Distribution Matching for Transduction

1: SML, NICTA & RSISE, ANU | 2: Yahoo! Research

Abstract

- Many transductive inference algorithms assume that distributions over training and test estimates should be related, e.g. by providing a large margin of separation on both sets.
- We use this idea to design a transduction algorithm which can be used without modification for classification, regression, and structured estimation.
- At its heart we exploit the fact that for a good learner the distributions over the outputs on training and test sets should match.
- This is a classical two-sample problem which can be solved efficiently in its most general form by using distance measures in Hilbert Space.
- Further, our approach is scalable and can be easily used with online optimization algorithms.

Two-sample Problem

The two-sample problem

• Let p and p' be distributions defined on a domain \mathfrak{X} . Given observations X := $\{x_1, \ldots, x_m\}$ and $X' := \{x'_1, \ldots, x'_n\}$, drawn i.i.d from p and p' respectively, is $p \neq p'$?

Maximum Mean Discrepancy (MMD; Gretton et al. 2008) Denote $\mu[p] := \mathbf{E}_{x \sim p(x)}[k(x, \cdot)]$, then

$$MMD[p, p'] = \|\mu[p] - \mu[p']\|_{\mathcal{H}}^2$$

Empirical estimate of MMD

$$MMD[X, X'] = \left[\frac{1}{m^2} \sum_{i,j=1}^{m} k(x_i, x_j) - \frac{2}{mn} \sum_{i,j=1}^{m,n} k(x_i, x'_j) + \frac{1}{n^2} \sum_{i,j=1}^{n} k(x'_i, x'_j)\right]^{\frac{1}{2}}$$

One of the advantages of MMD is

• Computing MMD is simple: only the kernel matrices *K* and *L* are needed.

Distribution Matching for Transduction

Standard Supervised Learning Given a training set \mathcal{D} comprising *m* labeled samples { $(x_1, y_1), \ldots, (x_m, y_m)$ }, design an estimator which minimizes

- Regularized risk functional $R_{\text{reg}}[f, X, Y] := \frac{1}{m} \sum_{i=1}^{m} l(x_i, y_i, f) + \lambda \Omega[f]$
- Or, log-posterior probability
- $\log p(f|X, Y) = \sum_{i=1}^{m} \log p(y_i|x_i, f) + \log p(f) + \text{const.}$

Transductive Learning via Distribution Matching

Given the labeled training set \mathcal{D} and a test set comprising m' unlabeled samples $\{x_1, \ldots, x'_m\}$. Denote the training risk term as $R_{\text{train}}[f, X, Y]$. Further, denote by $f(X) := \{f(x_1), \dots, f(x_m)\}$ and by $f(X') := \{f(x'_1), \dots, f(x'_{m'})\}$ the applications of our estimator to training and test set respectively. The objective function for a transductive inference is then

$$R_{\text{train}}[f, X, Y] + \gamma D(f(X), f(X'))$$
 for some $\gamma > 0$

In the above, D(f(X), f(X')) denotes the distance between the two distributions f(X) and f(X'). We choose D(f(X), f(X')) to be MMD[f(X), f(X')].

 D_i :=

Initialize w = 0

Online Approximation

The empirical estimate of MMD can be approximated by

$$\hat{D} := \frac{1}{m} \sum_{i=1}^{m} D_i \text{ where}$$

$$D_i := [k(f(x_i), f(x_{i+1})) - k(f(x_i), f(x'_{i+1})) - k(f(x_{i+1}), f(x'_i)) + k(f(x'_i), f(x'_{i+1}))]$$

Stochastic Gradient Descent The streaming transductive objective function is now

 $\overline{l}(x_i, x_{i+1}, y_i, y_{i+1}, x'_i, x'_{i+1}, f)$ $:= l(x_i, y_i, f) + l(x_{i+1}, y_{i+1}, f) + 2\lambda\Omega[f] +$ $\gamma[k(f(x_i), f(x_{i+1})) - k(f(x_i), f(x'_{i+1})) - k(f(x_{i+1}), f(x'_i)) + k(f(x'_i), f(x'_{i+1}))]$

Algorithm

Input: Convex set A, objective function \overline{l}

- for t = 1 to N do
- Sample $(x_i, y_i), (x_{i+1}, y_{i+1}) \sim p(x, y)$ and $x'_i, x'_{i+1} \sim p(x)$
- Update $w \leftarrow w \eta_t \partial_w \overline{l}(x_i, x_{i+1}, y_i, y_{i+1}, x'_i, x'_{i+1}, f)$ where $f(x) = \langle \phi(x), w \rangle$
- Project w onto A via $w \leftarrow \operatorname{argmin}_{\overline{w} \in A} \|w \overline{w}\|$.

