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_ Abstract [ e R

__________________________ S— e Dataset: DMOZ ontology of topics (http://www.dmoz.org)
e Many transductive inference algorithms assume that distributions over train- ) Small-Scale Classification

ing and test estimates should be related, e.g. by providing a large margin of i R -
separation on both sets. :

e #categories: 100, #observations: (up to) 3.2 - 109, #features: 1.3 - 10°

Binary Classification Scaling the algorithm with respect to the training set size

o , , , , , ' I e Dataset: 23 binary problems from UCI/LibSVM repository training / test set size | 50,000 | 100,000 | 200,000 | 400,000 | 800,000 | 1,600,000
e We use this 1dea to design a transduction algorithm which can be used without . . o _ — duction 0365 0362 0337 0299 0300 0268
modification for classification , regression , and structured estimation. | |||/ W nmr ' * A Gaussian RBF kernel is used for the distribution matching term . ' ' ' ' ' '
Result d 5 diff transduction 0.344) 0.326| 0.330 0.288) 0.263 0.250
e At its heart we exploit the fact that for a good learner the distributions over the % 0 c 10 : 5 * Results are averaged across 5 diferent runs Scaling the algorithm with respect to the test set size
outputs on training and test sets should match. f(x) = <w.x> + b f(x) == <w.x> + b e Performance comparison with Multi Switch Transductive SVM (Sindhwani &  test set size | 100,000 | 200,000 | 400,000 800,000 1,600,000
e This is a classical two-sample problem which can be solved efficiently in its 5 t;ranSducmgn _ tramm? 5 tgranSducncg’n _ temm? Keerthi 2006) induction 0.358 1 0.358| 0357 0.357 0.357
most general form by using distance measures in Hilbert Space. IR S SR — PUNUNGE SN S S— 0.5 ransduction|  0.526] 0.16] 9.5%] 0.522] 9.3
e Further, our approach is scalable and can be easily used with online optimiza- Named Entity Recognition
Gon aleorithms. T @ e 3 3 3
S A el I o4t L e Dataset: Japanese named-entity recognition from the CRF++ toolkit
Two-sample Problem e #sentences: 716 and #annotated named entities: 17
' “HH” g 0.3 ] e 1D chain CRFs with first order Markov dependency between name tags.
The two-sample problem =4 E 0 2 4 - - b e Distribution matching 1s enforced on the clique potentials joining words and
e Let p and p’ be distributions defined on a domain X. Given observations X := Hos) s, b 1 3 labels ((x;, ;)
{Xl, . .,. , xm} and X’ := {X’l, cee xl,’l}’ drawn 1.1.d from p and p’ respectively, 1S optimization < 0.2 | Accuracy Precision!| Recall | F1 Score
_________ Optimization Y S nducion 9082 B415 7249 779
Maximum Mean Discrepancy (MMD; Gretton et al. 2008 ) . - 01 transduction 97.13 84.46 75.30 79.62
Denote ulpl:= Bapolk(, ], then The emoivieal estmae |
Pt The empirical estimate of MMD can be approximated by | Base NP Chunking
2 ‘ | | | : :
MMD|p, p’] = ”,u[p] — ,u[p']”j{ A | 0.1 0.2 0.3 0.4 0.5 e Dataset: CoNLL-2000 base NP chunking from the CRF++ toolkit
. . D:=— Z D; where DistMatch e #sentences: 900 and the task is to label each word indicating whether the word
Empirical estimate of MMD m- = ) . :
Di = KD, fxi) = RCFC. FOy ) = K1), D) + KD, f(y )] 0.5 o ouisic, s, or continues 4 ik
* [ , ;& 12 o N MRS AR MRS | | | | e Same experimental setup as in named entity experiments
MMD[X, X'] = — Z k(xi, xj) — — Z k(x;, x;-) +— Z k(x?, x}) Stochastic Gradient Descent = Accuracy | Precision | Recall |F1 Score
=1 = =l _ The streaming transductive objective function is now 04 x * 1 | induction 95.721  90.99 90.72|  90.85
. ) | | 3 ‘ transduction 96.05 91.73| 91.97 91.85
One of the advantages of MMD is [(Xis Xit15 Yis Vi1 X5 Xy 1 f) Soa B e = _
e Computing MMD is simple: only the kernel matrices K and L are needed. = (x5, v, ) + (X501, Vix1, [) + 2AQ[ f ]+ = * Summary
— _ _ YIRCFO), Fie1)) = K, F X)) = K(F(ei)s FED) + K, f(, D] N W W
Distribution Matchlng for Transduction | § I lge - e We propose a transductive algorithm which is simple , scalable and applicable
Algorithm | | to classification , regression and structured estimation.
Standard Supervised Learning ) e Experiments are performed on small scale classification problems, large scale
Given a training set D comprising m labeled samples {(x1, 1), ..., (Xm, Ym)}, de- Input: Convex set A, objective function / | multi-category settings (involving 3.2 - 10 observations and 100 categories),
sign an estimator which minimizes Initialize w = 0 and chunking and named entity structured prediction.
- - : forr=1toNdo 3 3
e Regularized risk functional | |
Reeglf. X, Y] := L 37 i(x;, y;, ) + AQUf] [Sjafgple (%2, i), <Xi+g ’ yim) ~ P y)and 5, x,, ~ ch) 2t gh3 0.4 0.5 References
e Or, log-posterior probability oo ::: e e (:i il i yi+|1|;vxi’ fxfﬁl’ J) where f(x) = (¢(x), w)
lOg p(flxv Y) — Z?il lOg p(yi|xi9 f) + lOg p(f) + const. end f(il' & WEA . Multiclass Classification o A. Gr@ttOH, K. BOI'gWElI'dt, M. Rasch, B. SChOlkOpf, and A. Smola. A kernel

