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ABSTRACT

Ideally, one would like to perform image search using an in-
tuitive and friendly approach. Many existing image search
engines, however, present users with sets of images arranged
in some default order on the screen, typically the relevance
to a query, only. While this certainly has its advantages,
arguably, a more flexible and intuitive way would be to sort
images into arbitrary structures such as grids, hierarchies, or
spheres so that images that are visually or semantically alike
are placed together. This paper focuses on designing such
a navigation system for image browsers. This is a challeng-
ing task because arbitrary layout structure makes it difficult
— if not impossible — to compute cross-similarities between
images and structure coordinates, the main ingredient of tra-
ditional layouting approaches. For this reason, we resort to
a recently developed machine learning technique: kernelized
sorting. It is a general technique for matching pairs of ob-
jects from different domains without requiring cross-domain
similarity measures and hence elegantly allows sorting im-
ages into arbitrary structures. Moreover, we extend it so
that some images can be preselected for instance forming
the tip of the hierarchy allowing to subsequently navigate
through the search results in the lower levels in an intuitive
way.

Categories and Subject Descriptors

H.5 [Information Interfaces and Presentation]: User
Interfaces; 1.4 [Image Processing and Computer Vi-
sion]: Applications

General Terms
Algorithms, Design, Theory
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1. INTRODUCTION

Consider a typical interaction between a user and a web
image search engine. A user executes a query and consid-
ers hundreds, sometimes thousands of images returned by
the search engine, looking for this one ideal picture or just
browsing the results for fun. Most existing search engines,
such as Google, Yahoo!, and Bing, among others, return a
set of pages, where each page contains several sorted ac-
cording to how relevant they are to the query, cf. Fig. 1).
However, even though this type of interface has proven its
value in common web search engines, it may not be the most
appropriate format for presenting image search results. An-
dré et al. [1] have explored the differences in user behavior
between image search and web search through informal in-
terviews and query log analysis. They found image search
is often more exploratory than web search. Also, it is often
used purely for entertainment, to play or explore in visual
space with no clear end goal. On average, image searchers
view more pages than web searchers, spend more time look-
ing at those pages, and click on more results. They also
get sidetracked more often, when something else of inter-
est catches their eye. Hence, a good user interface should
support easy exploration and browsing.

Typically, however, not all the returned images are even
related to the query. This situation is caused by the us-
age of keywords — the filename of the image and text near
the image on a web page [5] — to represent visual charac-
teristics of an image, rather than the actual image content.
It can happen that visually different images have the same
keywords while visually similar images have totally different
keywords. Thus, it is not uncommon that in the returned
results, the relevant images are evenly mixed with irrelevant
images. The user then has to scan randomly layouted images
on each page and devotes considerable efforts in navigating
across the page to discover the images of his/her interest.

Content-based image retrieval (CBIR) [24, 22] was intro-
duced to overcome the difficulty of keyword-based image
search. In CBIR, images are indexed by their visual con-
tent, such as color or texture. However, the performance of
CBIR is still far from being ready to be deployed as real-



a) Blue images only for ‘Sydney’ query
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b) Black images only for ‘Sydney’ query
g y y

Figure 1: Google ranking based list interface for ‘Sydney’ query. Returned images are displayed on a set of
pages and ranked based on how relevant they are to the query.

(a) Image layouting on 2D grid

(b) Image layouting on 3D sphere

Figure 2: Kernelized sorting layouting interface for ‘Sydney’ query. Returned images are organized onto a
structure (2d grid and 3D sphere) such that similar color images are located close by.

world commercial image retrieval engines. One of the iden-
tified problems with the current CBIR approaches is the
reliance on visual similarity for judging semantic similar-
ity, which may be problematic due to the semantic gap [24]
between low-level content and higher-level concepts. More
semantic features should be utilized to bridge this gap. In
the context of a web image search scenario, keywords can be
used to enrich the visual content features [23]. A keywords-
based search can then be refined, re-ranked or reorganized
based on visual similarity. This is exactly what several com-
mercial search engines have recently started to do. They
support queries related to visual content, such as color of
the returned images or whether the returned images must
contain a face.

