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Kernelized Sorting
Novi Quadrianto, Alex J. Smola, Le Song, and Tinne Tuytelaars

Abstract—Object matching is a fundamental operation in data analysis. It typically requires the definition of a similarity measure
between the classes of objects to be matched. Instead, we develop an approach which is able to perform matching by requiring
a similarity measure only within each of the classes. This is achieved by maximizing the dependency between matched pairs of
observations by means of the Hilbert Schmidt Independence Criterion. This problem can be cast as one of maximizing a quadratic
assignment problem with special structure and we present a simple algorithm for finding a locally optimal solution.

Index Terms—Sorting, Matching, Kernels, Object Alignment, Hilbert Schmidt Independence Criterion
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1 INTRODUCTION

MATCHING pairs of objects is a fundamental oper-
ation of unsupervised learning. For instance, we

might want to match a photo with a textual description
of a person, a map with a satellite image, or a music score
with a music performance. In those cases it is desirable
to have a compatibility function which determines how
one set may be translated into the other. For many such
instances we may be able to design a compatibility score
based on prior knowledge or to observe one based on
the co-occurrence of such objects. This has led to good
progress in areas such as graph matching [2], [3], [4].

In some cases, however, such a match may not exist
or it may not be given to us beforehand. That is, while
we may have a good understanding of two sources of
observations, say X and Y , we may not understand
the mapping between the two spaces. For instance, we
might have two collections of documents purportedly
covering the same content, written in two different
languages. Here it should be our goal to determine
the correspondence between both sets and to identify
a mapping between the two domains [5]. In yet other
cases, matching by minimization of a distance function
is a popular strategy for point assignment [6], [7], [8].

In the following we present a method which is able
to perform such matching without the need of a cross-
domain similarity measure and we shall show that if
such measures exist it generalizes existing approaches.
Our method relies on the fact that one may estimate
the dependence between sets of random variables even
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without knowing the cross-domain mapping. Various
dependence criteria are available. We choose the Hilbert
Schmidt Independence Criterion between two sets and
we maximize over the permutation group to find a good
match. As a side-effect we obtain an explicit representa-
tion of the covariance.

We show that our method generalizes sorting. When
using a different measure of dependence, namely an
approximation of the mutual information, our method is
related to an algorithm proposed by Jebara [5]. Finally,
we give a simple approximation algorithm for Kernel-
ized Sorting and we discuss how a number of existing
algorithms fall out as special cases of the Kernelized
Sorting method.

Sorting and Matching
The basic idea underlying our algorithm is simple. De-
note by X = {x1, . . . , xm} ⊆ X and Y = {y1, . . . , ym} ⊆
Y two sets of observations between which we would
like to find a correspondence. That is, we would like to
find some element π of the permutation group Πm on m
elements

Πm :=
{
π|π ∈ {0, 1}m×m where π1m = 1m, π>1m = 1m

}
such that the set of pairs Z(π) :={

(xi, yπ(i)) for 1 ≤ i ≤ m
}

corresponds to maximally
dependent random variables1. Here 1m ∈ Rm is the
vector of all ones. We seek a permutation π such that
the mapping xi → yπ(i) and its converse mapping from
y to x are simple.

For a given measure D(Z(π)) of the dependence be-
tween x and y we define nonparametric sorting of X
and Y as follows:

π∗ := argmax
π∈Πm

D(Z(π)). (1)

This paper is concerned with measures of D and approx-
imate algorithms for (1). In particular we will investigate

1. We use π(i) to denote permutation mapping of i-th element and
π to denote permutation matrix whose entries are all 0 except that in
row i, the entry π(i) equals 1.
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the Hilbert Schmidt Independence Criterion as well as
the Mutual Information.

The remainder of the paper is organized as follows. We
first explain in detail the Hilbert Schmidt Independence
Criterion and how it can be used for Kernelized Sorting
(section 2). Next, we discuss the problem of optimization
(section 3). In section 4, a multivariate extension is
proposed. Section 5 describes links with related work
and section 6 shows possible applications, including
data visualization, matching, and estimation. Section 7
concludes the paper.

2 HILBERT SPACE METHODS

Let sets of observations X and Y be drawn jointly
from some probability distribution Prxy . The Hilbert
Schmidt Independence Criterion (HSIC) [9] measures the
dependence between x and y by computing the norm of
the cross-covariance operator over the domain X × Y
in Hilbert Space. It can be shown, provided the Hilbert
Space is characteristic [10], that this norm vanishes if and
only if x and y are independent. A large value suggests
strong dependence with respect to the choice of kernels.

2.1 Hilbert Schmidt Independence Criterion
Formally, let F be the Reproducing Kernel Hilbert Space
(RKHS) [11] on X with associated kernel k : X ×X → R
and feature map φ : X → F . Let G be the RKHS on Y
with kernel l and feature map ψ. The cross-covariance
operator Cxy : G 7→ F is defined by [12] as

Cxy = Exy[(φ(x)− µx)⊗ (ψ(y)− µy)], (2)

where µx = E[φ(x)], µy = E[ψ(y)], and ⊗ is the
tensor product. HSIC, denoted as D, is then defined as
the square of the Hilbert-Schmidt norm of Cxy [9] via
D(F ,G,Prxy) := ‖Cxy‖2HS. In term of kernels HSIC can
be expressed as

‖Cxy‖2HS =Exx′yy′ [k(x, x′)l(y, y′)]+ (3)
Exx′ [k(x, x′)]Eyy′ [l(y, y′)]−
2Exy[Ex′ [k(x, x′)]Ey′ [l(y, y′)]],

where Exx′yy′ is the expectation over both (x, y) ∼ Prxy
and an additional pair of variables (x′, y′) ∼ Prxy drawn
independently according to the same law. Given a sample
Z = {(x1, y1), . . . , (xm, ym)} of size m drawn from Prxy
an empirical estimate of HSIC is given by

D(F ,G, Z) = (m−1)−2 trHKHL = (m−1)−2 tr K̄L̄. (4)

where K,L ∈ Rm×m are the kernel matrices for the
set X and the set Y respectively, i.e. Kij = k(xi, xj)
and Lij = l(yi, yj). Moreover, Hij = δij − m−1 centers
the observations of set X and set Y in feature space.
Finally, K̄ := HKH and L̄ := HLH denote the centered
versions of K and L respectively. Note that (4) is a biased
estimate where the expectations with respect to x, x′, y, y′

have all been replaced by empirical averages over the set
of observations (for further properties of this empirical

estimator refer to [9, Theorem 7] and references therein).
This is acceptable in most situations. For an unbiased
estimate which addresses problems in situations where
the main diagonal terms in K and L dominate see
Section 2.3.

