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Abstract
We develop a convex relaxation of maximum a posteriori estimation of a mixture
of regression models. Although our relaxation involves a semidefinite matrix vari-
able, we reformulate the problem to eliminate the need for general semidefinite
programming. In particular, we provide two reformulations that admit fast algo-
rithms. The first is a max-min spectral reformulation exploiting quasi-Newton de-
scent. The second is a min-min reformulation consisting of fast alternating steps of
closed-form updates. We evaluate the methods against Expectation-Maximization
in a real problem of motion segmentation from video data.

1 Introduction
Regression is a foundational problem in machine learning and statistics. In practice, however, data
is often better modeled by a mixture of regressors, as demonstrated by the prominence of mixture
regression in a number of application areas. Gaffney and Smyth [1], for example, use mixture regres-
sion to cluster trajectories, i.e. sets of short sequences of data such as cyclone or object movements
in video sequences as a function of time. Each trajectory is believed to have been generated from one
of a number of components, where each component is associated with a regression model. Finney et
al. [2] have employed an identical mixture regression model in the context of planning: regression
functions are strategies for a given planning problem. Elsewhere, the mixture of regressors model
has been shown to be useful in addressing covariate shift, i.e. the situation where the distribution of
the training set used for modeling does not match the distribution of the test set in which the model
will be used. Storkey and Sugiyama [3] model the covariate shift process in a mixture regression
setting by assuming a shift in the mixing proportions of the components.

In each of these problems, one must estimate k distinct latent regression functions; that is, estimate
functions whose values correspond to the mean of response variables, under the assumption that
the response variable is generated by a mixture of k components. This estimation problem can
be easily tackled if it is known to which component each response variable belongs (yielding k
independent regression problems). However in general the component of a given observation is not
known and is modeled as a latent variable. A commonly adopted approach for maximum-likelihood
estimation with latent variables (in this case, component membership for each response variable) is
Expectation-Maximization (EM) [4]. Essentially, EM iterates inference over the hidden variables
and parameter estimation of the resulting decoupled models until a local optimum is reached. We
are not aware of any approach to maximum likelihood estimation of a mixture of regression models
that is not based on the non-convex marginal likelihood objective of EM.

In this paper we present a convex relaxation of maximum a posteriori estimation of a mixture of re-
gression models. Recently, convex relaxations have gained considerable attention in machine learn-
ing (c.f. [5, 6]). By exploiting convex duality, we reformulate a relaxation of mixture regression as
a semidefinite program. To achieve a scalable approach, however, we propose two reformulations
that admit fast algorithms. The first is a max-min optimization problem which can be solved by iter-
ations of quasi-Newton steps and eigenvector computations. The second is a min-min optimization
problem solvable by iterations of closed-form solutions. We present experimental results comparing
our methods against EM, both in synthetic problems and real computer vision problems, and show
some benefits of a convex approach over a local solution method.
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Related work Goldfeld and Quandt [7] introduced a mixture regression model with two components
called switching regressions. The problem is re-cast into a single composite regression equation by
introducing a switching variable. A consistent estimator is then produced by a continuous relaxation
of this switching variable. An EM algorithm for switching regressions was first presented by Hos-
mer [8]. Späth [9] introduced a problem called clusterwise linear regression, consisting of finding a
k-partition of the data such that a least squares regression criterion within those partitions becomes
a minimum. A non-probabilistic algorithm similar to k-means was proposed. Subsequently, the
general k-partition case employing EM was developed (c.f. [10, 11, 1]) and extended to various
situations including the use of variable length trajectory data and to non-parametric regression mod-
els. In the extreme, each individual could have its specific regression model but coupled at higher
level with a mixture on regression parameters [12]. An EM algorithm is again employed to handle
hidden data, in this case group membership of parameters. The Hierarchical Mixtures of Experts
[13] model also shares some similarity to mixture regression in that gating networks which contain
mixtures of generalized linear models are defined. In principle, our algorithmic advances can be
applied to many of these formulations.

