
1/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Systematic Analysis of Programming Languages
and Their Execution Environments for Spectre

Attacks

Amir Naseredini1,3, Stefan Gast2,3, Martin Schwarzl3, Pedro
Miguel Sousa Bernardo4, Amel Smajic3, Claudio Canella3,

Martin Berger1,5, Daniel Gruss2,3

1University of Sussex, UK 2Lamarr Security Research, Austria
3Graz University of Technology, Austria 4Instituto Superior Técnico,

Universidade de Lisboa, Portugal
5Turing Core, Huawei 2012 Labs, London, UK

February 03, 2022

Presentation at the Department of Computer Science, UCL

2/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Outline

1 Introduction
2 Background

Speculative Execution
Transient-Execution Attacks
Gadgets
Program Execution

3 Feasibility of Attacks in
Documentations

Interpreted Languages
Compiled Languages
Managed Languages

4 Speconnector
Threat Model
Method

5 Feasibility of Attacks in
Practice

Interpreted Languages
Compiled Languages
Managed Languages

6 Case Studies
7 Conclusion

Presentation at the Department of Computer Science, UCL

3/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Introduction

Introduction

Presentation at the Department of Computer Science, UCL

4/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Introduction

The Problem

Spectre mitigations mainly rely on the OS level, or in the exe-
cution environment

We have a large number of mitigations

We have a vast variety of programming languages with associ-
ated execution environments

Problem

It is NOT clear which execution environments have effective mitiga-
tions and can securely be used to implement security critical code,
and which do not

Presentation at the Department of Computer Science, UCL

4/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Introduction

The Problem

Spectre mitigations mainly rely on the OS level, or in the exe-
cution environment

We have a large number of mitigations

We have a vast variety of programming languages with associ-
ated execution environments

Problem

It is NOT clear which execution environments have effective mitiga-
tions and can securely be used to implement security critical code,
and which do not

Presentation at the Department of Computer Science, UCL

4/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Introduction

The Problem

Spectre mitigations mainly rely on the OS level, or in the exe-
cution environment

We have a large number of mitigations

We have a vast variety of programming languages with associ-
ated execution environments

Problem

It is NOT clear which execution environments have effective mitiga-
tions and can securely be used to implement security critical code,
and which do not

Presentation at the Department of Computer Science, UCL

4/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Introduction

The Problem

Spectre mitigations mainly rely on the OS level, or in the exe-
cution environment

We have a large number of mitigations

We have a vast variety of programming languages with associ-
ated execution environments

Problem

It is NOT clear which execution environments have effective mitiga-
tions and can securely be used to implement security critical code,
and which do not

Presentation at the Department of Computer Science, UCL

4/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Introduction

The Problem

Spectre mitigations mainly rely on the OS level, or in the exe-
cution environment

We have a large number of mitigations

We have a vast variety of programming languages with associ-
ated execution environments

Problem

It is NOT clear which execution environments have effective mitiga-
tions and can securely be used to implement security critical code,
and which do not

Presentation at the Department of Computer Science, UCL

5/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Introduction

Our Contributions

We systematically analyse the security (with respect to Spectre)
of programming languages and their execution environments

We introduce Speconnector

It is a novel tool
It is to evaluate and exploit Spectre gadgets
It works independent of the target programming language

We demonstrate the security impact with two case studies of
security-related libraries, and show that we can leak secrets from
them.

Presentation at the Department of Computer Science, UCL

5/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Introduction

Our Contributions

We systematically analyse the security (with respect to Spectre)
of programming languages and their execution environments

We introduce Speconnector

It is a novel tool
It is to evaluate and exploit Spectre gadgets
It works independent of the target programming language

We demonstrate the security impact with two case studies of
security-related libraries, and show that we can leak secrets from
them.

Presentation at the Department of Computer Science, UCL

5/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Introduction

Our Contributions

We systematically analyse the security (with respect to Spectre)
of programming languages and their execution environments

We introduce Speconnector

It is a novel tool
It is to evaluate and exploit Spectre gadgets
It works independent of the target programming language

We demonstrate the security impact with two case studies of
security-related libraries, and show that we can leak secrets from
them.

Presentation at the Department of Computer Science, UCL

5/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Introduction

Our Contributions

We systematically analyse the security (with respect to Spectre)
of programming languages and their execution environments

We introduce Speconnector

It is a novel tool

It is to evaluate and exploit Spectre gadgets
It works independent of the target programming language

We demonstrate the security impact with two case studies of
security-related libraries, and show that we can leak secrets from
them.

