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Problem (1) can be relaxed to

e We develop a convex relaxation of maximum a posteriori estimation of a mixture of regression model. Toy Data
e We reformulate the relaxation problem to eliminate the need for general semidefinite programming. 1 1 T
: : : : : : : min max | -0~c’ ¢ - _(l - C) MoXxx" (l - C) (2) e Dataset: 30 synthetic data points is generated rding to y; = (7m; ® x;))w + ¢;, with x; € R, ¢ ~ N(0, 1)
e We provide two reformulations that admit fast algorithms. The first is a max-min spectral reformulation M:itr M=tytlzM>0 ¢ | 2 2a \g2 o2 - OV Y P 5 geNerdled dcCordIng 0 y; = 71, @ X)W + €&, WIh X & K, € ’
exploiting quasi-Newton descent. The second is a min-min reformulation consisting of fast alternating and w € U(0, 1). The response variable y; is assumed to be generated from a mixture of 5 components .
steps of closed-form updates. (Sketchy) Steps e Performance comparison with EM (100 random restarts was used to avoid poor local optima).
: . . . 1  TwT
e We provide experiments in a real problem of motion segmentation from video data. e Compute convex conjugate of the log-partition function (i.e. 5 5w" ¥ ¥w). e Error rates are 0.347 + 0.086 (EM) and 0.280 + 0.063 (Max-Min) across 10 different runs.

e Relax the constraints on the assignment matrix
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Mixture of Regression Problem m? - 11 e {0, 1} M1 = 1, max(diag(TI7 D)) < y#)
g {M MERIXI,tI‘M:t,’yZ‘I>M>O}. o0t * 20+ * 10| ————— _________________________________ BT _
> > >
Note : The relaxation of Problem (1) to (2) only refers to loosening the set of feasible solutions and no 10/ *%M LUB *ﬁ** """"""""" """"""""""" 10/ H*ﬁ*

relaxation has been introduced in the objective function. However, solving (2) directly 1s prohibitive for i ) r ) e | )

medium to large scale problems as it requires a general semidefinite solver. o a :KH 50 56 05— 5 j** 56 20 o o T** 56 36
Algorithm 1: Max-Min Reformulation Ground Truth EM Max-Min

Motion Segmentation from Video Data

- Ry . %5 @ R The "hammer” (Overton & Womersley 1993)
. . S B R . e Let Ve R>X vV =v! andits EVD, Plyvp = A((Aq,...,44)), then e Dataset: Hopkins 155 (http://www.vision. jhu.edu/data/hopkins155/).
' . ) . q e Given a pair of corresponding points p; and ¢g; from two frames and k motion groups, we have the following
max MV = Z A; and argmax MV > PqPT. epipolar equation ( Li 2007), qiT (21;21 7ijt j)pi = 0.
Linear regression (left) and mixture of regression (right); Gafiney & Smyth 1999 M:tr(M)=q,I>M>0 = M:tr(M)=q,I> M0 9 T

e Redefine [g; p; quly q;p; .. q?p?]T := x; and Vec(F]T) := w, our problem is now Z’;zl miix: wi=0.

Given _ i
To use the "hammer”, Problem (2) 1s reformulated to

e a labeled training set D comprising ¢ input-output pair {(x1, y1), ..., (X5, yo};
e assumption that the output variable y 1s generated by a mixture of kK components; [

¢ no information about which component of the mixture generates each output variable y;. max

1 t ~

e N ~ max r(MXX" 0 G -c)F -]
2 2aq ¥:tr M=q,I>M>0

Find

e a regression model f : X — Y for each of the mixture component. (Sketchy) Steps

e Simply by interchanging min,; and max., invoking distributivity property, rearranging the terms and defin-

. - . y .
ing y := =5, problem (2) can be rewritten as
The Model o

1 7 1 T T
max |——o“c’ ¢ — — max tr(M( XX 0y —-c)(y—-c .
Denote ¢ [ > 20 Mot M a5 M0 (M( G- -0 ))]

e X € R™" a5 a matrix of input and y € R™! as a vector of output variables: _ .
P Y P eletg = {u:u=max{l,...,t},u < y_l} and define M := (g/t)M to transform the constraint set from

o]l € {0, l}th, [11 =1and max(diag(HTH)) < vt (bounding the size of the largest component) as the hidden (M:trM=t,ytI>M3>0lto{M:ttM=q,I>M 3> 0).
assignment matrix.

Assume

. . 5 | Algorithm 2: Min-Min Reformulation
e a linear regression model y;|x;, 7; = yiw + €, € ~ N(0,0“) w.r.t a feature representation ; = m; ® x;.

Gaussian Likelihood
With the Gaussian noise model , our likelihood is then

Problem (2) 1s also equivalent to

1 1 2 1 7 . 1 _ . o _— Ground Truth Max-Min Min-Min
Yilxi, i w) = eX [——( A ] min min |—y" diag(XA" ) + —=diag(XA" )" diag(XA" )+ — (A" M "A)]|.
2
Log-Posterior Optimization Steps; (2) = min max _O-_CTC _r tr(CT MC) References
With an additional assumption of Gaussian prior on the parameter w, the minimization of (negative) log- (M:[=M=0,ir M=1/y}{c.C:C=Alc-DX} 2 2a
posterior is now in the form of 2 ¢ S. Gaffney and P. Smyth. Trajectory clustering with mixtures of regression models. In ACM SIGKDD,
: : o"r. Y. AT T T
= min minmax ————c ¢ — —tr(C" MC) +tr(A” C) — tr(A” A(c — y)X). volume 62, pages 6372, 1999.
N N S 1 7 a T (M:I=M>0tr M=1/y} A ¢C 2 2 .. . . L.
min | ——w Y Yw — —5Y Yw + SW Wl (1) e M. Overton and R. Womersley. Optimality conditions and duality theory for minimizing sums of the
w20 o 1 T _ aqg-1 largest eigenvalues of symmetric matrices. Mathematical Programming, 62:321-357, 1993.
Lastly, ¢ and C can be solved as ¢ = ——diag(XA" ) and C = %M A.

s.t. constraints on the assignment matrix I1. o’ e H. Li. Two-view motion segmentation from linear programming relaxation. In CVPR, 2007.