2 The Model
Notation In the following we use the uppercase letters (X,Π,Ψ) to denote matrices and the low-
ercase letters (x, y, w, π, ψ, c) to denote vectors. We use t to denote the sample size, n to denote
the dimensionality of the data and k to denote the number of mixture components. Λ(a) denotes a
diagonal matrix whose diagonal is equal to vector a, and diag(A) is a vector equal to the diagonal
of matrix A. Finally, we let 1 denote the vector of all ones, use � to denote Hadamard (component-
wise) matrix product, and use ⊗ to denote Kronecker product.

We are given a matrix of regressors X ∈ Rt×n and a vector of regressands y ∈ Rt×1 where the re-
sponse variable y is generated by a mixture of k components, but we do not know which component
of the mixture generates each response yi. We therefore use the matrix Π ∈ {0, 1}t×k,Π1 = 1,
to denote the hidden assignment of mixture labels to each observation: Πij = 1 iff observation i
has mixture label j. We use xi to denote the ith row of X (i.e. observation i as a row vector), πi to
denote the ith row of Π and yi to denote the ith element of y. We assume a linear generative model
for yi on a feature representation ψi = πi ⊗ xi, under i.i.d. sampling

yi|xi, πi = ψiw + εi, εi ∼ N(0, σ2), (1)

where w ∈ R(n×k)×1 is the vector of stacked parameter vectors of the components. We therefore
have the likelihood

p(yi|xi, πi;w) =
1√

2πσ2
exp

[
− 1

2σ2
(ψiw − yi)2

]
(2)

for a single observation i (recalling thatψi depends on both xi and πi). We further impose a Gaussian
prior on w for capacity control. Also, one may want to constrain the size of the largest mixture
component. For that purpose one could constrain the solutions Π such that max(diag(ΠTΠ)) ≤ γt,
where γt is an upper bound on the size of the largest component (γ is an upper bound on the
proportion of the largest component). Combining these assumptions and adopting matrix notation
we obtain the optimization problem: minimize the negative log-posterior of the entire sample

min
Π,w

[∑
i

A(ψi, w)− 1
σ2
yTΨw +

1
2σ2

yT y +
α

2
wTw

]
, where (3)

A(ψi, w) =
1

2σ2
wTψTi ψiw +

1
2

log(2πσ2). (4)

Here Ψ is the matrix whose rows are the vectors ψi = πi ⊗ xi. Since X is observed, note that the
optimization only runs over Π in Ψ. The constraint max(diag(ΠTΠ)) ≤ γt may also be added.

Eliminating constant terms, our final task will be to solve

min
Π,w

[
1

2σ2
wTΨTΨw − 1

σ2
yTΨw +

α

2
wTw

]
. (5)

Although marginally convex on w, this objective is not jointly convex on w and Π (and involves
non-convex constraints on Π owing to its discreteness). The lack of joint convexity makes the opti-
mization difficult. The typical approach in such situations is to use an alternating descent strategy,
such as EM. Instead, in the following we develop a convex relaxation for problem (5).

2



3 Semidefinite Relaxation
To obtain a convex relaxation we proceed in three steps. First, we dualize the first term in (5).

Lemma 1 DefineA(Ψw) := 1
2σ2w

TΨTΨw. Then the Fenchel dual ofA(Ψw) isA∗(c) = 1
2σ

2cT c,
and therefore A(Ψw) = maxc cTΨw − 1

2σ
2cT c.

Proof From the definition of Fenchel dual we have A∗(u) := maxw uTw − 1
2σ2w

TΨTΨw. Dif-
ferentiating with respect to w and equating to zero we obtain u = 1

σ2 ΨTΨw. Therefore u is only
realizable if there exists a c such that u = ΨT c. Solving for A∗(c) we obtain A∗(c) = 1

2σ
2cT c, and

therefore by definition of Fenchel duality A(Ψw) = maxc cTΨw − 1
2σ

2cT c.