Presentation at the Department of Computer Science, UCL

5/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Introduction

Our Contributions

We systematically analyse the security (with respect to Spectre)
of programming languages and their execution environments

We introduce Speconnector

It is a novel tool
It is to evaluate and exploit Spectre gadgets

It works independent of the target programming language

We demonstrate the security impact with two case studies of
security-related libraries, and show that we can leak secrets from
them.

Presentation at the Department of Computer Science, UCL

5/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Introduction

Our Contributions

We systematically analyse the security (with respect to Spectre)
of programming languages and their execution environments

We introduce Speconnector

It is a novel tool
It is to evaluate and exploit Spectre gadgets
It works independent of the target programming language

We demonstrate the security impact with two case studies of
security-related libraries, and show that we can leak secrets from
them.

Presentation at the Department of Computer Science, UCL

5/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Introduction

Our Contributions

We systematically analyse the security (with respect to Spectre)
of programming languages and their execution environments

We introduce Speconnector

It is a novel tool
It is to evaluate and exploit Spectre gadgets
It works independent of the target programming language

We demonstrate the security impact with two case studies of
security-related libraries, and show that we can leak secrets from
them.

Presentation at the Department of Computer Science, UCL

6/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Background

Presentation at the Department of Computer Science, UCL

7/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Speculative Execution

Speculative Execution

Programs run conditional branching hence CPUs often do not
have a way to choose the next instruction to execute

With speculative execution, the CPU holds the current state,
predict the more probable path based on the history of similar
events and speculatively executes in the predicted direction

If the prediction is not correct the CPU rolls back the architec-
tural state

HOWEVER, the microarchitectural state is not reverted

Presentation at the Department of Computer Science, UCL

7/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Speculative Execution

Speculative Execution

Programs run conditional branching hence CPUs often do not
have a way to choose the next instruction to execute

With speculative execution, the CPU holds the current state,
predict the more probable path based on the history of similar
events and speculatively executes in the predicted direction

If the prediction is not correct the CPU rolls back the architec-
tural state

HOWEVER, the microarchitectural state is not reverted

Presentation at the Department of Computer Science, UCL

7/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Speculative Execution

Speculative Execution

Programs run conditional branching hence CPUs often do not
have a way to choose the next instruction to execute

With speculative execution, the CPU holds the current state,
predict the more probable path based on the history of similar
events and speculatively executes in the predicted direction

If the prediction is not correct the CPU rolls back the architec-
tural state

HOWEVER, the microarchitectural state is not reverted

Presentation at the Department of Computer Science, UCL

7/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Speculative Execution

Speculative Execution

Programs run conditional branching hence CPUs often do not
have a way to choose the next instruction to execute

With speculative execution, the CPU holds the current state,
predict the more probable path based on the history of similar
events and speculatively executes in the predicted direction

If the prediction is not correct the CPU rolls back the architec-
tural state

HOWEVER, the microarchitectural state is not reverted

Presentation at the Department of Computer Science, UCL

7/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Speculative Execution

Speculative Execution

Programs run conditional branching hence CPUs often do not
have a way to choose the next instruction to execute

With speculative execution, the CPU holds the current state,
predict the more probable path based on the history of similar
events and speculatively executes in the predicted direction

If the prediction is not correct the CPU rolls back the architec-
tural state

HOWEVER, the microarchitectural state is not reverted

Presentation at the Department of Computer Science, UCL

8/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Transient-Execution Attacks

Transient-Execution Attacks

Since the microarchitectural state is not reverted the effects of
transient instructions can be reconstructed on the architectural
level

Attacks of this type traditionally use side-channel attacks to
reconstruct the architectural state

Presentation at the Department of Computer Science, UCL

8/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Transient-Execution Attacks

Transient-Execution Attacks

Since the microarchitectural state is not reverted the effects of
transient instructions can be reconstructed on the architectural
level

Attacks of this type traditionally use side-channel attacks to
reconstruct the architectural state

Presentation at the Department of Computer Science, UCL

8/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Transient-Execution Attacks

Transient-Execution Attacks

Since the microarchitectural state is not reverted the effects of
transient instructions can be reconstructed on the architectural
level

Attacks of this type traditionally use side-channel attacks to
reconstruct the architectural state

Presentation at the Department of Computer Science, UCL

9/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Gadgets

Gadgets

Definition

A gadget is a piece of code used to transfer the secret information
from the victim’s side into a covert channel from which the attacker
can then retrieve it