To summarize, a good user interface should also put vi-
sually and/or semantically alike images together in order to
support easy exploration and browsing. Therefore, it is not
surprising that significant research efforts have been devoted
to exploring ways in effectively presenting search results to
users. Arguably, a meaningful layout of the search results
is as crucial as the search accuracy itself. Layouting of im-
age search results will allow users to have a good global
overview of a large amount of returned images rather than
the traditional page-by-page ranked list. Rodden et al. [19]
have shown that layouting a set of images according to their
similarity is indeed beneficial.

Existing layout approaches, however, have consider rather

rigid layout structures only. A general approach that fea-
tures general structures such as hierarchies or spheres and
in turn opens new dimensions for guiding the user’s search
process has not been proposed yet. This is exactly what we
do in this paper. We present a layouting approach that sorts
images

1. into arbitrary layout structures such as grids, hierar-
chies, or sphere so that

2. wvisually or semantically alike images are placed together,

cf. Fig. 2. Note that this is a challenging task. Arbi-
trary layout structures make it difficult — if not impossible
— to compute cross-similarities between images and struc-
ture elements, the basic ingredient of traditional layouting
approaches. Therefore, we have to resort to a recently de-
veloped machine learning technique called kernelized sort-
ing [18]. Kernelized sorting allows one to perform matching
without cross-domain similarity measure by maximizing the
dependency between sets of objects, in our case images and
layout coordinates. This naturally allows one to organize im-
ages into arbitrary structures. We demonstrate this by pre-
senting layouts of images into several arbitrary structures:
2D grids, spheres, hierarchies of 2D grids, and hierarchies of
spheres.

As a second contribution, we extend kernelized sorting so
that it can take a user’s preferences into account. Specifi-
cally, the user can pre-place a few images at particular lo-



cations on the 2D grid, sphere, etc. This is useful to guide
the user’s search in a similar way as CBIR systems do. For
instance, using a hierarchical structure, the user can provide
few query images at the top level of the hierarchy and sub-
sequently navigate through the search results in the lower
levels.

The remainder of the paper is organized as follows. After
reviewing related work, we describe the techniques behind
our image browsing approach, i.e. kernelized sorting and a
novel informed variant in Section 3. We then explain the two
essential ingredients for kernelized image sorting in Section
4: similarity measures for images and on the layout struc-
ture. Before concluding, we demonstrate kernelized image
sorting in the context of a web image browsing application
in Section 5.

2. RELATED WORK

Other researchers have looked into the problem of better
visualizations of search results as well. Among them, meth-
ods based on multi-dimensional scaling (MDS) are the most
widespread [19, 21]. Other methods for low dimensional ob-
ject layout are self organizing maps [13], maximum variance
unfolding [29], locally-linear embedding [20], generative to-
pographic map [4], or stochastic neighbour embedding [9].
[17] experiments with several of these in an image collection
visualization context and concludes that stochastic neigh-
bour embedding yields the best results. However, most of
these (non)linear dimensionality reduction based approaches
suffer from the problem that the low dimensional presenta-
tion is nonuniform. This has the advantage of revealing the
cluster structure but given a limited screen size the presen-
tation is often undesirable, with some very cluttered regions
where images highly overlap combined with empty spaces
elsewhere. It has been studied that such aggressive overlap-
ping in the visualization will affect users’ understanding of
the content of an image and thus will prevent them from
finding images of interest [11]. To reduce this effect, [17]
adds a visibility cost function. We overcome this problem
by organizing the images based on a predefined grid or other
embedding structure, based on kernelized sorting. Kernel-
ized sorting allows to layout the images based on some sim-
ilarity criterion in arbitrary structures (be it 2D grids, spi-
rals, spheres, or even hierarchical structures). Moreover,
this approach could also be adapted to do maximum vari-
ance unfolding, i.e., to compute low-dimensional embedding
similar to MDS.