A second Lemma is required to further establish the relaxation:

Lemma 2 The following set inclusion holds

{ΠΠT : Π ∈ {0, 1}t×k,Π1 = 1,max(diag(ΠTΠ)) ≤ γt} (6)

⊆ {M : M ∈ Rt×t, trM = t, γtI < M < 0}. (7)

Proof Let ΠΠT be an element of the first set. First notice that [ΠΠT ]ij ∈ {0, 1} since Π ∈ {0, 1}t×k
and Π1 = 1 together imply that Π has a single 1 per row (and the rest are zeros). In particular
[ΠΠT ]ii = 1 for all i, i.e. trM = t. Finally, note that (ΠΠT )Π = Π(ΠTΠ) where ΠTΠ is a
diagonal matrix and therefore its diagonal elements are the eigenvalues of ΠΠT and in particular
max(diag(ΠTΠ)) ≤ γt means that the largest possible eigenvalue of ΠΠT is γt, which implies
γtI < ΠΠT . Since ΠΠT is by construction positive semidefinite, we have γtI < ΠΠT < 0.
Therefore ΠΠT is also a member of the second set.

The above two lemmas allow us to state our first main result below.

Theorem 3 The following convex optimization problem

min
M :trM=t,γtI<M<0

max
c

[
−1

2
σ2cT c− 1

2α

( y
σ2
− c
)T

M �XXT
( y
σ2
− c
)]

(8)

is a relaxation of (5) only in the sense that domain (6) is replaced by domain (7).

Proof We first use Lemma 1 in order to rewrite the objective (5) and obtain

min
Π,w

[(
max
c
cTΨw − 1

2
σ2cT c

)
− 1
σ2
yTΨw +

α

2
wTw

]
. (9)

Second, using the distributivity of the (max,+) semi-ring, the maxc can be pulled out and we then
use Sion’s minimax theorem [14], which allows us to interchange maxc with minw

min
Π

max
c

min
w

[
cTΨw − 1

2
σ2cT c− 1

σ2
yTΨw +

α

2
wTw

]
, (10)

and we can solve for w first, obtaining

w =
1
α

ΨT
( y
σ2
− c
)
. (11)

Substituting (11) in the objective of (10) results in

min
Π

max
c

[
−1

2
σ2cT c− 1

2α

( y
σ2
− c
)T

ΨΨT
( y
σ2
− c
)]
. (12)

We now note the critical fact that Ψ only shows up in the expression ΨΨT which, from the definition
ψi = πi⊗xi, is seen to be equivalent to ΠΠT�XXT . Therefore the minimization over Π effectively
takes place over ΠΠT (since X is observed), and we have that (12) can be rewritten as

min
ΠΠT

max
c

[
−1

2
σ2cT c− 1

2α

( y
σ2
− c
)T

ΠΠT �XXT
( y
σ2
− c
)]
. (13)

So far no relaxation has taken place. By finally replacing the constraint (6) with constraint (7) from
Lemma 2, we obtain the claimed semidefinite relaxation.
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4 Max-Min Reformulation
By upper bounding the inner maximization in (8) and applying a Schur complement, problem (8)
can be re-expressed as a semidefinite program. Unfortunately, such a formulation is computationally
expensive to solve, requiring O(t6) for typical interior-point methods. Instead, we can reformulate
problem (8) to allow for a fast algorithmic approach, without the introduction of any additional
relaxation. The basis of our development is the following classical result.

Theorem 4 ([15]) Let V ∈ Rt×t, V = V T have eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λt. Let P be the
matrix whose columns are the normalized eigenvectors of V, i.e. PTV P = Λ((λ1, . . . , λt)). Let
q ∈ {1, . . . , t} and Pq be the matrix comprised by the top q eigenvectors of P . Then

max
M :tr(M)=q,I<M<0

trMV T =
q∑
i=1

λi and (14)

argmax
M :tr(M)=q,I<M<0

trMV T 3 PqPTq . (15)

Proof See [15] for a proof of a slightly more general result (Theorem 3.4).