Here is an example of an index gadget
⇓

Example

if(x < length_of_data){

tmp &= lookup_table[data[x] << 12];

}

Presentation at the Department of Computer Science, UCL

9/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Gadgets

Gadgets

Definition

A gadget is a piece of code used to transfer the secret information
from the victim’s side into a covert channel from which the attacker
can then retrieve it

Here is an example of an index gadget

⇓

Example

if(x < length_of_data){

tmp &= lookup_table[data[x] << 12];

}

Presentation at the Department of Computer Science, UCL

9/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Gadgets

Gadgets

Definition

A gadget is a piece of code used to transfer the secret information
from the victim’s side into a covert channel from which the attacker
can then retrieve it

Here is an example of an index gadget
⇓

Example

if(x < length_of_data){

tmp &= lookup_table[data[x] << 12];

}

Presentation at the Department of Computer Science, UCL

9/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Gadgets

Gadgets

Definition

A gadget is a piece of code used to transfer the secret information
from the victim’s side into a covert channel from which the attacker
can then retrieve it

Here is an example of an index gadget
⇓

Example

if(x < length_of_data){

tmp &= lookup_table[data[x] << 12];

}

Presentation at the Department of Computer Science, UCL

10/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Program Execution

Program Execution

We categorize the execution environments into three
categories based on the program execution

Interpreted Program Execution
Compiled Program Execution
Managed Program Execution

Note!

This distinction is orthogonal to programming language choice since
every language can be interpreted, compiled, and executed in hy-
brids.

Presentation at the Department of Computer Science, UCL

10/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Program Execution

Program Execution

We categorize the execution environments into three
categories based on the program execution

Interpreted Program Execution

Compiled Program Execution
Managed Program Execution

Note!

This distinction is orthogonal to programming language choice since
every language can be interpreted, compiled, and executed in hy-
brids.

Presentation at the Department of Computer Science, UCL

10/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Program Execution

Program Execution

We categorize the execution environments into three
categories based on the program execution

Interpreted Program Execution
Compiled Program Execution

Managed Program Execution

Note!

This distinction is orthogonal to programming language choice since
every language can be interpreted, compiled, and executed in hy-
brids.

Presentation at the Department of Computer Science, UCL

10/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Program Execution

Program Execution

We categorize the execution environments into three
categories based on the program execution

Interpreted Program Execution
Compiled Program Execution
Managed Program Execution

Note!

This distinction is orthogonal to programming language choice since
every language can be interpreted, compiled, and executed in hy-
brids.

Presentation at the Department of Computer Science, UCL

10/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Program Execution

Program Execution

We categorize the execution environments into three
categories based on the program execution

Interpreted Program Execution
Compiled Program Execution
Managed Program Execution

Note!

This distinction is orthogonal to programming language choice since
every language can be interpreted, compiled, and executed in hy-
brids.

Presentation at the Department of Computer Science, UCL

11/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Program Execution

Interpreted Program Execution

Interpreted languages need to be translated every time they
are being run

Therefore they are more portable as only the interpreter is
platform specific

Presentation at the Department of Computer Science, UCL

11/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Program Execution

Interpreted Program Execution

Interpreted languages need to be translated every time they
are being run

Therefore they are more portable as only the interpreter is
platform specific

Presentation at the Department of Computer Science, UCL

11/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Program Execution

Interpreted Program Execution

Interpreted languages need to be translated every time they
are being run

Therefore they are more portable as only the interpreter is
platform specific

Presentation at the Department of Computer Science, UCL

12/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Program Execution

Compiled Program Execution

Compiled languages only incur the overhead of translating the
code once

Therefore compilers can perform more sophisticated
optimisations since their translation time is less important

Presentation at the Department of Computer Science, UCL

12/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Program Execution

Compiled Program Execution

Compiled languages only incur the overhead of translating the
code once

Therefore compilers can perform more sophisticated
optimisations since their translation time is less important

Presentation at the Department of Computer Science, UCL

12/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Program Execution

Compiled Program Execution

Compiled languages only incur the overhead of translating the
code once

Therefore compilers can perform more sophisticated
optimisations since their translation time is less important

Presentation at the Department of Computer Science, UCL

13/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Program Execution

Managed Program Execution

The aim is to combine the advantages of compiled and
interpreted languages

Presentation at the Department of Computer Science, UCL

13/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Program Execution

Managed Program Execution

The aim is to combine the advantages of compiled and
interpreted languages

Presentation at the Department of Computer Science, UCL

13/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Background

Program Execution

Managed Program Execution

The aim is to combine the advantages of compiled and
interpreted languages

Presentation at the Department of Computer Science, UCL

14/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Feasibility of Attacks in Documentations