Apart from the degree of image overlap, the choice of
the embedding structure for image presentation also has an
important effect on a user’s ability to have a good global
overview of large amount of images. Many existing works
focus on organizing images into a specific structure (e.g. 2D
grids [14, 27], spirals [27], or 3D walls ') without being able
to generalize easily to other potentially more effective struc-
tures. Therefore, what we would like to have is a method
which is able to produce a non-overlapping embedding while
also providing us flexibility in choosing the underlying struc-
ture. We will show that organization of images based on
kernelized sorting provides exactly the two properties spec-
ified above. We will briefly review the kernelized sorting
technique in the next section.

Finally, it is worth pointing out that beside the similarity-
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based layout and grid layout, there exist many other image
layout approaches, such as thread layout [8, 7] for revealing
linked sequence of shots based upon an aspect of their con-
tent, hierarchical layout [3] for revealing hierarchy structures
of the images, graph layout [12] for revealing links among im-
ages, map layout [28] to reveal geographic location tags of
images, and time quilt and time line layout [10] for time se-
ries images. All of them are subsumed by kernelized sorting.
In this way, we propose a unifying framework that allows to
focus on finding the right structure and not developing al-
gorithms to sort images into the selected structures.

3. KERNELIZED SORTING

We will first review kernelized sorting and then show how
to extend it so that a user’s matching preferences are taken
into account.

3.1 The Basic Setting

Kernelized sorting (KS) [18] is a general technique to per-
form matching between pairs of objects from different do-
mains which only requires a similarity measure within each
of the two domains. Indeed, the virtues of performing match-
ing without the need of a cross-domain similarity measure
allow us to organize images into arbitrary structures. We
will begin reviewing the technique with some notations and
definitions.

Denoteby X = {z1,...,2m} CXandY = {y1,...,ym} C
Y two sets of objects between which we would like to find
correspondences. Here m denotes the size of each set. KS
tries to find a permutation 7 that maps x; — ¥(;) by maxi-
mizing the dependence between the two sets of objects under
a certain dependency measure. This also explains the title
of the paper as we will apply KS for image layouting. In KS,
the Hilbert Schmidt Independence Criterion (HSIC) [25] de-
pendency measure is used and is maximized over the per-
mutation group to find good matches. Hence, the resulting
optimization problem of KS is given as

7 = argmax_tr K7 ' L. (1)

In the above equation, 7 denotes a permutation matrix whose
entries are all 0 except that in row 4, the entry 7(i) equals
1 and K,L € R™*™ are the kernel matrices for the set X
and the set Y respectively, i.e. K;; = k(x;,x;) and L;; =
I(ys,y;). Kernel k: X x X — R measures the pairwise sim-
ilarity between objects in set X and likewise kernel ! for set
Y. Centering matrix H with H;; = d;; — m~! centers the
observations of set X and set Y in feature space. The cen-
tered versions of K and L are then denoted as K := HKH
and L := HLH respectively.

The KS optimization problem in (1) is NP hard [18].
Therefore, the first order lower bound of (1) is successively
maximized instead. We refer to Algorithm 1 for a summa-
rization of the KS algorithm.

3.2 Informed Sorting

Kernelized sorting — as employed in this paper — aims
to organize a collection X of images such that images that
are ”"similar” to each other are placed nearby in the layout
structure Y. Next to the similarities among images K and
layout positions L, no information is provided to steer the
layout of the images. In other words, kernelized sorting can
be viewed as an unsupervised technique.



Algorithm 1 Kernelized Sorting

Input Two sets of objects X = {z1,...
{yr, . ym}
Compute kernel similarity matrix K on set X
Compute kernel similarity matrix L on set Y
Center the kernel matrices:

K :=HKH and L := HLH with H;; = §;; —m™"
while not converge do
Solve linear assignment problem

,Tm} and Y =

Ti+1 < argmax [tr KTI‘TETH]
TE P,

mXm . >
with P, := { TER where 7;; > 0 and }

Ziﬂ'ij =1 and Zjﬂ—ij =1

end while
Return Locally optimum permutation matrix 7*

For image layouting, however, it might be beneficial to
make use of a small amount of supervision to "guide” or
”adjust” the layouting. Consider a typical interaction of a
user with a web-based image search system. When the user
submits a textual query to the system, the search engine
returns a list of images often along with snippets extracted
from the web documents the images appear in. The user
looks at the list and, based on images and snippets, decides
whether an image in the list is relevant to the query or not.
Using a purely rank-based layout, this process can be quite
costly as the user has to scan all images. In turn, important
entities may never be considered by the user. To avoid this
presentation effect, we instead want the user to express a
small amount preference such as blue images are placed at
"north pole” of the globe whereas black images are placed
the ”south pole”.