We will now show how the optimization on M for problem (8) can be cast in the terms of Theorem
4. This will turn out to be critical for the efficiency of the optimization procedure, since Theorem
4 describes a purely spectral optimization routine, which is far more efficient (O(t3)) than standard
interior-point methods used for semidefinite programming (O(t6)).

Proposition 5 Define ȳ := y
σ2 . The following optimization problem

max
c

[
−1

2
σ2cT c− 1

2α
max

M :trM=t,γtI<M<0
tr(M(XXT � (ȳ − c)(ȳ − c)T ))

]
(16)

is equivalent to optimization problem (8).

Proof By Sion’s minimax theorem [14], minM and maxc in (8) can be interchanged

max
c

min
M :trM=t,γtI<M<0

[
−1

2
σ2cT c− 1

2α
(ȳ − c)T M �XXT (ȳ − c)

]
(17)

which, by distributivity of the (min,+) semi-ring, is equivalent to

max
c

[
−1

2
σ2cT c+

1
2α

min
M :trM=t,γtI<M<0

− (ȳ − c)T M �XXT (ȳ − c)
]
. (18)

Now, define K := XXT . The objective of the minimization in (18) can then be written as

− (ȳ − c)T (M �K)(ȳ − c) = − tr
(
(M �K)

[
(ȳ − c)(ȳ − c)T

])
(19)

= −
∑
ij

(MijKij)
[
(ȳ − c)(ȳ − c)T

]
ij

= −
∑
ij

Mij

(
Kij

[
(ȳ − c)(ȳ − c)T

]
ij

)
(20)

= − tr(M(K � (ȳ − c)(ȳ − c)T )) = − tr(M(XXT � (ȳ − c)(ȳ − c)T )). (21)

Finally, by writing minM −f(M) as −maxM f(M), we obtain the claim.

We can now exploit the result in Theorem 4 for the purpose of our optimization problem.

Proposition 6 Let q = {u : u = max{1, . . . , t}, u ≤ γ−1}. The following optimization problem

max
c

[
−1

2
σ2cT c− t

2αq
max

M̄ :tr M̄=q,I<M̄<0
tr(M̄(XXT � (ȳ − c)(ȳ − c)T ))

]
(22)

is equivalent to optimization problem (16).
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Algorithm 1
1: Input: γ, σ, α, XXT

2: Output: (c∗,M∗)
3: Initialize c = 0
4: repeat
5: Solve for maximum value in inner maximization of (22) using (14)
6: Solve outer maximization in (22) using nonsmooth BFGS [16], obtain new c
7: until c has converged (c = c∗)
8: At c∗, solve for the maximizer(s) Pq in the inner maximization of (22) using (15)
9: if Pq is unique then

10: return M∗ = PqP
T
q break

11: else
12: Assemble top l eigenvectors in Pl
13: Solve (24)
14: return M∗ = PlΛ(λ∗)PTl
15: end if

Proof The only differences between (16) and (22) are (i) the factor t/q in the second term of (22) and
(ii) the constraints {M : trM = t, γtI < M < 0} in (16) versus {M : trM = q, I < M < 0} in
(22). These differences are simply the result of a proper rescaling ofM . If we define M̄ := (q/t)M ,
then I < M̄ < 0 since q ≤ γ−1. We then have tr M̄ = q. The result follows.

And finally we have the second main result

Theorem 7 Optimization problem (22) is equivalent to optimization problem (8).

Proof The equivalence follows directly from Propositions 5 and 6.

