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Abstract
• We introduce the concept of most persistent soft-clique. This

is subset of vertices, that 1) is almost fully or at least densely
connected, 2) occurs in all or almost all graph instances, and 3)
has the maximum weight;

• We present a measure of clique-ness, that essentially counts the
number of edge missing to make a subset of vertices into a
clique. With this measure, we show that the problem of find-
ing the most persistent soft-clique problem can be cast either as:
a) a max-min two person game optimization problem, or b) a
min-min soft margin optimization problem;

• We show that both formulations lead to the same solution when
using a partial Lagrangian method to solve the optimization
problems;

• Our proposed approach has a direct application for searching
characteristic subpatterns in a collection of potentially noisy
graph data.

Motivating Example
Goal:

• To identify a clique of friends from, for example, video se-
quences, mobile-phone or location-based social network graph.

(Potential) Problems:

• Inconsistencies: different graph instances have different edge
sets. For example, a person could have left the group temporar-
ily due to other commitments, or the measurement itself could
be faulty.

Example 1: Video Sequences Data

BIWI Walking Pedestrians dataset

Example 2: Mobile-phone Mobility Network Graph

Chaoming Song et al., Science 2010

Persistent Soft-Cliques
Notations

• For a set of vertices V = {v1, . . . , vn}, let Et ⊆ V × V , for t =
1, . . . , T , be multiple observed sets of edges;

• Let kt : V×V → R+ be non-negative weight functions. We have
Gt = (V, Et, kt), for t = 1, . . . , T ;

• Let S ⊂ V be a vertex subset. Let xi ∈ {0, 1}|V| be an indicator
variable whether or not the vertex vi is included as a clique,
where xi = 1 if vi ∈ S, and xi = 0 otherwise.

The problem of finding a maximum weighted clique in a weighted
graph (V, E , k) can be cast as the following optimization problem:

max
x∈{0,1}|V|

∑
1≤i<j≤n

xixjk(vi, vj) subject to
∑

1≤i<j≤n

xixjI[(i, j) /∈ E ] = 0 (1)

Soft Clique-ness is a measure of how far a set of vertices is from
being a clique, that is

β :=
∑

1≤i<j≤n

xixjI[(i, j) /∈ E ]
β = 0 β = 3β = 2

Persistency of a Clique over Time Given multiple instances of a
graph, find a soft-clique that persists through time. We formalize this
concept as either slack or two-person game, discussed in turn.

Slack Perspective We turn hard-cliques constraints in (1) into a soft-
clique constraints by introducing slack variables, βt, for t = 1, . . . , T .

min
x∈{0,1}|V|

min
β∈RT

+

−
∑

1≤i<j≤n

xixjk(vi, vj)︸ ︷︷ ︸
Regularizer

+η ‖β‖pLp︸ ︷︷ ︸
Loss

subject to
∑

1≤i<j≤n

xixjI[(i, j) /∈ Et] ≤ βt ∀t = 1, . . . , T.

Two-Person Game Perspective In this perspective, two competing
players: inlier and outlier are involved. The inlier player controls
x ∈ {0, 1}|V| and aims at finding a group of variables with as large
weight as possible. The outlier aims at reducing the objective value
by controlling variables β1, . . . , βT , which he or she can increase up a
limit given by the number of edges missing to make x a clique.

max
x∈{0,1}|V|

min
β∈RT

+

∑
1≤i<j≤n

xixjk(vi, vj)−
∑
t

βpt

subject to
∑

1≤i<j≤n

xixjI[(i, j) /∈ Et] ≥ βt ∀t = 1, . . . , T.

Optimization
We replace the soft-cliqueness constraint by a Lagrangian. We then
partially dualize the lower bound (upper bound) of slack (game)
perspective by finding the stationary point with respect to only the
primal variables β. We show the case of `2 measure (p = 2), for other
cases, please refer to the paper.

Algorithm: `2 Soft Clique-ness Measure
Input Gt(V, Et, kt) for t = 1, . . . , T , N iterations, η constant
Compute the total similarity, k(i, j) =

∑
t kt(i, j)

for i = 1 to N do
Compute the measure, c(i, j) =

∑
t λtI[(i, j) /∈ Et]

Solve argmax
x

{
xTKx− xTCx

}
Update λt ← 2η

∑
ij xixjI[(i, j) /∈ Et]

end for
Return x ∈ {0, 1}|V|

Experiments
Synthetic Data

High noise at time 2 and low noise at time 3

High noise for both time 2 and 3

Jaccard Index Metric
Data GS Soft `2
A 0.82±0.28 0.89±0.14
B 0.58±0.31 0.64±0.17
C 0.79±0.28 0.87±0.16
D 0.85±0.26 0.89±0.15

• Data: at time 1 are drawn from a
Gaussian mixture with 3 components.
At time 2 and 3, the data are corrupted
with a random Gaussian noise.
• Baseline: graph shift algorithm, Liu et

al. ICML 2010.
Real Social Network Data

• Data: a Brightkite location-based social network graph http:
//snap.stanford.edu/data/loc-brightkite.html.

• Results: We define different after-hours in a day as samples of
the graphs. We represent a person with a bag of vectors, and
use set kernels with sub-polynomial trick to reduce the diagonal
dominance. We observe that our identified clique explains 23%
of the friendship network that was collected based on the online
public API, in comparison with 14% of a random null model.
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