2.2 Kernelized Sorting

Previous work used HSIC to measure independence be-
tween given random variables [9]. Here we use it to
construct a mapping between X and Y by permuting Y
to maximize dependence. There are several advantages
in using HSIC as a dependence criterion. First, HSIC
satisfies concentration of measure conditions [9]. That
is, for random draws of observation from Prxy , HSIC
provides values which are very similar. This is desir-
able, as we want our mapping to be robust to small
changes. Second, HSIC is easy to compute, since only the
kernel matrices are required and no density estimation
is needed. The freedom of choosing a kernel allows
us to incorporate prior knowledge into the dependence
estimation process. The consequence is that we are able
to generate a family of methods by simply choosing
appropriate kernels for X and Y .

Lemma 1 With D(Z(π)) = D(F ,G, Z) as in equation (4),
the nonparametric sorting problem is given by

π∗ = argmaxπ∈Πm
tr K̄π>L̄π. (5)

Proof: We only need to establish that Hπ> = π>H
since the rest follows immediately from the definition
of (4). Since π1m = 1m and π>1m = 1m, then Hπ =
(Im − 1

m1m1>m)π = (π − 1
m1m1>mπ) = (π − 1

m1m1>m) =
(π − 1

mπ1m1>m) = π(Im − 1
m1m1>m) = πH . Hence H and

π matrices commute.
Note that the optimization problem (5) is in the form
of Koopmans-Beckmann equation [13] and is in general
NP hard as it is an instance of a quadratic assignment
problem [14]. Nonetheless the objective function is in-
deed reasonable. We demonstrate this by proving that
sorting is a special case of the optimization problem set
out in (5). For this we need the following inequality due
to Polya, Littlewood, Hardy, and Blackwell [15]:

Lemma 2 Let a, b ∈ Rm where a is sorted ascendingly. If
argsort b denotes the vector of ranks of ascendingly sorted
entries of vector b, then a>πb is maximized for π = argsort b.

Consider the case of scalar random variables and a linear
kernel:

Lemma 3 Let X = Y = R and let k(x, x′) = xx′ and
l(y, y′) = yy′. Moreover, assume that x is sorted ascendingly.
In this case (4) is maximized by either π = argsort y or by
π = argsort −y.

Proof: Under the assumptions we have that K̄ =
Hxx>H and L̄ = Hyy>H . Hence we may rewrite the
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objective as
[
(Hx)>π(Hy)

]2. This is maximized by sort-
ing Hy ascendingly. Since the centering matrix H only
changes the offset but not the order this is equivalent to
sorting y. We have two alternatives, since the objective
function is insensitive to sign reversal of y.
This means that sorting is a special case of Kernelized
Sorting, hence the name. The ambiguity in the solution
of the optimization problem arises from the fact that
instead of having direct access to the entries xi we only
access them by means of the kernel k(xi, xj). In this
context changes of all observations via x← −x leave the
kernel unchanged, hence they cannot be detected in the
sorting operation. When solving the general problem, it
turns out that a projection onto the principal eigenvec-
tors of K̄ and L̄ is a good initialization of an optimization
procedure.

2.3 Diagonal Dominance

In some cases the biased estimate of HSIC as given by
(4) leads to rather undesirable results, in particular in the
case of document analysis. This arises from the fact that
kernel matrices on texts tend to be diagonally dominant:
a document tends to be much more similar to itself than
to others, hence the values of the diagonal entries Kii

considerably exceed those of the off-diagonal terms. In
this case the O(1/m) bias of (4) is significant. After
all, it is due to the terms in trHKHL which contain
matching index pairs {ii} with respect to K and L that
are responsible for the bias. While their number is only
O(m) (the total number of terms is O(m2)), they can still
cause considerable damage on finite amounts of data.

Unfortunately, the minimum variance unbiased esti-
mator [9] does not have a computationally appealing
form. This can be addressed as follows at the expense
of a slightly less efficient estimator with a considerably
reduced bias: we replace the expectations (3) by sums
where no pairwise summation indices are identical. This
leads to the objective function

1
m(m−1)

∑
i6=j

KijLij + 1
m2(m−1)2

∑
i 6=j,u 6=v

KijLuv

− 2
m(m−1)2

∑
i,j 6=i,v 6=i

KijLiv.

This estimator still has a small degree of bias, albeit sig-
nificantly reduced since it only arises from the product
of expectations over (potentially) independent random
variables. Using the shorthand K̃ij = Kij(1 − δij) and
L̃ij = Lij(1 − δij) for kernel matrices where the main
diagonal terms have been removed we arrive at the
expression (m − 1)−2 trHK̃HL̃. The advantage of this
term is that it can be used as a drop-in replacement in
Lemma 1 without any need for changing the optimiza-
tion algorithm.

2.4 Stability Analysis

Before discussing practical issues of optimization let us
briefly study the statistical properties of the objective

function. First note that the solution argmaxπ tr K̄π>L̄π
is not stable under sampling in general. A simple ex-
ample may illustrate this. Assume that X = {1, 2, 3}
and that Y = {1, 2, 2 + ε}. In this case the identity per-
mutation [(1)(2)(3)] is sufficient for maximal alignment
between X and Y . Now replace the third element in
Y , that is 2 + ε by 2 − ε. In this case the permutation
[(1)(2, 3)] which swaps the elements 2 and 3 is optimal.
Nonetheless, by a suitable choice of ε we can make the
change in the objective function arbitrarily small.

