular regularity
has been found.

DEFAULT-OPERATORS When no regularities have been found try the ADD and
SUBTRACT operators on the selected pairs.

Table 5      HUYGENS    's Heuristics
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The simulation of the discovery involved five cycles of regularity spotting and operator
application.  In the first cycle, the pairs of variables that were chosen by the SELECTION-BY-
ATTRIBUTE heuristic were (m1, m2), (U1, U2) and (V1, V2), but these were narrowed down to the
second and third pairs by the DEPENDENT-PROPERTY-FOCUS heuristic, because V1 and V2 are
dependent and U1 and U2 share the same property.  None of the regularity spotters found any
common patterns for the pairs in the three diagrams, so HUYGENS resorted to the DEFAULT-

OPERATORS heuristic.  The lines generated by the ADD and SUBTRACT operators are shown in
middle two rows in Figure 8, respectively.  In the second cycle, the two new lines in each
diagram were chosen by the SELECTION-BY-ATTRIBUTE heuristic.  The NEGATIVE spotter was
found to hold for the new lines generated by the SUBTRACT operator, the interest points of
those lines in all three diagrams are on opposite sides of their shared origin.  The SPOTTER-

OPERATOR-MATCH then forced HUYGENS to generate a new set of diagrams by applying the
NEGATE operator, as shown in row 3 of Figure 8.  In the third cycle, the EQUAL regularity was
found to hold for the new pair of velocity lines, so HUYGENS was able to find the relation
among the velocities given by Equation 8.  
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Figure 8  Beginning of the Momentum Law Discovery
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However, in the fourth cycle, it is realized that there were mass lines still to consider so
HUYGENS had not finished.  The common distance of U1-U2 and V2-V1 was used as the basis
for the application of the normalization operators and the construction points were taken as the
new interest points.  In the fourth cycle the five normalization operators are applied, as shown in
Figure 9 (the U1-U2 and the V1-V2  lines are shown at the top of each column, rather than repeat
them next to each pair of mass lines).  Each normalization operator was applied twice because
either m1 or m2 may be associated with U1.  In the fifth and final cycle, HUYGENS found that
the only regularity to hold was MEAN, for the groups produced by NORMALIZE-ADD-2, with m2
associated with U1.  The distance from the interest point on the mass line to the ends of the
lines for U1 and -V1  were equal.  Thus, HUYGENS had found a relation between the velocities
and masses, corresponding to the following equation:
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Figure 9  Momentum Law Discovery Continued
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m2
m1+m2 (U1-U2)   = 

U1"-"V1
2    . . . . (9)

With a little algebraic manipulation and given Equation 8, previously found by HUYGENS,
Equation 9 can be easily shown to be equivalent to the momentum conservation law, Equation 6.

HUYGENS has also been successfully run on data for a simplified version of Black's law
on the temperatures of liquids.

4.5  Benefits and Limitations

Many systems already exist that successfully perform quantitative law induction (e.g.,
BACON, Langley, et al., 1987; ABACUS, Falkenhainer & Michalski, 1986).  HUYGENS differs in
that it searches the space of one-dimensional diagrams for regularities, rather than the space of
algebraic terms.  This alternative representation motivates HUYGENS's use of a greater range of
operators and regularity spotters than the other systems.  Some of the operators and spotters
consider triplets of lines on each cycle, whereas previous systems usually consider relations
between pairs of variables at any one time.  There is a corresponding reduction in the size of
HUYGENS's search space, because it can sometimes combine three lines into a single new line,
when the other systems require two cycles to do the same.  A manifestation of this can be seen
in the need for the fifth version of BACON (Langley et al., 1987) to employ high level search
control heuristics, which assume symmetry and conservation in the data, to improve the
efficiency with which more complex laws are found.

A present deficit of HUYGENS is its inability to cope simply with laws with power terms.
To deal with squares and square-roots Galileo and other early physicists employed the two-
dimensional geometry of conic sections and circles (see Cheng, 1992b).  A one-dimensional
technique to find power laws is to take successive differences between the values of dependent
variables until a linear series is obtained.  However, this technique only works when the
independent variable increases as an arithmetic progression and the index of the power law is a
positive integer.  Further, substantial amounts of drawing and redrawing are required.