More formally, we assume there is a small number of lay-
out preferences P = {(4,j)} saying that the user prefers
image i to be placed at position j. A first attempt to for-
malize the corresponding optimization problem could be to
extend (1) as follows:

7 = argmax_tr K7 ' Lz
st. m; =1 V(i,5)€P

In turn, instead of solving a sequence of linear assignment
problems to compute 7*, for instance using linear program-
ming, we solve a sequence of integer linear programs that
respect the m;; = 1 preferences.

This approach indeed places i at position 7 but, unfortu-
nately, tends to place images similar to i elsewhere in the
layout structure. The reason is that image similarities and
assignment preferences are unbalanced. To overcome this,
we rebalance the cost matrix in each iteration. That is,
in each iteration of KS, we are solving a linear assignment
problem with a balanced version ¢’ of the original cost ma-
trix ¢. The cost matrix ¢’ is computed as follows. Assume
that we have [ preferences {(i1, 1)}, 1 = 1,2, ..., k. Werelax
the preference constraints as follows:

4 Cij >= Cyrj (2)
Vi e >= ey (3)
where ¢;; = Zu’v kiuTuvlyj is the cost of assigning image 7 to

position j. Both constraints can be written more compactly

in matrix form. For instance, (2) can be written as
Af+b>= A7+ (4)
SA-ANF>=b-b (5)

where A is the matrix consisting of auy = Kiyi, - lj,j,, the
matrix 7 with Ty, = mi,j,, i.e., the entries of 7 of the
preference pairs, and the bs are the assignment costs with-
out m;; contributions such as b = Zu#m# kiuTuvly; and
b = Zu#m# kiruTuvlvj. Clearly, we only have to focus on
the largest difference b’ — b for each preference in P. Let
m,, be this maximum for the u-th preference and let m be
the column-vector of m;;s. To rebalance the costs, the idea
now is to turn the inequalities into equalities and to solve
the corresponding system of linear equalities,

7=inv(A—A")-m (6)

Let 7’ be the resulting assignment matrix, i.e., ™ with the
corresponding entries set to . The cost matrix ¢’ = K7'L
using 7’ balances the assignment preferences and the image
similarities better than the original 7.

4. SIMILARITIES FOR IMAGE SORTING

The last section has shown that kernelized sorting does not
require a similarity measure across the sets of objects to be
matched. In contrast to most existing matching algorithms,
we only need to establish similarity measures within each set
of objects independently. This is beneficial for image layout-
ing — as we will show in the next Section — since embedding
images onto a different structure now only involves changing
the measure of similarity on the structures but not on the
images. So, let us establish similarity measures for images
and for coordinate positions in the layouting structures.

4.1 Image Similarity

Similarity of images is typically defined in terms of low-
level or semantic features. We will discuss both of them in
turn.

4.1.1 Color

Low level features, such as color and texture are often used
to represent visual content of images. Color correlograms,
color moments, and color histograms are among the most
widely used color features while Gabor wavelet features [16]
are one example of texture features. Image representation
by combining color and texture features has also been ex-
plored [30]. Considering the trade-off between the richness
of the features and the computation needed in extracting
the features, we choose to represent color content of an im-
age by its Lab color model. It is one of the most basic color
features yet able to capture perceptual similarity. Given two
images I; and I;, we use the following (kernel) measure to
assess similarity between them

2

) (7)

L2

F—rr

k(IL;, I;) = eXP(—V‘ j

where I} and I]F denote the Lab color feature of image I;
and [;, respectively. The kernel width ~ is adjusted to the

inverse median of HIZF - IJFHE2 such that the argument of
the exponential is O(1).