What we can prove, however, is that changes in the
minimum value of the objective function are well con-
trolled under the optimization procedure. This relies on
McDiarmid’s concentration inequality [16] and on the
fact that the minima of close functions are close:

Lemma 4 Denote by f and g functions on a domain X
with |f(x) − g(x)| < ε for all x ∈ X . In this case
|minx∈X f(x)−minx∈X g(x)| < ε.

Proof: Consider x∗ = arg minx∈X g(x), then |f(x∗)−
g(x∗)| < ε. Since f(x∗) ≥ minx∈X f(x), then
|minx∈X f(x)− g(x∗)| ≤ |f(x∗)− g(x∗)| < ε.

Lemma 5 (Concentration Inequality [16]) Denote by f :
Xm → R a function satisfying

|f(. . . , xi−1, x, xi+1, . . .)− f(. . . , xi−1, x
′, xi+1, . . .)| ≤ c/m

for all x, x′, xi ∈ X . Moreover, let Pr be a distribution on
X . In this case for X = {x1, . . . , xm} drawn from Pm we
have that with probability exceeding 1−2 exp

(
−mε2/c2

)
the

following bound holds:

|f(X)−EX∼Prm [f(X)]| ≤ ε. (6)

Lemma 6 (Stability of optimal alignment) Denote by
A(X,Y ) := m−2 argminπ∈Πm

trπ>K̄πL̄ the minimum
of the alignment objective function for the sets X
and Y . Moreover, assume that the kernels k and l
are bounded by |k(x, x′)|, |l(y, y′)| ≤ R. In this case
|A(X,Y ) − EX,Y [A(X,Y )]| ≤ ε holds with probability at
least 1− 4 exp

(
−mε2/8R2

)
.

Proof: The first step in the proof is to check that
if we replace any xi by some x′i or alternatively some
yj by y′j the value of A(X,Y ) only changes by 2R/m.
This can be seen by using the fact that HSIC can be
seen as the difference between the joint and the marginal
expectation of the feature map k(x, ·)l(y, ·).

Secondly, to deal with the fact that we have ex-
pectations over X and Y we apply the concentration
inequality twice and chain the arguments. To guarantee
a total deviation of at most ε we apply a bound of ε/2
to the deviation between the empirical average and the
expectation EX , and one more between the expectation
EX and EX,Y . Applying the union bound for the corre-
sponding probabilities of failure prove the claim.
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The consequence of this analysis is that while the
optimal assignment itself is not stable, at least the objec-
tive function has this desirable property, i.e. for random
draws of observations from joint distribution, the ob-
jective function provides values which are very similar.
This means that in practice also most assignments are
rather stable when it comes to subsampling. This is
evident in the experiments of Section 6.2.3.

3 OPTIMIZATION

Quadratic assignment problems [13] are notoriously
hard and have attracted a rather diverse set of algorithms
from simulated annealing, tabu search and genetic algo-
rithms to ant colony optimization. Below we present a
rather simple method which is guaranteed to obtain a
locally optimal solution by exploiting convexity in the
optimization problem. It is very simple to implement
provided that a linear assignment solver is available.

3.1 DC Programming

To find a local maximum of the matching problem we
may take recourse to a well-known algorithm, namely
DC Programming [17] which in machine learning is also
known as the Concave Convex Procedure [18]. It works
as follows: for a given function

f(x) = g(x)− h(x)

where g is convex and −h is concave, a lower bound can
be found by

f(x) ≥ g(x0) + 〈x− x0, ∂xg(x0)〉 − h(x). (7)

This lower bound is concave and it can be maximized ef-
fectively over a convex domain. Subsequently one finds
a new location x0 and the entire procedure is repeated.
For the problem in Lemma 1, h(x) = 0 and thus DC
programming corresponds to a successive maximization
of linear lower bounds.

Lemma 7 Define π as a doubly stochastic matrix (8). The
function tr K̄π>L̄π is convex in π.

Proof: Since K̄, L̄ � 0 we may factorize them as K̄ =
U>U and L̄ = V >V . Hence by the circularity of the trace
we may rewrite the objective function as

∥∥V πU>∥∥2 or as
‖(U ⊗ V )vec(π)‖2 with vec(.) denotes stacking column
vectors of a matrix. This is clearly a convex quadratic
function in π.

Note that the set of feasible permutations π is con-
strained in a unimodular fashion, that is, the set

Pm :=

{
M ∈ Rm×m where Mij ≥ 0 and∑
iMij = 1 and

∑
jMij = 1

}
(8)

has only integral vertices, namely admissible permuta-
tion matrices. This means that the following procedure

will generate a succession of permutation matrices which
will yield a local maximum for the assignment problem:

πi+1 ← (1− λ)πi + λ argmax
π∈Pm

[
tr K̄π>L̄πi

]
(9)

Here choosing λ = 1 in the last step will ensure inte-
grality. The optimization subproblem is well known as
a Linear Assignment Problem and effective solvers are
freely available [19].

Lemma 8 The algorithm described in (9) for λ = 1 termi-
nates in a finite number of steps.

Proof: We know that the objective function may only
increase for each step of (9). Moreover, the solution set
of the linear assignment problem is finite. Hence the
algorithm does not cycle.

Non-convex Objective Function
When using the bias corrected version of the objective
function the problem is no longer guaranteed to be con-
vex. In this case we need to add a line-search procedure
along λ ∈ [0, 1] which maximizes

trHK̃H[(1− λ)πi + λπ̂i]>HL̃H[(1− λ)πi + λπ̂i], (10)

with π̂i = argmaxπ∈Pm

[
tr K̃π>L̃πi

]
. Since the function

is quadratic in λ we only need to check whether the
search direction remains convex in λ; otherwise we may
maximize the term by solving a simple linear equation.

Initialization
Since quadratic assignment problems are in general NP
hard we may obviously not hope to achieve an optimal
solution. That said, a good initialization is critical for
good estimation performance. This can be achieved by
using Lemma 3. That is, if K̄ and L̄ only had rank 1, the
problem could be solved by sorting X and Y in matching
fashion. Instead, we use the projections onto the first
principal vectors as initialization in our experiments.