Other abilities that HUYGENS will need are the means to recognize and define terms for
intrinsic properties and to cope with noisy data; abilities that BACON possesses.  Noisy data can
be handled naturally under the diagrammatic approach by using error bars, similar to those used
when plotting experimental errors on graphs.  Briefly, the spotters would be allowed to match
interest points so long as they fall within an interval, centered on the target position, whose
length is some given percentage of the line of concern.  Schemes for coping with noisy data can
be devised using this technique.

5  BEYOND ONE-DIMENSIONAL DIAGRAMMATIC LAW INDUCTION
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Huygens's and Wren's diagrams encode the fairly complex momentum conservation
laws in a deceptively simple manner, and in a way that makes it easy to reason qualitatively and
quantitatively about different collisions (see Figures 6 and 7).  The HUYGENS system has
successfully modelled the diagrammatic discovery of the laws.  Some of the consequences for
the study of scientific discovery and for understanding the processes of creative cognition will
be considered.

The HUYGENS system demonstrates how one-dimensional diagrammatic law induction
can be performed in a manner consistent with the view that scientific discovery is problem
solving characterized by heuristic search.  In themselves, HUYGENS's operators, regularity
spotters and heuristics are quite straightforward, but in combination they provide an effective
model of law induction.  This is a further step towards understanding the processes of scientific
discovery, which although seemingly mysterious can be rationally understood.  In particular,
HUYGENS provides further computational evidence for the view that switching back and forth
between representations is an effective way to enhance creativity.  From given numerical data,
HUYGENS switches to a space of diagrams in its search for regularities by looking for patterns
in the diagrams.  When patterns have been found, the regularities are simply transformed back
into equations.  The change to diagrammatic representations permits different operators,
regularity spotters and heuristics to be employed that are more effective than those used in the
direct search of a space of algebraic terms.  The reasons for this are that diagrammatic
representations often encode or index information in ways that help to reduced search (Larkin
& Simon, 1987) and that they enable perceptual inferences to be made (Larkin, 1989) in
problem solving .

The work with HUYGENS shows how discoveries that use diagrammatic representations
can be modelled.  The wider implication is that creative discovery with visual imagery, such as
the episodes described by Shepard (1978, 1988), may be amenable to computational modelling
in a similar fashion.  One-dimensional diagrammatic law induction can be characterized as
heuristic problem solving, but it is the subject of current research whether the same is true for
diagrammatic discovery more generally, including one-dimensional deduction and two-
dimensional induction and deduction.  However, there are good reasons to think that the
problem solving view will cover other forms of diagrammatic discovery.

It seems possible to model two dimensional diagrammatic discovery.  Consider
Koedinger and Anderson's (1990) diagram configuration model of expert problem solving.
The central idea is that chunks of perceptual knowledge are stored as diagrammatic
configuration schemas.  Each schema holds various pieces of information, including: a
configuration, in the form of a diagram of the given situation; a whole-statement, which
expresses the main theorem or idea of the schema; part-statements or part-properties, which
indicate important features of the configuration; and, sufficient conditions or ways-to-prove,
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which define sets of part-statements that are sufficient to prove the whole-statement.  The way
problem solving proceeds with the schemas involves mapping the configuration into a suitable
part of the problem diagram and searching for part-statements that fulfill the sufficient
conditions.  If one set of the sufficient-conditions is complete, then the whole-statement is
applicable to the problem.  Successive applications of different schema may fill in all the steps
required for a complete problem solution.  