4.1.2 Semantic

The above color features describe an image in a global
sense. In certain cases, we might desire to put more at-
tention on the local semantic details of an image. Scale-
invariant feature transform (SIFT) [15], and its variants and
extensions such as speeded up robust features (SURF) [2]
and Daisy [26], captures the appearance of semantic struc-
tures at local patches densely sampled over the image at
different scales. We can then represent an image as a bag-
of-visual-words [6], i.e. a histogram of vector quantized lo-
cal image descriptors. A combination of densely sampled,
overlapping patches with the SIFT descriptor is used in our
study. Now, given two images I; and I;, we use the inverse
of the exponentiated x? distance on the bag-of-visual-words
to assess the similarity between them

2
k(1) = exp(—y |1 = 1] | ) (8)

where If" and I JF denote bag-of-visual-words feature of im-
age I; and I, respectively. The kernel width « is adjusted to

the inverse median of HIZF - IJFHf< such that the argument
of the exponential is O(1).

4.2 Layout Structure Similarity

We will now develop similarity measures between posi-
tions on several types of structures. Specifically, we will
provide measures for non-hierarchical structures such as a
2D grid and a 3D sphere, and measures for their hierarchi-
cal extensions.

4.2.1 Non-Hierarchical Structure

Let us first focus on non-hierarchical structures, namely
2D grids and 3D sphere.

2D Grid: To produce a similarity-based image layout-
ing on a 2D grid using kernelized sorting, we need to define
a similarity measure between two points on a grid. Con-
sider two points G; and G; on a grid located at abscissa
z and ordinate y of (zi,y;) and (z;,y;), respectively. The
straight line distance (dis-similarity measure) between those
two points is expressed as

da,a; =\ (i — 25)% + (i — y;)? (9)

Then to measure the similarity between the two points on a
grid, the inverse of the exponentiated straight line distance,
denoted as

k(Gi, Gj) = exp(—(de,.c,)?) (10)

is used. As we did for the similarity measure between im-
ages, the kernel width ~ is again adjusted to the inverse me-
dian of (dg,,c,)” such that the argument of the exponential
is O(1).

3D Sphere: Here we need to establish a measure for
(shortest) distance between two points on a surface of a
sphere. On a sphere, the concept of straight lines is re-
placed with the concept of great circles, i.e. circles on a
sphere whose centers are coincident with the center of the
sphere. Let two points S; and S; located at latitude 62 and
longitude A of (d;,A;) and (d;,A;), respectively, on a unit
sphere. The great circle distance (special case of geodesic

2The latitude § is related to colatitude ¢ of spherical coor-
dinate by § = 90° — ¢.

distance on a sphere manifold) between these two points is
expressed as

ds;,s; = cos ™ [cos(8;) cos(8;) cos(Xi — ;) + sin(8;) sin(6;)]

(11)
The above distance formula is simply the angular distance
between two vectors on a spherical coordinate axes frame
computed via the well-known law of cosine. However, this
distance formula can have large rounding errors when the
distance is small. Thus, we use the following Vincenty’s
formula which is accurate for all cases

ds,s; = tan™ " (z/y) with (12)

T=VT1+ 22

x1 = (cos(8;) sin(AN))?

xo = (cos(8;) sin(8;) — sin(d;) cos(d;) cos(AN))?
and y = sin(d;) sin(d;) + cos(d;) cos(d;) cos(AN)

In these equations, A\ := A; — A;. Then the inverse of the
exponentiated great circle distance, denoted as

k(Si, 5;) = exp(—y(di ;)*) (13)

is used to measure the similarity between the two points on
a sphere. Similarly, the kernel width v is adjusted to the
inverse median of (dg,, sj)2 such that the argument of the
exponential is O(1).