3.2 Relaxation to a constrained eigenvalue problem
Yet another alternative is to find an approximate solution
of the problem in Lemma 1 by solving

maximize
η

η>Mη subject to Aη = b (11)

Here the matrix M = K̄ ⊗ L̄ ∈ Rm2×m2
is given by the

outer product of the constituting kernel matrices, η ∈
Rm2

is a vectorized version of the permutation matrix π,
and the constraints imposed by A and b amount to the
polytope constraints imposed by Πm. This approach has
been proposed by [4] in the context of balanced graph
matching.

Note that the optimization algorithm for (11) as pro-
posed by [4] is suboptimal. Instead, it is preferable to
use the exact procedure described in [20] which is also
computationally somewhat more efficient. Nonetheless
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the problem with the relaxation (11) is that it does not
scale well to large estimation problems as the size of
the optimization problem scales O(m4). Moreover, the
integrality of the solution cannot be guaranteed: while
the constraints are totally unimodular, the objective
function is not linear. This problem can be addressed
by subsequent projection heuristics. Given the difficulty
of the implementation and the fact that it does not
even guarantee an improvement over solution at the
starting point we did not pursue this approach in our
experiments.

4 MULTIVARIATE DEPENDENCE MEASURES

A natural extension is to align several sets of observa-
tions. For this purpose we need to introduce a mul-
tivariate version of the Hilbert Schmidt Independence
Criterion. One way of achieving this goal is to compute
the Hilbert Space norm of the difference between the
expectation operator for the joint distribution and the
expectation operator for the product of the marginal dis-
tributions, since this difference only vanishes whenever
the joint distribution and the product of the marginals
are identical.

4.1 Multivariate Mean Operator
Formally, let there be T random variables xi ∈ Xi which
are jointly drawn from some distribution p(x1, . . . , xm).
Moreover, denote by ki : Xi×Xi → R the corresponding
kernels. In this case we can define a kernel on X1⊗ . . .⊗
XT by k1 · . . . kT . The expectation operator with respect
to the joint distribution and with respect to the product
of the marginals is given by [9]. For instance, the joint
expectation operator can be written as follows:

f(x1, . . . , xT )→ Ex1,...,xT
[f (x1, . . . , xT )] (12)

= Ex1,...,xT

[〈
f,

T∏
i=1

ki(xi, ·)

〉]

=

〈
f,Ex1,...,xT

[
T∏
i=1

ki(xi, ·)

]〉
Hence we can express the joint expectation operator and
the product of the marginal expectation operators in
Hilbert space via

Ex1,...,xT

[
T∏
i=1

ki(xi, ·)

]
and

T∏
i=1

Exi
[ki(xi, ·)] (13)

respectively. Straightforward algebra shows that the
squared norm of the difference between both terms is
given by

ExT
i=1,x

′T
i=1

[
T∏
i=1

ki(xi, x′i)

]
+

T∏
i=1

Exi,x′
i
[ki(xi, x′i)] (14)

−2ExT
i=1

[
T∏
i=1

Ex′
i
[k(xi, x′i)]

]
.

which we refer to as multiway HSIC. A biased empirical
estimate of the above is obtained by replacing sums
by empirical averages. Denote by Ki the kernel matrix
obtained from the kernel ki on the set of observations
Xi := {xi1, . . . , xim}. In this case the empirical estimate
of (14) is given by

HSIC[X1, . . . , XT ] (15)

=1>m

[
T⊙
i=1

Ki

]
1m +

T∏
i=1

1>mKi1m − 2 · 1>m

[
T⊙
i=1

Ki1m

]
where �Tt=1∗ denotes elementwise product of its argu-
ments (the ’.*’ notation of Matlab).

4.2 Optimization
To apply this new criterion to sorting we only need to
define T permutation matrices πi ∈ Πm and replace the
kernel matrices Ki by π>i Kiπi.

Without loss of generality we may set π1 = 1, since we
always have the freedom to fix the order of one of the
T sets with respect to which the other sets are to be or-
dered. In terms of optimization the same considerations
as presented in Section 3 apply. That is, the objective
function is convex in the permutation matrices πi and
we may apply DC programming to find a locally optimal
solution.

5 RELATED WORK
Matching and layout are clearly problems that have
attracted a large degree of prior work. We now discuss
a number of algorithms which are related to or special
cases of what we proposed by means of Kernelized
Sorting.

5.1 Mutual Information
Probably the most closely related work is that of Jebara
[5], who aligns bags of observations by sorting via
minimum volume PCA. Here, we show that when using
mutual information, our scheme leads to a criterion very
similar to the one proposed by [5]. Mutual informa-
tion, defined as I(X,Y ) = h(X) + h(Y ) − h(X,Y ), is
a natural means of studying the dependence between
random variables xi and yπ(i). In general, this is difficult,
since it requires density estimation. However, this can
be circumvented via an effective approximation, where
instead of maximizing the mutual information directly,
we maximize a lower bound to the mutual information.
First, we note that only the last term matters since the
first two are independent of π. Maximizing a lower
bound on the mutual information then corresponds
to minimizing an upper bound on the joint entropy
h(X,Y ). An upperbound for the entropy of any distribu-
tion with variance Σ is given by the differential entropy
of a normal distribution with covariance Σ, which can
be computed as

h(p) =
1
2

log |Σ|+ constant. (16)
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Hence the problem reduces to minimizing the joint
entropy J(π) := h(X,Y ), where x and y are assumed
jointly normal in the Reproducing Kernel Hilbert Spaces
spanned by the kernels k, l and k · l. By defining a joint
kernel on X ×Y via k((x, y), (x′, y′)) = k(x, x′)l(y, y′) we
arrive at the optimization problem

argmin
π∈Πm

log |HJ(π)H| where Jij = KijLπ(i),π(j). (17)

Note that this is related to the optimization criterion
proposed by [5] in the context of sorting via minimum
volume PCA. What we have obtained here is an alter-
native derivation of [5]’s criterion based on information
theoretic considerations.