Now, it is possible to view the discoveries in Galileo's Two New Sciences as cases of
problem solving under the Koedinger and Anderson model, treating each of the 38 propositions
as a diagrammatic configuration schema.  For example, how might Galileo have known that the
sixth proposition, Figure 2, was the right one to use for the problem of least time of descent?
Quite simply, he could have found the proposition 6 by searching through the space of all the
diagrams encoding particular laws and theorems, which he had already discovered.  Problem 6
can be reformulated as diagrammatic configuration schema.  The configuration diagram is
Figure 2.  The whole-statement says that the times of descent down all the inclined planes are
equal.  The part-statements would include facts, such as, (i) each inclined plane runs from the
circumference to the bottom of the circle, (ii) each inclined plane runs from the top of the circle
to the circumference, and (iii) the circle is vertical.  Sets of sufficient-conditions are (i) and (iii),
or (ii) and (iii).  Hence, the schema for proposition 6 can be applied to the quickest descent time
problem, Figure 1, by adding a vertical circle to the problem diagram, Figure 3, from which it is
immediately seen that the first set of sufficient-conditions is satisfied.  

New configuration schemas can be defined when a new proposition has been discovered
using existing schemas.  For example, a new configuration schema might be defined for
proposition 30.  Its configuration diagram would be a triangle representing an inclined plane.
The whole-statement would say that this inclined plane covering a fixed horizontal distance has
the minimum descent time.  The part-statement would indicate that the angle of the plane is 45°,
or that the vertical height of the plane is equal to its horizontal length.  A sufficient condition in
this case would be either part-statement.  

The propositions of the Two New Sciences can therefore be recast as diagrammatic
configuration schemas, but it remains to be seen whether the discovery of all 38 of Galileo's
propositions can be modelled under this approach.  However, it seems that two-dimensional
diagrammatic discovery is possible and that it does fall within the problem solving as heuristic
search paradigm.

6  CONCLUSIONS

Diagrams have an important role in scientific creativity, because their representational
properties make them effective for problem solving and discovery.  This chapter has considered
examples of the creative use of diagrams in the history of science and has described the
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HUYGENS discovery system, which uses one-dimensional diagrams to inductively discover laws.
The possibility of discovering laws with two-dimensional diagrams has also been considered.
This research and other investigations have typically focussed on the properties of diagrammatic
representations in isolation or in comparison with other representations.  However, scientific
discovery probably does not usually rely on a single representation, whether diagrammatic or
otherwise, but often involves the use of multiple representations in an integrated manner.
Diagrams predominated in the Galilean examples, but they were not the only representational
formalism he used.  Galileo's knowledge of arithmetic and algebra were important in his
discoveries, especially in the interpretation of the empirical data in his early work (Drake, 1987),
and they clearly interact in a complementary way with the diagrammatic representations in his
discoveries.  Future research must also consider discovery with multiple representations; how
the best representations for a given problem can be chosen from those available, and the ways in
which different representations complement each other in problem solving and discovery.

ACKNOWLEDGEMENTS

PCHC was supported in part by a U.K. Science and Engineering Research Council
postdoctoral fellowship, which was held at Carnegie Mellon University, and by the U.K.
Economic and Social Research Council, which is funding the Centre for Research on
Development, Instruction and Training.  HAS was supported by the Defense Advanced
Research Projects Agency, Department of Defense, ARPA Order 3597, monitored by the Air
Force Avionics Laboratory under contract F33615-81-K-1539.  Reproduction in whole or in
part is permitted for any purpose of the United States Government.  Approved for public
release; distribution unlimited.



Cheng & Simon Discovery with Diagrams

– 21 –

REFERENCES
Barbour, J. B. (1989). Absolute or Relative Motion: The Discovery of Dynamics; Volume 1.

Cambridge: Cambridge University Press.
Cheng, P. C.-H. (1991). Modelling experiments in scientific discovery. In Proceeding of the

12th International Joint Conference on Artificial Intelligence (pp. 739-744). Mountain
View, CA: Morgan Kaufmann.

Cheng, P. C.-H. (1992a). Approaches, models and issues in computational scientific discovery.
In M. T. Keane & K. Gilhooly (Eds.), Advances in the Psychology of Thinking (pp.
203-236). Hemel Hempstead, Hertfordshire: Harvester-Wheatsheaf.