Presentation at the Department of Computer Science, UCL

15/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Interpreted Languages

Interpreted Languages

We studied 9 different interpreters

We looked into the publicly available documentation of each
case

As an additional source of information, we contacted developers
of the respective interpreters

Unfortunately, this step did not provide any additional insights
for 8 of them

Attack
PLs Ru

by

(M
RI
)

PH
P Sh

el
l

(B
as
h)

Pe
rl Po

we
rS
he
ll

(p
ws
h)

TS
QL

Lu
a Vi

m

sc
ri
pt

Em
ac
s

Li
sp

Spectre-PHT × × × 4 × × × × ×
Spectre-BTB × × × 4 × × × × ×
Spectre-RSB × × × 4 × × × × ×
Spectre-STL × × × 4 × × × × ×

Presentation at the Department of Computer Science, UCL

15/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Interpreted Languages

Interpreted Languages
We studied 9 different interpreters

We looked into the publicly available documentation of each
case

As an additional source of information, we contacted developers
of the respective interpreters

Unfortunately, this step did not provide any additional insights
for 8 of them

Attack
PLs Ru

by

(M
RI
)

PH
P Sh

el
l

(B
as
h)

Pe
rl Po

we
rS
he
ll

(p
ws
h)

TS
QL

Lu
a Vi

m

sc
ri
pt

Em
ac
s

Li
sp

Spectre-PHT × × × 4 × × × × ×
Spectre-BTB × × × 4 × × × × ×
Spectre-RSB × × × 4 × × × × ×
Spectre-STL × × × 4 × × × × ×

Presentation at the Department of Computer Science, UCL

15/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Interpreted Languages

Interpreted Languages
We studied 9 different interpreters

We looked into the publicly available documentation of each
case

As an additional source of information, we contacted developers
of the respective interpreters

Unfortunately, this step did not provide any additional insights
for 8 of them

Attack
PLs Ru

by

(M
RI
)

PH
P Sh

el
l

(B
as
h)

Pe
rl Po

we
rS
he
ll

(p
ws
h)

TS
QL

Lu
a Vi

m

sc
ri
pt

Em
ac
s

Li
sp

Spectre-PHT × × × 4 × × × × ×
Spectre-BTB × × × 4 × × × × ×
Spectre-RSB × × × 4 × × × × ×
Spectre-STL × × × 4 × × × × ×

Presentation at the Department of Computer Science, UCL

15/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Interpreted Languages

Interpreted Languages
We studied 9 different interpreters

We looked into the publicly available documentation of each
case

As an additional source of information, we contacted developers
of the respective interpreters

Unfortunately, this step did not provide any additional insights
for 8 of them

Attack
PLs Ru

by

(M
RI
)

PH
P Sh

el
l

(B
as
h)

Pe
rl Po

we
rS
he
ll

(p
ws
h)

TS
QL

Lu
a Vi

m

sc
ri
pt

Em
ac
s

Li
sp

Spectre-PHT × × × 4 × × × × ×
Spectre-BTB × × × 4 × × × × ×
Spectre-RSB × × × 4 × × × × ×
Spectre-STL × × × 4 × × × × ×

Presentation at the Department of Computer Science, UCL

15/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Interpreted Languages

Interpreted Languages
We studied 9 different interpreters

We looked into the publicly available documentation of each
case

As an additional source of information, we contacted developers
of the respective interpreters

Unfortunately, this step did not provide any additional insights
for 8 of them

Attack
PLs Ru

by

(M
RI
)

PH
P Sh

el
l

(B
as
h)

Pe
rl Po

we
rS
he
ll

(p
ws
h)

TS
QL

Lu
a Vi

m

sc
ri
pt

Em
ac
s

Li
sp

Spectre-PHT × × × 4 × × × × ×
Spectre-BTB × × × 4 × × × × ×
Spectre-RSB × × × 4 × × × × ×
Spectre-STL × × × 4 × × × × ×

Presentation at the Department of Computer Science, UCL

15/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Interpreted Languages

Interpreted Languages
We studied 9 different interpreters

We looked into the publicly available documentation of each
case

As an additional source of information, we contacted developers
of the respective interpreters

Unfortunately, this step did not provide any additional insights
for 8 of them

Attack
PLs Ru

by

(M
RI
)

PH
P Sh

el
l

(B
as
h)

Pe
rl Po

we
rS
he
ll

(p
ws
h)