The main difference with our work is that [5] uses
the setting to align a large number of bags of obser-
vations by optimizing log |HJ(π)H| with respect to re-
ordering within each of the bags. Obviously (17) can
be extended to multiple random variables, simply by
taking the pointwise product of a sequence of kernel
matrices. In terms of computation (17) is considerably
more expensive to optimize than (5) since it requires
computation of inverses of matrices even for gradient
computations.

5.2 Object Layout

A more direct connection exists between object layout
algorithms and Kernelized Sorting. Assume that we
would like to position m objects on the vertices of a
graph, such as a layout grid for photographs with the
desire to ensure that related objects can be found in close
proximity. We will now show that this is equivalent to
Kernelized Sorting between a kernel on objects and the
normalized graph Laplacian induced by the graph.

To establish our claim we need some additional no-
tation. Denote by G(V,E) an undirected graph with a
set of vertices V and edges E. With some abuse of
notation we will denote by G also the symmetric edge
adjacency matrix. That is, Gij = 1 if there is an edge
between vertex i and j and Gij = 0 if no edge is
present. This definition naturally extends to weighted
graphs simply by allowing that Gij ≥ 0 rather than
Gij ∈ {0, 1}. Moreover, we denote by di :=

∑
j Gij the

degree of vertex i in the graph and we let D := diag(d)
be a diagonal matrix containing the degrees. Finally we
denote by

L := D −G (18)

the graph Laplacian L.
It is well known, see e.g. [21], [22], that local smooth-

ness functionals on graphs can be expressed in terms of
L. More specifically we have∑

i,j

Gij ‖φ(xi)− φ(xj)‖2 = trKL (19)

where φ(xi) can be treated as the vertex value and
Kij = k(xi, xj) = 〈φ(xi), φ(xj)〉. Basically, expression (19)

sums over the squared differences between the values
of adjacent vertices. The smaller the number trKL, the
smoother the vertex values vary across the graph. By
construction, (19) is translation invariant, that is, changes
from φ(xi)← φ(xi)− µ leave the functional unchanged.
Hence we have trKL = trHKHL.

If we were to layout objects such that similar objects
are assigned to adjacent vertices in G, we can maximize
the smoothness by minimizing trHKHπ>Lπ. Here the
main difference to (5) is that we are minimizing a convex
form rather than maximizing it.

Such difference can be removed by a simple substitu-
tion of L by ‖L‖ I−L. Indeed, note that the eigenvalues
of L range between 0 and ‖L‖. The transformation
‖L‖ I − L shifts the eigenvalues into positive territory
while changing the objective function only by a constant
independent of π, thus leading to a Kernelized Sorting
problem for the “kernel” L′ = ‖L‖ I−L. This is also con-
sistent with the definition of a kernel which is the inverse
of a regularization operator [23], [24]. That is, while in
a regularization operator large eigenvalues correspond
to properties of a function which are undesirable, the
converse is true in a kernel, where large eigenvalues
correspond to simple functions [25].

A consequence of these considerations is that for object
layout there exists an alternative strategy for optimiza-
tion: first relax the set of permutation matrices Πm into
the set of doubly stochastic matrices Pm and solve the re-
laxed problem minπ∈Pm trHKHπ>Lπ exactly; and then
employ the DC programming described in section 3.1 to
find a locally optimal integral solution. While theoreti-
cally appealing, this approach nonetheless suffers from
a range of problems: the number of variables required
to deal with in the quadratic program is O(m2) which
makes an efficient implementation a challenge even for
modest amounts of data, unless the special structure of
the quadratic form in π is exploited.

5.3 Morphing
In object morphing one may use a compatibility function
defined on local similarity between source and destina-
tion matches. Assume that X,Y ∈ R are sets of scalars
(e.g. intensity values in an image). In this context [7], [8]
use scoring functions of the form

1
2

m∑
i=1

(
xi − yπ(i)

)2 =
1
2

∑
i

x2
i + y2

π(i) −
∑
i

xiyπ(i). (20)

Whenever π is a bijection2 the first two terms are in-
dependent of π and the problem of matching becomes
one of maximizing

∑
i xiyπ(i), ie. X>πY . By the same

argument as in the proof of Lemma 3 this can be
rewritten in the form of

argmax
π∈Πm

trXX>πY Y >π> (21)

2. Note that this is not required by [7], [8]. In fact, their objective
function is not even symmetric between source and destination images.
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simply by squaring the objective function of X>πY .
The only ambiguity left is that of an arbitrary sign,
i.e. we might end up minimizing the match between
X and Y rather than maximizing it. That said, our
argument shows that morphing and Kernelized Sorting
have closely related objective functions.

5.4 Smooth Collages
The generation of collages is a popular application in
the processing of composite images. In this process one
uses a template image Y (often a company logo or a
face of a person) and a collection X = {x1, . . . , xm}
of reference images to generate a collage where the
individual “pixels” of the collage are taken from the set
of reference images such that the collage best resembles
the template. This problem is easily solved by a linear
assignment algorithm as follows:

Denote by d(x, y) a distance function between an
image x and a pixel y in the template. Moreover, denote
by yi a pixel in Y . In this case the optimal assignment
of reference images to Y is achieved by finding the
permutation π which minimizes∑

i

d(xi, yπ(i)) = trπ>D where Dij := d(xi, yj). (22)

In other words, one attempts to find an overall allocation
of reference images to the template such that the sum
of distances is minimized. While this is desirable in
itself, it would also be best if there were some spatial
coherence between images. This is achieved by mixing
the objective function of (22) with the Kernelized Sorting
objective. Since this constitutes only a linear offset of
the optimization problem of (5) it can be solved in an
identical way to what is required in Kernelized Sorting,
namely by a DC programming procedure.

6 APPLICATIONS

To investigate the performance of our algorithm (it is a
fairly nonstandard unsupervised method) we applied it
to a variety of different problems ranging from visual-
ization to matching and estimation.

In all our experiments, the maximum number of iter-
ations used in the updates of π is 100 and we terminate
early if progress is less than 0.001% of the objective
function.

6.1 Data Visualization
In many cases we may want to visualize data according
to the metric structure inherent in it. In particular, we
may want to align it according to a given template, such
as a grid, a torus, or any other fixed structure. Such
problems occur when presenting images or documents
to a user.