Note that, crucially, the objective in (22) is concave in c. Our strategy is now clear. Instead of solving
(8), which demands O(t6) operations, we instead solve (22), which has as inner optimization a max
eigenvalue problem, demanding onlyO(t3) operations. In the next section we describe an algorithm
to jointly optimize for M and c in (22), which will essentially consist of alternating the efficient
spectral solution over M with a subgradient optimization over c.

4.1 Max-Min Algorithm
Algorithm 1 describes how we solve optimization problem (22). The idea of the algorithm is the
following. First, having noted that (22) is concave in c, we can simply initialize c arbitrarily and
pursue a fast subgradient ascent algorithm (e.g. such as nonsmooth BFGS [16]). So at each step
we solve the eigenvalue problem and recompute a subgradient, until convergence to c∗. We then
need to recover M∗ such that (c∗,M∗) is a saddle point (note that problem (22) is concave in c
and convex in M ). For that purpose we use (15). If M∗ = PqP

T
q is such that Pq is unique, then

we are done and the labeling solution of mixture membership is M∗ (subject to roundoff). If Pq
is not unique, then we have multiplicity of eigenvalues and we need to proceed as follows. Define
Pl = [p1 . . . pq . . . pl], l > q, where each of the additional l − q eigenvectors has an associated
eigenvalue which is equal to the eigenvalue of some of the previous q eigenvectors. We then have
that at the saddle point there must exist a diagonal matrix Λ such that M∗ = PlΛPTl , subject to
Λ < 0 and tr Λ = q (if this were not the case there would be an ascent direction in c∗, contradicting
the hypothesis that c∗ is optimal). To find such a Λ and therefore recover the correct M , we need to
enforce that we are at the optimal c (c∗), i.e. we must have∥∥∥∥ ddc

[
−1

2
σ2cT c− q

2αt
max

M :trM=q,I<M<0
tr(M(XXT � (ȳ − c)(ȳ − c)T ))

]∥∥∥∥2

2

= 0 (23)

Such condition can be pursued by minimizing the above norm, which gives a quadratic program

min
λ≥0,λT 1=q

∥∥∥σ2c∗ +
q

αt

(
PlΛ(λ)PTl �XXT

)
(c∗ − ȳ)

∥∥∥2

2
(24)

We can then recover the final solution (subject to roundoff) by M∗ = PlΛ(λ∗)PTl , where λ∗ is the
optimizer of (24). The optimal value of (24) should be very close to zero (since it’s the norm of the
derivative at point c∗). The pseudocode for the algorithm appears in Algorithm 1.
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Algorithm 2
1: Input: γ, σ, α, XXT

2: Output: (c∗,M∗)
3: Initialize M = Λ((1/(γt), . . . , 1/(γt)))
4: repeat
5: Solve for minimum value in inner minimization of (25), obtain A
6: Solve outer minimization in (25) given SVD of A using Theorem 4.1 of [18], obtain new M
7: until M has converged (M = M∗)
8: Recover c∗ = −1

σ2 diag(X(A∗)T )

5 Min-Min Reformulation
Although the max-min formulation appears satisfactory, the recent literature on multitask learn-
ing [17, 18] has developed an alternate strategy for bypassing general semidefinite programming.
Specifically, work in this area lead to convex optimization problems expressed jointly over two ma-
trix variables where each step is an alternating min-min descent that can be executed in closed-form
or by a very fast algorithm. Although it is not immediately apparent that this algorithmic strategy
is applicable to the problem at hand, with some further reformulation of (8) we discover that in fact
the same min-min algorithmic approach can be applied to our mixture of regression problem.

Theorem 8 The following optimization problem

min
{M :I�M�0,trM=1/γ}

min
A

[
1
σ2
yTdiag(XAT ) +

1
2σ2

diag(XAT )Tdiag(XAT ) +
α

2γt
tr(ATM−1A)

]
(25)

is equivalent to optimization problem (8).