method for the two sample problem. Technical Report 157, MPI for Biological

: gy .. : Cybernetics, 2008.
Given the labeled training set D and a test set comprising m’ unlabeled samples SpeCIal Cases e Performance comparison with a Gaussian processes based transductive algo- o V. Sindhwani and S.5. Keerthi. Large scale semi-supervised linear SVMs.

Transductive Learning via Distribution Matching

e Dataset: 5 multi-class problems from UCI/LibSVM repository

{x1,...,x,}. Denote the training risk term as Ry.i,[f, X, Y]. Further, denote by rithm (Giirtner et al. 2006) SIGIR '06, pages 477484, New York, NY, USA. 2006

X) = d by f(X') := ), .. ’ )i th licati : - - - - - : : : :
f(X) :={ f (X1)s---sf gx{n)} and by f(X") f (x7)s-- s f (x.m )} the app.lcatlons e Mean matching for classification/class balancing constraint (Joachims 1999) e Same experimental setup as binary experiments e T. Girtner, Q.V. Le, S. Burton, A. J. Smola, and S. V. N. Vishwanathan. Large-
of our estimator to training and test set respectively. The objective function for a

transductive inference is then [ | o’ dataset m | classes | Induction DistMatch | GPDistMatch scale mqlticlass transdu.ctio.n. NIPS 18, pages 41 1.—418, Cambride, MA, 2006.
U fX)] = — Z (Fx)s) = — Z < £ xl{)’ > = u[ F(X)]. usps 730 10/0.143+0.02110.125+0.019 1 0.140+0.034 oT. Joa.chlms. Transductive inference for text classification using support vector
Ririnlf. X, Y1 + yD(f(X), f(X)) for some y > 0 m = m = satimage | 620 6/0.190+0.052 | 0.186+0.037 0.212+0.034 machines. /CML, pages 200-209, 1999.
segment | 693 710.279+0.090 1 0.206+0.04710.181+0.020 e Q.V. Le, A.J. Smola, T. Girtner, and Y. Altun. Transductive gaussian process
In the above, D(f(X), f(X’)) denotes the distance between the two distributions @ Distribution matching for classification (Giértner et al. 2006) svmguide2 | 391 310.280+0.028 1 0.256+0.02010.231+0.018 regression with automatic model selection. ECML, volume 4212 of LNAI
f(X) and f(X’). We choose D(f(X), f(X’)) to be MMD[f(X), f(X")]. e Distribution matching for regression (Le et al. 2006) vehicle 423 410.385+0.070 0.333+0.048 | 0.336+0.060 306-317, 2006.