4.2.2 Hierarchical Structure

Now, we are ready to turn towards hierarchical variants
of 2D grids and 3D spheres.
2D Grid: It is quite straightforward to extend image or-
ganization on a 2D grid to a hierarchy of 2D grids. Here one
additional axis can be used to specify the hierarchy level.
Instead of (z,y) position, now a point is identified by its
(z,y,2) coordinates in a three dimensional coordinate sys-
tem. The similarity measure on the structure will then be
either the similarity measure between points within the same
hierarchy level or between points across different hierarchy
levels (see Figure 3(a)). The z axis plays an important role
on how spatial coherence in one hierarchy level is propa-
gated to subsequent hierarchy levels. The higher its value,
the more independently the organization of images on one
level is done with respect to other levels. Equivalent to a
2D grid, the inverse of the exponentiated straight line dis-
tance is used to measure the similarity between two points
on the hierarchy where the distance is now defined on the
three coordinate axis.
3D Sphere: While the extension from a 2D grid to
a hierarchy of 2D grids is trivial, unfortunately this is not
the case for extending from a 3D sphere to a hierarchy of
3D spheres. The great circle distance is only defined to
measure dis-similarity between two points on the surface of
the same sphere. For the purpose of producing a hierarchical
image organization on a 3D sphere, we develop the following
between-sphere distance approximation trick (c.f. Figure
3(b)):
e set all the spheres in different hierarchy levels to have a
unit radius while having different discretization levels

e compute the distance between two points on the same
sphere using the standard great circle distance

e compute the distance between two points (¢ and 7) on
different spheres as follows



— perform orthogonal projection of one point, i’ such
that it will now lie on the same sphere as the other
point j

— compute the great circle distance between the two
points, i’ and j

— form a right triangle with vertices at i, i and j

— the distance between the two points, ¢ and j, is
now the hypotenuse of the right triangle which
can be computed via standard Pythagorean the-
orem

Finally, we again use the inverse of the exponentiated great
circle distance to measure the similarity between two points
on a hierarchy where the great circle distance between two
points on different spheres is an approximation as described
above. Similar to the z axis in the hierarchy of 2D grids, the
projection length can be used to adjust how spatial coher-
ence in one sphere is propagated to the subsequent spheres
at different hierarchy levels.

S. WEB IMAGE BROWSING

Putting everything together, we can now easily realize
flexible image browsing systems®. First, we consider the
classical Google Image Search interface. Figure 1 shows the
first page of Google’s result for the query ‘Sydney’. To guide
the result, the user can specify the dominant color of the
images, e.g. ’blue’ or ’black’. Instead of using Google’s in-
terface — i.e. ranking the images based on relevance to the
query and spreading them over several pages, we can im-
prove the presentation of the returned images by layouting
them on a 2D grid where similar images are found at proxi-
mal locations, as in Figure 2(a). Blue and black images are
automatically grouped together, as are all other dominant
colors present. As such, the user can immediately focus his
attention (e.g. by zooming in) on what he considers to be
the most relevant part of the retrieved data set, while still
keeping a global overview of the entire search result.

Now suppose our user would like to find a particular im-
age belonging to the class of, say, white images. The white
images are located at the top left part of the 2D grid, and
get affected by boundary effects. In contrast, by layout-
ing the images onto a sphere (Figure 2(b)), such boundary
effects can be avoided. Moreover, the user can turn the
sphere so as to bring the most relevant part of the result set
to the center of the display. Images with lower similarity
gradually get smaller as they are ’further away’ and closer
to the horizon. Yet in principle the whole sphere still has
to be explored or browsed. If many images are returned
by the search engine, displaying all of them simultaneously
becomes infeasible. The images become too small, and the
user looses the global overview. The hierarchical version of
the 2D grid and the 3D sphere shown in Figure 4 and Figure
5, respectively, overcome this problem as they allow the user
to find quickly images of a particular type by ignoring large
parts of the search space. Indeed, the user first scans the
highest level only, and based on this determines a region of
interest (zooms in on that part, or turns the sphere accord-
ingly). Only then does he descend to the lower levels, where
he can explore more images and finer dissimilarities. All of

3A hierarchical 2D browser prototype on news images can
be found at http://homes.esat.kuleuven.be/” jhbecker/
projects/CLASS/D7.3/

these different layouting results are produced using the same
algorithm while changing only the structures.