While there is a large number of algorithms for low
dimensional object layout (Maximum Variance Unfold-
ing (MVU) [26], Local-Linear Embedding (LLE) [27],

. . . ), most of them suffer from the problem that the
low dimensional presentation is nonuniform. This has
the advantage of revealing cluster structure but given
limited screen size the presentation is undesirable.

Alternatively, one can use the Self-Organizing Map
(SOM) [28] or the Generative Topographic Mapping
(GTM) [29] to layout images according to a pre-defined
grid structure. These methods, however, often map sev-
eral images into a single grid element, and hence some
grid elements may have no data associated with them.
Such grouping creates blank spaces in the layout and
still under-utilizes the screen space.

Instead, we may use Kernelized Sorting to layout ob-
jects. Here the kernel matrix K is given by the similarity
measure between the objects xi that are to be laid out.
The kernel L, on the other hand, denotes the similarity
between the locations of grid elements where objects are
to be aligned to.

6.1.1 Image Layout on a Uniform Grid
For the first visualization experiment, we want to layout
images on a 2D rectangular grid. We have obtained 320
images from Flickr3 which are resized and downsampled
to 40× 40 pixels. We convert the images from RGB into
Lab space, yielding 40× 40× 3 dimensional objects. The
grid, corresponding to Y is a 16×20 mesh on which the
images are to be laid out. We use a Gaussian RBF kernel
between the objects to be laid out and also between the
positions of the grid, i.e. k(x, x′) = exp(−γ ‖x− x′‖2).
The kernel width γ is adjusted to the inverse median of
‖x− x′‖2 such that the argument of the exponential is
O(1). After sorting we display the images according to
their matching coordinates. The result is shown in Fig-
ure 1(a). Clearly, images with similar color composition
are found at proximal locations.

For comparison, we apply an SOM4 and a GTM5 to
the same data set. The results are shown in Figure 2(a)
and 2(b). If a grid element (corresponding to a neuron
and a latent variable) has been assigned multiple images,
only one of the assigned images is displayed. The detail
of all other overlapping images can be found on our
website.6

6.1.2 Image Layout on an Irregular Grid
To reinforce the point that matching can occur between
arbitrary pairs of objects we demonstrate that images
can be aligned with the letters ‘PAMI 2009’ displayed
as a pixelated grid on which the images are to be laid
out. The same color features and the same Gaussian
RBF kernels as in the previous experiment are used. The

3. http://www.flickr.com
4. http://www.cis.hut.fi/projects/somtoolbox/. A Gaussian neigh-

borhood and inverse learning rate functions are used.
5. http://www.ncrg.aston.ac.uk/GTM/, again forcing the images

into a 2D grid. The principal components are used for the initialization
and the mode projection is used to map data into the (2D grid) latent
space.

6. http://users.rsise.anu.edu.au/∼nquadrianto/extras.pdf
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result is presented in Figure 1(b). As expected, the layout
achieves a dual goal: it fully utilizes the elements on the
irregular grid while at the same time preserving the color
grading.

6.1.3 Visualization of Semantic Structure

While color based image layout gives visually pleasing
results, one might desire to layout images based on
their semantic content and explore the high dimen-
sional semantic space inherent in images by providing
a two dimensional layout. To this end, we represent
images as bag-of-visual-words [30], i.e. histograms of
vector quantized local image descriptors. This repre-
sentation has been shown successful in the context of
visual object recognition. Here we use a combination
of densely sampled, overlapping patches with the SIFT
descriptor [31]. Then the inverse of the exponentiated
χ2 distance, denoted as exp(−γ ‖x− x′‖2χ), is used to
measure the similarity between the images. Gaussian
RBF kernel is still used to measure similarity between the
positions of the grid. We apply this scheme to 570 images
from the MSRC2 database.7 The result is presented in
Figure 4.

First, one can observe that objects are grouped accord-
ing to their categories. For example, books, cars, planes,
and people have all or most of their instances visual-
ized in proximal locations. Second, beyond categories,
another ordering based on the overall composition of the
images is also visible. Images near the lower left corner
consist mostly of rectangular shaped objects; along the
antidiagonal direction of the layout, the shapes of the
objects become more and more irregular. This reveals
structure of the metric space which has not been explic-
itly designed.

6.1.4 Photo Album Summarization

An immediately useful application of Kernelized Sorting
is a tool for presenting a summary of personal photo
collections. This is particularly challenging when photos
are taken by different persons, with different scenery,
with different cameras or over a large time period.8

Depending on the way a viewer wants to explore the
photo album, the photos can be summarized either based
on color information or on a bag-of-visual-words based
image representation. Figure 5 shows the corresponding
summaries for a collection of holiday photos from one
of the authors using Kernelized Sorting. Comparing the
two summaries, we can see that the latter presents a
much clearer separation between natural scenery and
human subjects.

7. http://research.microsoft.com/vision/cambridge/recognition/
8. In fact, the photos are taken from a collection of holiday pho-

tographs of one of the authors — without consideration of using them
for the purpose of this paper. The equipment was a consumer grade
point-and-shoot camera and a digital SLR with high quality lenses.
Two users took the pictures.

6.2 Matching
Apart from visualization, Kernelized Sorting can also
be used to align or match two related data sets even
without cross data set comparison. In the following set
of experiments, we will use data sets with known ground
truth of matching. This allows us to quantitatively eval-
uate Kernelized Sorting. To create such data sets, we
either split an image or a vector of data attributes
into two halves, or use multilingual documents that are
translations of each other.

6.2.1 Image Matching
Our first experiment is to match image halves. For this
purpose we use the same set of Flickr images as in
section 6.1.1 but split each image (40 × 40 pixels) into
two equal halves (20×40 pixels). The aim is to match the
image halves using Kernelized Sorting. More specifically,
given xi being the left half of an image and yi being
the right half of the same image, we want to find a
permutation π which lines up xi and yπ(i) by maximizing
the dependence.