Proof

min
{M :I�M�0,trM=1/γ}

max
c
−σ

2

2
cT c− γt

2α
(c− ȳ)T (M �XXT )(c− ȳ) (26)

= min
{M :I�M�0,trM=1/γ}

max
{c,C:C=Λ(c−ȳ)X}

−σ
2

2
cT c− γt

2α
tr(CTMC) (27)

= min
{M :I�M�0,trM=1/γ}

min
A

max
c,C
−σ

2

2
cT c− γt

2α
tr(CTMC) + tr(ATC)− tr(ATΛ(c− ȳ)X)

(28)
We can then solve for c and C, obtaining c = − 1

σ2 diag(XAT ) and C = α
γtM

−1A. Substituting
those two variables into (28) proves the claim.

5.1 Min-Min Algorithm

The problem (25) is jointly convex in A and M [14] and Algorithm 2 describes how to solve it.
It is important to note that although each iteration in Algorithm 2 is efficient, many iterations are
required to reach a desired tolerance, since it is only first-order convergent. It is observed in our
experiments that the concave-convex max-min approach in Algorithm 1 is more efficient simply
because it has the same iteration cost but exploits a quasi-Newton descent in the outer optimization,
which converges faster.

Remark 9 In practice, similarly to [17], a regularizer onM is added to avoid singularity, resulting
in the following regularized objective function,

min
{M :I�M�0,trM=1/γ}

min
A

1
σ2
yTdiag(XAT ) +

1
2σ2

diag(XAT )Tdiag(XAT )

+
α

2γt
tr(ATM−1A) + ε tr(M−1). (29)

The problem is still jointly convex in M and A.
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6 Experiments

Our primary objective in formulating this convex approach to mixture regression is to tackle a dif-
ficult problem in video analysis (see below). However, to initially evaluate the different approaches
we conducted some synthetic experiments. We generated 30 synthetic data points according to
yi = (πi ⊗ xi)w + εi, with xi ∈ R, εi ∼ N(0, 1) and w ∈ U(0, 1). The response variable yi is
assumed to be generated from a mixture of 5 components. We compared the quality of the relax-
ation in (22) to EM. Max-min algorithm is used in this experiment. For EM, 100 random restarts
was used to help avoid poor local optima. The experiment is repeated 10 times. The error rates are
0.347 ± 0.086 and 0.280 ± 0.063 for EM and convex relaxation, respectively. The visualization
of the recovered membership for one of the runs is given in Figure 1. This demonstrates that the
relaxation can retain much of the structure of the problem.

6.1 Vision Experiment
In a dynamic scene, various static and moving objects are viewed by a possibly moving observer.
For example, consider a moving, hand-held camera filming a scene of several cars driving down
the road. Each car has a separate motion, and even the static objects, such as trees, appear to move
in the video due to the self-motion of the camera. The task of segmenting each object according
to its motion, estimating the parameters of each motion, and recovering the structure of the scene
is known as the multibody structure and motion problem. This is a missing variable problem. If
the motions have been segmented correctly, it is easy to estimate the parameters of each motion.
Naturally, models employing EM have been proposed to tackle such problems (c.f. [19, 20]).

From epipolar geometry, given a pair of corresponding points pi and qi from two images (pi, qi ∈
R3×1), we have the epipolar equation qTi Fpi = 0. The fundamental matrix F encapsulates infor-
mation about the translation and rotation relative to the scene points between the positions of the
camera where the two images were captured, as well as the camera calibration parameters such as
its focal length. In a static scene, where only the camera is moving, there is only one fundamental
matrix, which arises from the camera self-motion. However, if some of the scene points are moving
independently under multiple different motions, there are several fundamental matrices. If there
are k motion groups, the epipolar equation can be expressed in term of the multibody fundamental
matrix [21], i.e.