TS
QL

Lu
a Vi

m

sc
ri
pt

Em
ac
s

Li
sp

Spectre-PHT × × × 4 × × × × ×
Spectre-BTB × × × 4 × × × × ×
Spectre-RSB × × × 4 × × × × ×
Spectre-STL × × × 4 × × × × ×

Presentation at the Department of Computer Science, UCL

16/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Compiled Languages

Compiled Languages

We considered 15 different compilers in our study

We followed the same approach as the previous part

Based on our analysis, the Go compiler has the best situation
regarding its mitigations against differenct Spectre variants

Attack
PLs

Go
C+
+

(G
CC
)

C+
+

(M
S) C+

+

(I
nt
el
)

C+
+

(L
LV
M)

C
(G
CC
)

C
(M
S) C

(I
nt
el
)

C
(L
LV
M)

Ru
st

(L
LV
M)

Sw
if
t

(L
LV
M)

DM
Ob
je
ct
iv
e-
C

(L
LV
M)

Ha
sk
el
l

(G
HC
)

OC
am
l

(o
ca
ml
op
t)

Spectre-PHT 2� 2� 2� 2� 2� 2� 2� 2� 2� 2� 2� × 2� × 4
Spectre-BTB 2� 2� 4 2� 2� 2� 4 2� 2� 2� 2� × 2� × 4
Spectre-RSB 2� 2� 4 4 × 2� 4 4 × × × × × × 4
Spectre-STL 4 × 2� 4 × × 2� 4 × × × × × × 4

Presentation at the Department of Computer Science, UCL

16/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Compiled Languages

Compiled Languages

We considered 15 different compilers in our study

We followed the same approach as the previous part

Based on our analysis, the Go compiler has the best situation
regarding its mitigations against differenct Spectre variants

Attack
PLs

Go
C+
+

(G
CC
)

C+
+

(M
S) C+

+

(I
nt
el
)

C+
+

(L
LV
M)

C
(G
CC
)

C
(M
S) C

(I
nt
el
)

C
(L
LV
M)

Ru
st

(L
LV
M)

Sw
if
t

(L
LV
M)

DM
Ob
je
ct
iv
e-
C

(L
LV
M)

Ha
sk
el
l

(G
HC
)

OC
am
l

(o
ca
ml
op
t)

Spectre-PHT 2� 2� 2� 2� 2� 2� 2� 2� 2� 2� 2� × 2� × 4
Spectre-BTB 2� 2� 4 2� 2� 2� 4 2� 2� 2� 2� × 2� × 4
Spectre-RSB 2� 2� 4 4 × 2� 4 4 × × × × × × 4
Spectre-STL 4 × 2� 4 × × 2� 4 × × × × × × 4

Presentation at the Department of Computer Science, UCL

16/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Compiled Languages

Compiled Languages

We considered 15 different compilers in our study

We followed the same approach as the previous part

Based on our analysis, the Go compiler has the best situation
regarding its mitigations against differenct Spectre variants

Attack
PLs

Go
C+
+

(G
CC
)

C+
+

(M
S) C+

+

(I
nt
el
)

C+
+

(L
LV
M)

C
(G
CC
)

C
(M
S) C

(I
nt
el
)

C
(L
LV
M)

Ru
st

(L
LV
M)

Sw
if
t

(L
LV
M)

DM
Ob
je
ct
iv
e-
C

(L
LV
M)

Ha
sk
el
l

(G
HC
)

OC
am
l

(o
ca
ml
op
t)

Spectre-PHT 2� 2� 2� 2� 2� 2� 2� 2� 2� 2� 2� × 2� × 4
Spectre-BTB 2� 2� 4 2� 2� 2� 4 2� 2� 2� 2� × 2� × 4
Spectre-RSB 2� 2� 4 4 × 2� 4 4 × × × × × × 4
Spectre-STL 4 × 2� 4 × × 2� 4 × × × × × × 4

Presentation at the Department of Computer Science, UCL

16/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Compiled Languages

Compiled Languages

We considered 15 different compilers in our study

We followed the same approach as the previous part

Based on our analysis, the Go compiler has the best situation
regarding its mitigations against differenct Spectre variants

Attack
PLs

Go
C+
+

(G
CC
)

C+
+

(M
S) C+

+

(I
nt
el
)

C+
+

(L
LV
M)

C
(G
CC
)

C
(M
S) C

(I
nt
el
)

C
(L
LV
M)

Ru
st

(L
LV
M)

Sw
if
t

(L
LV
M)

