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A Multi-View Neighborhood Preserving Projection

e We address the problem of projecting data in different representations into a shared space, such that the
Euclidean distance 1n this space provides a meaningful within-view as well as between-view similarity;

e We formulate an objective function that expresses the intuitive concept that matching samples are mapped
closely together in the output space, whereas non-matching samples are pushed apart;

e We show that the resulting objective function can be efliciently optimized using the convex-concave pro-
cedure (CCCP);

e Our proposed approach has a direct application for cross-media and content-based retrieval tasks.

Motivating Example

A Cross-Media and Content-Based Retrieval

Goal:

e Building an object cross-retrieval system that allows query objects and objects in the database to have
different representations;

e Building a content-based object retrieval system where several representations can be used to describe a
content, such as, for image objects: SIFT, Color, GIST, SURF, HOG, pHOG, Text, ...
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(Potential) Problems:

e During retrieval time, some of the representations might be missing. This renders approaches such as
simple feature concatenation and Multiple Kernel Learning (MKL) in-applicable.

Our Solution:

e [_earning a multi-view neighborhood preserving projection matrices to a common space.
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Problem Setting

What we have:

e Two sets of m observed data points, {x, ..., x;} € X and {y{,...,ym} C Y describing the same objects;

e A cross-neighborhood set 3y, for each x; € X that corresponds to a set of data points from Y that are deemed
similar to x;.

What we want:

e Projection functions, g : X — RP and g, : Y — RP, that respect the neighborhood relationship {S X, ;Z |-
Assumption:
e A linear parameterization of the functions gvlv(xi) = (w1, ¢d(x;)) for Hy basis functions {gbh(xi)}f:ll and

wy € RP*Hi and likewise for g with the weight parameter wy € RPXH2,

Regularized Risk Functionals

e Folk Wisdom:
Keep your friends (read: matching samples) close and your enemies (read: non-matching samples) closer
far far away;

e Turning Wisdom into a Regularized Risk Functional:
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e The wisdom loss function L"*/(-) consists of the friends term Lll’] and the enemies term le’J :
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Optimization

What so special about the wisdom loss:

e The wisdom loss function is non-convex; the friends term 1s convex, however the enemies term 1S non-
CONvex;

e Though the enemies term is non-convex, it has a decomposition form as a difference of two convex func-
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CCCP Procedure N

The concave convex procedure (CCCP) finds the successive linear lower bounds on LSJ (.) and solves the
resulting convex problems in wq and wy separately.

Algorithm A—Multi-View Neighborhood Preserving Projection

Input: Data sources X = {x1,...,xn} and ¥ = {y1,...,Vm}, an inter-view neighborhood relationship
{S xi}?i . number of alternations N

Output: w; and w}

Initialize wy and w»

forr=1toNdo

Solve the convex optimization problem w.r.t. w; and obtain w
Solve the convex optimization problem w.r.t. wo and obtain w
end for

Algorithm B—Hybrid-{PCA and Multi-NPP}
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Input: Data sources X = {x1,...,xn} and ¥ = {yy,...,yn} and an inter-view neighborhood relationship

(85,
Output: WII)CA
Initialize w»o
Solve the optimization problem w.r.t. wo while fixing w; = w

%k
and w5

PCA
1

and obtain wé

Dataset Statistics:

e 1000 images with 11 categories from the Israeli-Images dataset (http://www.cs.umass.edu/~ronb/
image_clustering.html);

e We use global color descriptors as one view and local SIFT descriptors as another;

e Performance metric: k-Nearest Neighbor classification metric.
Algorithm A v. Baselines (PCA and CCA) for a Cross-Retrieval Task (accuracy =+ std):

Method | #dim | 5-NN 10-NN 30-NN Method | #dim| 5-NN 10-NN 30-NN
PCA 10 | 9.3x1.66| 9.3+2.03 10.0+2.31 PCA 10 | 8.2+2.54| 9.2+3.35| 9.4+3.36
50 | 9.4+1.17/10.7+1.38 | 10.5+2.04 50 | 8.6+£2.65 9.8+2.47 9.8+3.33
CCA | 10 |15.4+4.2715.8+4.53 15.9+4.59 CCA | 10 12.5+£2.98 13.8+2.36 13.8+2.82
50 [16.2+4.8316.8+5.27 18.2+6.30 50 |13.2+1.7713.2+2.3213.4+2.62
Ours | 10 18.6+2.07 18.9+2.28 18.7+2.21 Ours | 10 19.0+3.63 20.8+3.52|22.0+3.98
50 20.4+3.43 20.4+2.88 21.8+3.21 50 22.6+2.07 22.9+1.93 22.4+4.30
Color Query - SIFT Database SIFT Query - Color Database
Cross-Retrieval Results with Algorithm B (accuracy =+ std):
Crossing Type |#dim| 5-NN 10-NN 30-NN 50-NN 70-NN | 100-NN
Color Query 10 124.2+2.5924.9+2.72|26.3+2.8226.4+2.56 |25.8+1.90 25.8+1.73
- SIFT Database | 50 |30.0+£3.2029.2+3.12/30.2+3.42|29.6+3.7429.6+4.04 29.0+3.51
SIFT Query 10 |18.8+3.59/19.1+3.14 19.4+£3.71 19.8+3.91 19.7+4.19|19.9+3.92
- Color Database | 50 27.8+4.27|26.8+4.28 27.0+3.09|27.4+3.78 127.8+3.9027.9+3.82

For more experimental results, please refer to the paper.

Kernelization:

e By the Representer Theorem, the projection matrices admits wy = and wy =

Z’}’zl Bil(y, ), for a positive-definite kernel k on X and a kernel / on }.
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Beyond 2-View:

e For the case with more than two data sources we build an analogous objective function by summing up the
terms of all pairwise objectives.