Cheng, P. C.-H. (1992b). Diagrammatic reasoning in scientific discovery: Modelling Galileo's
Kinematic Diagrams. In H. Narayanan (Eds.), Working Notes of the AAAI Spring
Symposium on Reasoning with Diagrammatic Representations (pp. 33-38). Stanford
University, California.

Cheng, P. C.-H., & Simon, H. A. (1992). The right representation for discovery: Finding the
conservation of momentum. In D. Sleeman & P. Edwards (Eds.), Machine Learning:
Proceedings of the Ninth International Conference (ML92) (pp. 62-71). San Mateo,
CA: Morgan Kaufmann.

Drake, S. (1978). Galileo at Work. Chicago: University of Chicago Press.
Falkenhainer, B. C., & Michalski, R. S. (1986). Integrating quantitative and qualitative

discovery: the ABACUS system. Machine Learning, 1(4), 367-401.
Galileo (1974). Two new sciences (S. Drake, Trans.). Madison, Wisconsin: University of

Wisconsin Press.
Gorman, M. E. (1992). Using experiments to determine the heuristic value of falsification. In

M. T. Keane & K. Gilhooly (Eds.), Advances in the Psychology of Thinking (pp. 147-
176). Hemel Hempstead, Hertfordshire, UK: Harvester-Wheatsheaf.

Hutton, C., Shaw, G., & Pearson, R. (1804). The Philosophical Transactions of the Royal
Society of London. London: C&R Baldwin.

Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive
Science, 12, 1-48.

Koedinger, K. R., & Anderson, J. R. (1990). Abstract planning and perceptual chunks:
Elements of expertise in geometry. Cognitive Science, 14, 511-550.

Langley, P., Simon, H. A., Bradshaw, G. L., & Zytkow, J. M. (1987). Scientific Discovery:
Computational Explorations of the Creative Process. Cambridge, MA: MIT Press.

Larkin, J. H. (1989). Display-based Problem Solving. In D. Klahr & K. Kotovsky (Eds.),
Complex Information Processing: The Impact of Herbert A. Simon (pp. 319-341).
Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science, 11, 65-99.



Cheng & Simon Discovery with Diagrams

– 22 –

Narayanan, H. (Ed.). (1992).  AAAI Spring Symposium on Reasoning with Diagrammatic
Representations: Working Notes.  Stanford University, California; March 25-27 1992.

Novak, G. S. (1977). Representations of knowledge in a program for solving physics problems.
In Proceedings of the 5th International Joint Conference on Artificial Intelligence.
Mountain View, CA: Morgan Kaufmann.

Qin, Y. (1992). From language to mental images to equations. Doctoral Thesis, Department of
Psychology, Carnegie Mellon University.

Qin, Y., & Simon, H. A. (1990). Laboratory replication of scientific discovery processes.
Cognitive Science, 14, 281-312.

Schunn, C. D., & Klahr, D. (1992). Complexity management in a discovery task. In
Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society,
(pp. 177-182). Hillsdale, New Jersey: Lawrence Erlbaum.

Shepard, R. N. (1978). Externalization of mental images and the act of creation. In B. S.
Randhawas & W. E. Coffman (Eds.), Visual Learning, Thinking, and Communication.
New York: Academic Press.

Shepard, R. N. (1988). The imagination of the scientist. In K. Egan & D. Nadaner (Eds.),
Imagination and Education. New York: Teachers College Press.

Shrager, J. (1990). Commonsense perception and the psychology of theory formation. In J.
Shrager & P. Langley (Eds.), Computational Models of Scientific Discovery and
Theory Formation (pp. 437-470). San Mateo, CA: Morgan Kaufmann.

Shrager, J., & Langley, P. (Eds.). (1990).  Computational Models of Scientific Discovery and
Theory Formation. San Mateo, CA:   Morgan Kaufmann.

Tabachneck, H. (1992). Computational difference in mental representations: the effects of mode
of data presentation on reasoning and understanding. Doctoral Thesis, Department of
Psychology, Carnegie Mellon University.

Zytkow, J. (Ed.). (1992).  Proceedings of the ML92 Workshop on Machine Discovery.
Aberdeen, Scotland.