DM
Ob
je
ct
iv
e-
C

(L
LV
M)

Ha
sk
el
l

(G
HC
)

OC
am
l

(o
ca
ml
op
t)

Spectre-PHT 2� 2� 2� 2� 2� 2� 2� 2� 2� 2� 2� × 2� × 4
Spectre-BTB 2� 2� 4 2� 2� 2� 4 2� 2� 2� 2� × 2� × 4
Spectre-RSB 2� 2� 4 4 × 2� 4 4 × × × × × × 4
Spectre-STL 4 × 2� 4 × × 2� 4 × × × × × × 4

Presentation at the Department of Computer Science, UCL

16/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Compiled Languages

Compiled Languages

We considered 15 different compilers in our study

We followed the same approach as the previous part

Based on our analysis, the Go compiler has the best situation
regarding its mitigations against differenct Spectre variants

Attack
PLs

Go
C+
+

(G
CC
)

C+
+

(M
S) C+

+

(I
nt
el
)

C+
+

(L
LV
M)

C
(G
CC
)

C
(M
S) C

(I
nt
el
)

C
(L
LV
M)

Ru
st

(L
LV
M)

Sw
if
t

(L
LV
M)

DM
Ob
je
ct
iv
e-
C

(L
LV
M)

Ha
sk
el
l

(G
HC
)

OC
am
l

(o
ca
ml
op
t)

Spectre-PHT 2� 2� 2� 2� 2� 2� 2� 2� 2� 2� 2� × 2� × 4
Spectre-BTB 2� 2� 4 2� 2� 2� 4 2� 2� 2� 2� × 2� × 4
Spectre-RSB 2� 2� 4 4 × 2� 4 4 × × × × × × 4
Spectre-STL 4 × 2� 4 × × 2� 4 × × × × × × 4

Presentation at the Department of Computer Science, UCL

17/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Managed Languages

Managed Languages

We analysed 13 different programming languages and their 18
respective hybrid compilers

We followed the same approach as the previous parts

Surprisingly, the majoity of them either

Did not have any mitigations implemented OR
Did not provide any information about implemented
mitigations publicly

Attack
PLs

Da
rt Ja

va

(O
ra
cl
eJ
DK
)

Ja
va

(O
pe
nJ
DK
)

Ja
va

(G
ra
al
VM
)

Ja
va
Sc
ri
pt

(S
pi
de
rM
on
ke
y)

Ja
va
Sc
ri
pt

(V
8) Ja

va
Sc
ri
pt

(C
ha
kr
a)

Ty
pe
Sc
ri
pt

Co
ff
ee
Sc
ri
pt

Py
th
on

(P
yP
y)

Sc
al
a

C# El
ix
ir

Cl
oj
ur
e

Py
th
on

(C
Py
th
on
)

OC
am
l

(o
ca
ml
c/
oc
am
lr
un
)

Ko
tl
in

Gr
oo
vy

Spectre-PHT × × 4 2� 2� 2� 2� × × 4 4 4 4 × × 4 4 4
Spectre-BTB × × 4 × 2� 2� 2� × × 4 4 4 4 × × 4 4 4
Spectre-RSB × × 4 × × × × × × 4 4 4 4 × × 4 4 4
Spectre-STL × × 4 × × 4 × × × 4 4 4 4 × × 4 4 4

Presentation at the Department of Computer Science, UCL

17/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Managed Languages

Managed Languages

We analysed 13 different programming languages and their 18
respective hybrid compilers

We followed the same approach as the previous parts

Surprisingly, the majoity of them either

Did not have any mitigations implemented OR
Did not provide any information about implemented
mitigations publicly

Attack
PLs

Da
rt Ja

va

(O
ra
cl
eJ
DK
)

Ja
va

(O
pe
nJ
DK
)

Ja
va

(G
ra
al
VM
)

Ja
va
Sc
ri
pt

(S
pi
de
rM
on
ke
y)

Ja
va
Sc
ri
pt

(V
8) Ja

va
Sc
ri
pt

(C
ha
kr
a)

Ty
pe
Sc
ri
pt

Co
ff
ee
Sc
ri
pt

Py
th
on

(P
yP
y)

Sc
al
a

C# El
ix
ir

Cl
oj
ur
e

Py
th
on

(C
Py
th
on
)

OC
am
l

(o
ca
ml
c/
oc
am
lr
un
)