Of course, this would be relatively easy if we were
allowed to compare the two image halves xi and yπ(i)

directly. While such comparison is clearly feasible for
images where we know the compatibility function, it
may not be possible for generic objects. Figure 3 shows
the image matching result. For a total of 320 images
we correctly match 140 pairs. This is quite respectable
given that the chance level would be only 1 correct pair
(a random permutation matrix has on expectation one
nonzero diagonal entry).

6.2.2 Multilingual Document Matching
To illustrate that Kernelized Sorting is able to recover
nontrivial similarity relations we apply our algorithm
to the matching of multilingual documents in this sec-
ond experiment. For this purpose we use the Europarl
Parallel Corpus.9 It is a collection of the proceedings of
the European Parliament, dating back to 1996 [32]. We
select the 300 longest documents of Danish (Da), Dutch
(Nl), English (En), French (Fr), German (De), Italian
(It), Portuguese (Pt), Spanish (Es), and Swedish (Sv).
The purpose is to match the non-English documents
(source languages) to its English translations (target lan-
guage). Note that our algorithm does not require a cross-
language dictionary. In fact, one could use Kernelized
Sorting to generate a dictionary after an initial matching
has been created.

We use standard TF-IDF (term frequency - inverse
document frequency) features of a-bag-of-words kernel.
As preprocessing we remove stopwords (via NLTK10)
and perform stemming using Snowball.11 Finally, the
feature vectors are normalized to unit length in term
of `2 norm. Since these kernel matrices on documents

9. http://www.statmt.org/europarl/
10. http://nltk.sf.net/
11. http://snowball.tartarus.org
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(a) Layout of 320 images into a 2D grid of size 16
by 20 using Kernelized Sorting

(b) Layout of 280 images into a ‘PAMI 2009’ letter
grid using Kernelized Sorting

Fig. 1: Image layouting on a 2D grid and letter grid with Kernelized Sorting. One can see that images are laid out
in the grids according to their color grading.

(a) Layout of 320 images into a 2D grid of size 16
by 20 using SOM

(b) Layout of 320 images into a 2D grid of size 16
by 20 using GTM

Fig. 2: Comparison with SOM and GTM for image layout on a 2D grid and a compressed representation of images.
Note that both algorithms do not guarantee unique assignments of images to nodes.

Fig. 3: Image matching as obtained by Kernelized Sorting. The images are cut vertically into two equal halves and
Kernelized Sorting is used to pair up image halves that originate from the same images.
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Fig. 4: Layout of 570 images into a 2D grid of size 15 by 38 using bag-of-visual-words based Kernelized Sorting.
Several object categories, like books, cars, planes, and people are grouped into proximal locations.

(a) Photos summarization by color based Kernelized Sorting.

(b) Photos summarization by bag-of-visual-words based Kernelized Sorting.

Fig. 5: Application of Kernelized Sorting as a photo collection summarization tool.



QUADRIANTO et al.: KERNELIZED SORTING 11

are notoriously diagonally dominant we use the bias-
corrected version of our optimization problem.

As a reference we use a fairly straightforward means
of document matching via its length. That is, longer doc-
uments in one language will be most probably translated
into longer documents in the other language. This ob-
servation has also been used in the widely adopted sen-
tence alignment method [33]. Alternatively, we can use a
dictionary-based method as an upperbound for what can
be achieved by matching. We translate the documents in
the source languages into the target language word by
word using Google Translate12. This effectively allows
us to directly compare documents written in different
languages. Now for each source language and the target
language we can compute a kernel matrix based on a-
bag-of-words kernel; and the ij-th entry of this kernel
matrix is the similarity between document i in the source
language and document j in the target language. Then
we can use this kernel matrix and a linear assignment to
find the matches between documents across languages.

The experimental results are summarized in Table 1.
Here we use two versions of our algorithm: one with a
fixed set of λs and the other with automatic tuning of λ
(as in section 3). In practice we find that trying out dif-
ferent λ from a fixed set (λ ∈ {0.1, 0.2, . . . , 1.0}) and then
choosing the best λ in terms of the objective function
works better than automatic tuning. Low matching per-
formance for the document length-based method might
be due to small variance in the document length after
we choose the 300 longest documents. The dictionary-
based method gives near perfect matching. Our method
produces results consistent with the dictionary-based
method, for instance the notably low performance for
matching German documents to its English translations.
We suspect that the difficulty of German-English docu-
ment matching is inherent to this data set as it was also
observed in [32]. Arguably the matching produced by
Kernelized Sorting is quite encouraging as our method
uses only a within language similarity measure while
still matching more than 2/3 of what a dictionary-based
method is capable of in most cases.

6.2.3 Data Attribute Matching
In our last experiment, we aim to match attributes of
vectorial data. In our setup we use benchmark data sets
for supervised learning from the UCI repository13 and
LibSVM site.14 We split the attributes (or dimensions)
of each data point into two halves, and we want to
match them back. Here we use the estimation error to
quantify the quality of the match. That is, assumed that
yi is associated with the observation xi. In this case, we
compare yi and yπ(i) using homogenous misclassification
loss for binary and multiclass problems and squared

12. http://translate.google.com Note that we did not perform stem-
ming on the words and thus the dictionary is highly customized to
the problem at hand.

13. http://archive.ics.uci.edu/ml
14. http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools

loss for regression problem. Note that this measure of
goodness is different from the ones we used in image
matching and document matching. This is because for
data attribute matching we may not be able to match
back the two halves of an individual data point exactly,
but we can restore the overall characteristic of the data
such as class separability.

To ensure good dependence between the splitted at-
tributes, we choose a split which ensures correlation.
This is achieved as follows: first we compute the cor-
relation matrix of the data; then among the pairs of
attributes which achieves the largest correlation we pick
the dimension with the smallest index as the reference;
next we choose the dimensions that have at least 0.5
correlation with the reference and split them equally into
two sets, set A and set B (we also put the reference
dimension into set A); last we divide the remaining
dimensions (with less than 0.5 correlation with the refer-
ence) into two equal halves, and allocate them into set A
and B respectively. This scheme ensures that at least one
dimension in set B is strongly correlated with at least
one dimension in set A. The detailed split of the data
attributes for different data sets can be found on our
website.15

As before, we use a Gaussian RBF kernel with median
adjustment for the kernel width for both x and y. To
obtain statistically meaningful results, we subsample
80% of the data 10 times and compute the error of
the match on the subset (this is done in lieu of cross-
validation since the latter is meaningless for matching).
As a reference we compute the expected performance
of random permutations which can be done exactly.16

As a lower bound for the estimation error, we use the
original data set and perform classification/regression
using 10-fold cross-validation. The results are summa-
rized in Table 2. Basically, the closer the results obtained
by Kernelized Sorting to the lower bound the better. In
many cases, Kernelized Sorting is able to restore signif-
icant information related to the class separability in the
classification problems and the functional relationship in
the regression problems.