∏k
j=1(qTi Fjpi) = 0. An algebraic method was proposed to recover this matrix via

Generalized PCA [21]. An alternative approach, which we follow here, is by Li [22], who casts the
problem as a mixture of fundamental matrices, i.e. qTi (

∑k
j=1 πijFj)pi = 0 where the membership

variable πij = 1 when image point i belongs to motion group j, and zero otherwise. Furthermore,
since qTi Fpi = 0 is bilinear in the image points, we can rewrite it to be xTi wj = 0, with the column
vectors xi = [qxi p

x
i qxi p

y
i qxi p

π
i .... qπi p

π
i ]T and w = vec(FTj ). Thus, we will end up with the

following linear equation:
∑k
j=1 πijx

T
i wj = 0. The weight vector wj for motion group j can be

recovered easily if the indicator variable πij is known.

We are interested in assessing the effectiveness of EM-based and convex relaxation-based methods
for this multibody structure and motion problem. We used the Hopkins 155 dataset [23]. The exper-
imental results are summarized in Table 1. All hyperparameters (EM: α and σ; Convex relaxation:
α, σ, and γ) were tuned and the best performances for each learning algorithm are reported. The
EM algorithm was run with 100 random restarts to help avoid poor local optima. In terms of com-
putation time, the max-min runs comparably to the EM algorithm, while min-min runs in the order
of 3 to 4 times slower. As an illustration, on a Pentium 4 3.6 GHz machine, the elapsed time (in
seconds) for two cranes dataset is 16.880, 23.536, and 60.003 for EM, max-min and min-min,
respectively. Rounding for the convex versions was done by k-means, which introduces some dif-
ferences in the final results for both algorithms. Noticeably, both max-min and min-min outperform
the EM algorithm. Visualizations of the motion segmentation on two cranes, three cars,
and cars2 07 datasets are given in Figure 2 (for kanatani2 and articulated please refer
to Appendix).

7 Conclusion
The mixture regression problem is pervasive in many applications and known approaches for param-
eter estimation rely on variants of EM, which naturally have issues with local minima. In this paper
we introduced a semidefinite relaxation for the mixture regression problem, thus obtaining a con-
vex formulation which does not suffer from local minima. In addition we showed how to avoid the
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use of expensive interior-point methods typically needed to solve semidefinite programs. This was
achieved by introducing two reformulations amenable to the use of faster algorithms. Experimental
results with synthetic data as well as with real computer vision data suggest the proposed methods
can substantially improve on EM while one of the methods in addition has comparable runtimes.

Table 1: Error rate on several datasets from the Hopkins 155
Data set m EM Max-Min Convex Min-Min Convex
three cars 173 0.0532 0.0289 0.0347
kanatani2 63 0.0000 0.0000 0.0000
cars2 07 212 0.3396 0.2642 0.2594
two cranes 94 0.0532 0.0213 0.0106
articulated 150 0.0000 0.0000 0.0000

(a) Ground Truth (b) EM (c) Convex Relaxation

Figure 1: Recovered membership on synthetic data with EM and convex relaxation. 30 data points
are generated according to yi = (πi ⊗ xi)w + εi, with xi ∈ R, εi ∼ N(0, 1) and w ∈ U(0, 1).

(a) Ground Truth (b) EM (c) Max-Min Convex (d) Min-Min Convex

(e) Ground Truth (f) EM (g) Max-Min Convex (h) Min-Min Convex

(i) Ground Truth (j) EM (k) Max-Min Convex (l) Min-Min Convex

Figure 2: Resulting motion segmentations produced by the various techniques on the Hopkins 155
dataset. 2(a)-2(d): two cranes, 2(e)-2(h): three cars, and 2(i)-2(l): cars2 07. In two
cranes (first row), EM produces more segmentation errors at the left crane. In three cars
(second row), the max-min method gives the least segmentation error (at the front side of the middle
car) and EM produces more segmentation errors at the front side of the left car. The contrast of EM
and convex methods is apparent for cars2 07 (third row): the convex methods segment correctly
the static grass field object, while EM makes mistakes. Further, the min-min method can almost
perfectly segment the car in the middle of the scene from the static tree background.
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