Ko
tl
in

Gr
oo
vy

Spectre-PHT × × 4 2� 2� 2� 2� × × 4 4 4 4 × × 4 4 4
Spectre-BTB × × 4 × 2� 2� 2� × × 4 4 4 4 × × 4 4 4
Spectre-RSB × × 4 × × × × × × 4 4 4 4 × × 4 4 4
Spectre-STL × × 4 × × 4 × × × 4 4 4 4 × × 4 4 4

Presentation at the Department of Computer Science, UCL

17/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Managed Languages

Managed Languages

We analysed 13 different programming languages and their 18
respective hybrid compilers

We followed the same approach as the previous parts

Surprisingly, the majoity of them either

Did not have any mitigations implemented OR
Did not provide any information about implemented
mitigations publicly

Attack
PLs

Da
rt Ja

va

(O
ra
cl
eJ
DK
)

Ja
va

(O
pe
nJ
DK
)

Ja
va

(G
ra
al
VM
)

Ja
va
Sc
ri
pt

(S
pi
de
rM
on
ke
y)

Ja
va
Sc
ri
pt

(V
8) Ja

va
Sc
ri
pt

(C
ha
kr
a)

Ty
pe
Sc
ri
pt

Co
ff
ee
Sc
ri
pt

Py
th
on

(P
yP
y)

Sc
al
a

C# El
ix
ir

Cl
oj
ur
e

Py
th
on

(C
Py
th
on
)

OC
am
l

(o
ca
ml
c/
oc
am
lr
un
)

Ko
tl
in

Gr
oo
vy

Spectre-PHT × × 4 2� 2� 2� 2� × × 4 4 4 4 × × 4 4 4
Spectre-BTB × × 4 × 2� 2� 2� × × 4 4 4 4 × × 4 4 4
Spectre-RSB × × 4 × × × × × × 4 4 4 4 × × 4 4 4
Spectre-STL × × 4 × × 4 × × × 4 4 4 4 × × 4 4 4

Presentation at the Department of Computer Science, UCL

17/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Managed Languages

Managed Languages

We analysed 13 different programming languages and their 18
respective hybrid compilers

We followed the same approach as the previous parts

Surprisingly, the majoity of them either

Did not have any mitigations implemented OR
Did not provide any information about implemented
mitigations publicly

Attack
PLs

Da
rt Ja

va

(O
ra
cl
eJ
DK
)

Ja
va

(O
pe
nJ
DK
)

Ja
va

(G
ra
al
VM
)

Ja
va
Sc
ri
pt

(S
pi
de
rM
on
ke
y)

Ja
va
Sc
ri
pt

(V
8) Ja

va
Sc
ri
pt

(C
ha
kr
a)

Ty
pe
Sc
ri
pt

Co
ff
ee
Sc
ri
pt

Py
th
on

(P
yP
y)

Sc
al
a

C# El
ix
ir

Cl
oj
ur
e

Py
th
on

(C
Py
th
on
)

OC
am
l

(o
ca
ml
c/
oc
am
lr
un
)

Ko
tl
in

Gr
oo
vy

Spectre-PHT × × 4 2� 2� 2� 2� × × 4 4 4 4 × × 4 4 4
Spectre-BTB × × 4 × 2� 2� 2� × × 4 4 4 4 × × 4 4 4
Spectre-RSB × × 4 × × × × × × 4 4 4 4 × × 4 4 4
Spectre-STL × × 4 × × 4 × × × 4 4 4 4 × × 4 4 4

Presentation at the Department of Computer Science, UCL

17/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Managed Languages

Managed Languages

We analysed 13 different programming languages and their 18
respective hybrid compilers

We followed the same approach as the previous parts

Surprisingly, the majoity of them either

Did not have any mitigations implemented OR
Did not provide any information about implemented
mitigations publicly

Attack
PLs

Da
rt Ja

va

(O
ra
cl
eJ
DK
)

Ja
va

(O
pe
nJ
DK
)

Ja
va

(G
ra
al
VM
)

Ja
va
Sc
ri
pt

(S
pi
de
rM
on
ke
y)

Ja
va
Sc
ri
pt

(V
8) Ja

va
Sc
ri
pt

(C
ha
kr
a)

Ty
pe
Sc
ri
pt

Co
ff
ee
Sc
ri
pt

Py
th
on

(P
yP
y)

Sc
al
a

C# El
ix
ir

Cl
oj
ur
e

Py
th
on

(C
Py
th
on
)

OC
am
l

(o
ca
ml
c/
oc
am
lr
un
)