Recently, Google Image Search lets you filter images by
the predominant color. Using a textual interface, you can
choose one of the 12 available colors and even select two
predominant colors. It even has previously added filters for
photos, images that contain faces, clip arts, and line draw-
ings. However, again only a textual interface is provided. In
contrast, the semi-supervised extension of kernelized sort-
ing introduced in this paper allows the user to implement
a visual interface which is more intuitive. For instance, in
Figure 6, a user supplies four color content queries, i.e. blue,
black, red, and white colors by providing four sample images
(colors). Automatically, the images in the hierarchy are reor-
ganized with a gradual transition between these four colors.
Moreover, this approach is not limited to a limited number
of predefined filters - the user is free to select any sample
images he likes to guide the presentation of the search re-
sults.

6. DISCUSSION AND CONCLUSION

We have applied a recent machine learning technique, ker-
nelized sorting, to the problem of image layouting where the
dependency between a set of images and a set of positions on
an embedding structure is maximized. This only requires a
similarity measure within each of the two sets independently,
making the approach very flexible and generic.

In the previous section, we applied this new approach to
image layouting in the context of web based image browsing.
We demonstrated several layouts for the query ‘Sydney’. To
change to a different embedding structure we only needed
to provide a new similarity measure for the new structure.

Similarly, we can also easily change the similarity measure
used by the layouting algorithm. This is illustrated by the
following example. We collected 1000 keyframes from a 1.5
hour life broadcast of the recent summer olympic games in
Beijing. As this is a life reportage, it switches back and forth
between different simultaneous events. Yet our user might
be interested in only one aspect (one sport, or one athlete,
or the general atmosphere). Using our interface, he wants to
get an overview of the broadcast as a whole or select a few
interesting shots that he considers worth watching. Simi-
larity based on color information is not likely to yield good
layouting in this case as most of the images have similar col-
ors. However, thanks to the strict separation of image and
structure similarities underlying kernelized sorting it is easy
to deal with this situation. We only have to replace the color
based kernels with semantic (SIFT) based kernels. The sim-
ilarity measure on the structures remains untouched. Figure
7 shows a layouting result, using a hierarchy of 2D grids. In
this case, the user provided his own image preferences by
entering four semantic content queries in the form of four
sample images used at the top of the hierarchy.

In summary, we have provided a general approach of im-
age layouting for the purpose of exploration and browsing.
The benefit of kernelized sorting is that we only have to
provide a similarity measure for images and structures inde-
pendently. Our showcases have demonstrated the benefits of
this: changing the structure similarity easily allows to lay-
out into a wide variety of structures whereas changing the
similarity measure on images allows us to adapt the layout-
ing according to the color contents or semantic contents of
the images. However we have only started to explore the



(a) 2D - grid

(b) 3D - sphere

Figure 3: An illustration of similarity measure for hierarchical structures. o visualizes some of the positions
on the structure. e denotes position under consideration and similarity measure is computed between these

points and any other points on the structure.

The procedure is repeated for all points on the structure

to produce similarity (or dis-similarity) measure between positions on the structure required in kernelized
sorting algorithm.

benefits of dependency maximization for image browsing.
Today’s web pages are usually media-rich, containing both
images and texts. Layouting web images should be context-
dependent, that is, it should take into account the textual
context the image appears in. Using kernelized sorting, we
can either simply combine textual and visual kernels or we
can try to layout or sort both types of media jointly. That
is, we layout both media into separate structures. This joint
layouting will improve the layouting on both medias as in-
formation can freely flow. This is the topic of future work.
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Figure 6: Kernelized sorting layouting interface for ‘Sydney’ query. The interface allows user to specify
his/her preferences (semi supervised extension of kernelized sorting, Section 3.2). User supplies four color
content queries at T°PLevel. The four queries are blue , black , red , and white images and the returned
images associated with the color content of each query will be placed at top left corner, top right corner,
bottom left corner, and bottom right corner, respectively.
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Figure 7: Kernelized sorting layouting interface for images of recent Beijing olympic games. The interface
allows user to specify his/her preferences (semi supervised extension of kernelized sorting, Section 3.2). User
supplies four semantic content queries by providing sample images at T°PLevel.
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