end for

Special Cases

• Mean matching for classification/class balancing constraint (Joachims 1999)

$$\mu[f(X)] = \frac{1}{m} \sum_{i=1}^{m} \langle f(x_i), \cdot \rangle = \frac{1}{m'} \sum_{i=1}^{m'} \langle f(x'_i), \cdot \rangle = \mu[f(X')].$$

• Distribution matching for classification (Gärtner et al. 2006) • Distribution matching for regression (Le et al. 2006)

Multiclass Classification

- dataset usps satimage segment svmguide2 vehicle

Applications

Small-Scale Classification

• Dataset: 23 binary problems from UCI/LibSVM repository

• A Gaussian RBF kernel is used for the distribution matching term • Results are averaged across 5 different runs

• Performance comparison with Multi Switch Transductive SVM (Sindhwani &

• Dataset: 5 multi-class problems from UCI/LibSVM repository

• Performance comparison with a Gaussian processes based transductive algorithm (Gärtner et al. 2006)

• Same experimental setup as binary experiments

-			-	-	
	m	classes	Induction	DistMatch	GPDistMatch
	730	10	0.143 ± 0.021	0.125 ± 0.019	0.140 ± 0.034
	620	6	0.190 ± 0.052	0.186 ± 0.037	0.212 ± 0.034
	693	7	0.279 ± 0.090	0.206 ± 0.047	0.181 ± 0.020
2	391	3	0.280 ± 0.028	0.256 ± 0.020	0.231 ± 0.018
	423	4	0.385 ± 0.070	0.333 ± 0.048	0.336 ± 0.060
	1		1		

• Dataset: DMOZ
• #categories: 100

Scaling the algorithm with respect to the training set size							
training / test	50,000	100,000	200,000	400,000	800,000	1,600,000	
induction		0.365	0.362	0.337	0.299	0.300	0.268
transduction		0.344	0.326	0.330	0.288	0.263	0.250
Scaling the algorithm with respect to the test set size							
test set size	100,000	200,00	0 400,00	0 800,00	0 1,600,0	000	
induction	0.358	0.35	8 0.35	7 0.35	7 0.3	357	
transduction	0.326	0.31	6 0.30	6 0.32	2 0.3	329	
Named Entity Recognition							

- labels $((x_i, y_i))$

	Acc
induction	(
transduction	

- Acci

induction transduction

- Cybernetics, 2008.

- 306-317, 2006.

Authors Novi Quadrianto¹ | James Petterson¹ | Alex J. Smola²

Large-Scale Multi-Category Classification

ontology of topics (http://www.dmoz.org) 0, #observations: (up to) $3.2 \cdot 10^6$, #features: $1.3 \cdot 10^6$

• Dataset: Japanese named-entity recognition from the CRF++ toolkit

• #sentences: 716 and #annotated named entities: 17

• 1D chain CRFs with first order Markov dependency between name tags.

• Distribution matching is enforced on the clique potentials joining words and

uracy Precision Recall F1 Score

	Base	NP C	hunkina
7.13	84.46	75.30	79.62
5.82	84.15	72.49	77.89

• Dataset: CoNLL-2000 base NP chunking from the CRF++ toolkit

• #sentences: 900 and the task is to label each word indicating whether the word is outside, starts, or continues a chunk

• Same experimental setup as in named entity experiments

iracy	Precision	Recall	F1 Score
5.72	90.99	90.72	90.85
6.05	91.73	91.97	91.85

Summary

• We propose a transductive algorithm which is simple, scalable and applicable to classification, regression and structured estimation.

• Experiments are performed on small scale classification problems, large scale multi-category settings (involving $3.2 \cdot 10^6$ observations and 100 categories), and chunking and named entity structured prediction.

References

• A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola. A kernel method for the two sample problem. Technical Report 157, MPI for Biological

• V. Sindhwani and S.S. Keerthi. Large scale semi-supervised linear SVMs. SIGIR '06, pages 477–484, New York, NY, USA, 2006.

• T. Gärtner, Q.V. Le, S. Burton, A. J. Smola, and S. V. N. Vishwanathan. Largescale multiclass transduction. NIPS 18, pages 411–418, Cambride, MA, 2006. • T. Joachims. Transductive inference for text classification using support vector machines. ICML, pages 200–209, 1999.

• Q.V. Le, A.J. Smola, T. Gärtner, and Y. Altun. Transductive gaussian process regression with automatic model selection. ECML, volume 4212 of LNAI.