6.3 Multivariate Extension

In this experiment, we align 5 USPS digits of 0’s using
multiway HSIC. In this case, each non-zero pixel in an
image is a data point and each image has 100 non-
zero pixels. On each set of digits, we use a Gaussian
RBF kernel with median adjustment of the kernel width.
Furthermore we use the first digit as the target set (i.e.
π1 = I) and the other digits as the sources. The sorting
performance is visualized by computing linear inter-
polations between the matching pixels. If meaningful

15. http://users.rsise.anu.edu.au/∼nquadrianto/extras.pdf
16. For classification: 1 −

∑|Y|
i=1

p2i and for regression:
2
(
Ey [y2]−E2

y [y]
)

. Here y denotes the class label and pi denotes the
proportion of class i in the data set.
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(a) Linear interpolation using multiway HSIC (b) Linear interpolation using Entropy

(c) Arrows showing the matching of strokes of digit
pairs sorted using multiway HSIC.

(d) Arrows showing the matching of strokes of digit
pairs sorted using Entropy

Fig. 6: Linear interpolation of 4 pairs of the digit 0 after sorting using multiway HSIC and Entropy [5].

TABLE 1: The number of correct matches from docu-
ments written in various source languages to those in
English.
We compare Kernelized Sorting (KS) to a reference procedure which
simply matches the lengths of documents (RE : Reference) and a
dictionary-based approach (UB : Upper Bound). We also include results
of line search or automatic tuning of λ (KS - LS). Reported are the
numbers of correct matches (out of 300) for various source languages.

Language PT ES FR SV DA IT NL DE
KS 252 218 246 150 230 237 223 95
KS - LS 241 216 193 99 83 236 211 70
RE 9 12 8 6 6 11 7 4
UB 298 298 298 296 297 300 298 284

matching is obtained, such interpolation will result in
meaningful intermediate images [5].

For comparison we also perform the same task using
the method proposed by Jebara [5]. Briefly, [5] proposes
a method to sort many sets (or bags) of objects by max-
imizing likelihood under a Gaussian model to minimize
the volume data occupies in Hibert space. An iterative
likelihood maximization procedure is devised by inter-
leaving update of Gaussian’s moments and adjustment
of permutation configuration of each set of objects. We
implemented our own version as we were unable to
obtain their code for reasons beyond the control of the

TABLE 2: Estimation error for data attribute matching
We compare estimation errors between the original data set (LB :
Lower Bound), data set after Kernelized Sorting (KS), and data set
after random permutation (RE : Reference).

Type Data set m KS RE LB
Binary australian 690 0.29±0.02 0.49 0.21±0.04

breastcancer 683 0.06±0.01 0.46 0.06±0.03
derm 358 0.08±0.01 0.43 0.00±0.00
optdigits 765 0.01±0.00 0.49 0.01±0.00
wdbc 569 0.11±0.04 0.47 0.05±0.02

Multiclass satimage 620 0.20±0.01 0.80 0.13±0.04
segment 693 0.58±0.02 0.86 0.05±0.02
vehicle 423 0.58±0.08 0.75 0.24±0.07

Regression abalone 417 13.9±1.70 18.7 6.44±3.14
bodyfat 252 4.5±0.37 7.20 3.80±0.76

authors of [5]. We only experimented with the simpler
version using the mean estimator (locking covariance
matrix as a constant multiplication of an identity matrix)
and LAP as it was observed that this simpler version
performs as well as his more sophisticated counterpart
based on a covariance estimator (allowing covariance
matrix as an arbitrary positive semi-definite matrix) [5].
Here we also use a Gaussian RBF kernel with median
trick as the base kernel. Although we are only interested
in sorting 5 digits of 0’s, the method of [5] requires
more digits (200 in our experiments) to get a decent ML
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estimate of the feature space mean. As such, the usage
of [5]’s method in finding a correspondence with just
two sets of observations (as in Section 6.1, 6.2.1, 6.2.2,
and 6.2.3), i.e. this translates to get an ML mean estimate
of the Gaussian likelihood with just two samples, is not
obvious.

The interpolation results are shown in Figure 6(a) and
6(b). Due to the symmetric structure of the 0’s digit,
some of the correspondences are reversed (the top is
matched to the bottom and the bottom is matched to
the top) which is apparent from Figure 6(a). Never-
theless, the interpolations obtained with HSIC seem to
produce a better local consistency than those obtained
with entropy. This is clear from the flows of arrows
in the velocity plots (arrows are pointing away from a
matching pixel in the source digits) shown in Figure 6(c)
and 6(d) for each digit pair in Figure 6(a) and 6(b). For
example, in the upper right plot of Figure 6(c), all the
arrows ‘inside’ the 0 are pointing downwards. However,
in Figure 6(d) some arrows are pointing downwards but
some upwards. This local flow consistency implies that
in the matching neighboring pixels in one digit will be
mapped to the neighboring locations in the other digit
as well.

7 CONCLUSION

In this paper, we generalized sorting by maximizing the
dependency between matched pairs of observations by
means of the Hilbert Schmidt Independence Criterion.
This way we are able to perform matching without
the need of a cross-domain similarity measure and we
managed to put sorting and assignment operations onto
an information theoretic footing. The proposed sorting
algorithm is efficient and it can be applied to a variety
of different problems ranging from data visualization to
image and multilingual document matching. Moreover,
we showed that our approach is closely related to match-
ing and object layout algorithms and that by changing
the dependence measure we are able to recover previous
work on sorting in Hilbert Spaces.
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