Ko
tl
in

Gr
oo
vy

Spectre-PHT × × 4 2� 2� 2� 2� × × 4 4 4 4 × × 4 4 4
Spectre-BTB × × 4 × 2� 2� 2� × × 4 4 4 4 × × 4 4 4
Spectre-RSB × × 4 × × × × × × 4 4 4 4 × × 4 4 4
Spectre-STL × × 4 × × 4 × × × 4 4 4 4 × × 4 4 4

Presentation at the Department of Computer Science, UCL

18/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Speconnector

Speconnector

Presentation at the Department of Computer Science, UCL

19/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Speconnector

Threat Model

Threat Model

Regular Spectre attack threat model

The attacker is a co-located program running under the same
operating system
The attacker is able to execute arbitrary code on the victim
machine
The victim code has an interface that we can interact with

The possibility of an attack happening depends on whether the
victim leaks

Therefore, we focus on the illegal data leakage
We use Speconnector to measure and verify this leakage

Note!

Note that this shows that an attack is possible, and crafting a con-
crete end-to-end exploit for each language only requires further en-
gineering steps

Presentation at the Department of Computer Science, UCL

19/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Speconnector

Threat Model

Threat Model
Regular Spectre attack threat model

The attacker is a co-located program running under the same
operating system
The attacker is able to execute arbitrary code on the victim
machine
The victim code has an interface that we can interact with

The possibility of an attack happening depends on whether the
victim leaks

Therefore, we focus on the illegal data leakage
We use Speconnector to measure and verify this leakage

Note!

Note that this shows that an attack is possible, and crafting a con-
crete end-to-end exploit for each language only requires further en-
gineering steps

Presentation at the Department of Computer Science, UCL

19/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Speconnector

Threat Model

Threat Model
Regular Spectre attack threat model

The attacker is a co-located program running under the same
operating system

The attacker is able to execute arbitrary code on the victim
machine
The victim code has an interface that we can interact with

The possibility of an attack happening depends on whether the
victim leaks

Therefore, we focus on the illegal data leakage
We use Speconnector to measure and verify this leakage

Note!

Note that this shows that an attack is possible, and crafting a con-
crete end-to-end exploit for each language only requires further en-
gineering steps

Presentation at the Department of Computer Science, UCL

19/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Speconnector

Threat Model

Threat Model
Regular Spectre attack threat model

The attacker is a co-located program running under the same
operating system
The attacker is able to execute arbitrary code on the victim
machine

The victim code has an interface that we can interact with

The possibility of an attack happening depends on whether the
victim leaks

Therefore, we focus on the illegal data leakage
We use Speconnector to measure and verify this leakage

Note!

Note that this shows that an attack is possible, and crafting a con-
crete end-to-end exploit for each language only requires further en-
gineering steps

Presentation at the Department of Computer Science, UCL

19/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Speconnector

Threat Model

Threat Model
Regular Spectre attack threat model

The attacker is a co-located program running under the same
operating system
The attacker is able to execute arbitrary code on the victim
machine
The victim code has an interface that we can interact with

The possibility of an attack happening depends on whether the
victim leaks

Therefore, we focus on the illegal data leakage
We use Speconnector to measure and verify this leakage

Note!

Note that this shows that an attack is possible, and crafting a con-
crete end-to-end exploit for each language only requires further en-
gineering steps

Presentation at the Department of Computer Science, UCL

19/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Speconnector

Threat Model

Threat Model
Regular Spectre attack threat model

The attacker is a co-located program running under the same
operating system
The attacker is able to execute arbitrary code on the victim
machine
The victim code has an interface that we can interact with

The possibility of an attack happening depends on whether the
victim leaks

Therefore, we focus on the illegal data leakage
We use Speconnector to measure and verify this leakage

Note!

Note that this shows that an attack is possible, and crafting a con-
crete end-to-end exploit for each language only requires further en-
gineering steps

Presentation at the Department of Computer Science, UCL

19/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Speconnector

Threat Model

Threat Model
Regular Spectre attack threat model

The attacker is a co-located program running under the same
operating system
The attacker is able to execute arbitrary code on the victim
machine
The victim code has an interface that we can interact with

The possibility of an attack happening depends on whether the
victim leaks

Therefore, we focus on the illegal data leakage

We use Speconnector to measure and verify this leakage

Note!

Note that this shows that an attack is possible, and crafting a con-
crete end-to-end exploit for each language only requires further en-
gineering steps

Presentation at the Department of Computer Science, UCL

19/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Speconnector

Threat Model

Threat Model
Regular Spectre attack threat model

The attacker is a co-located program running under the same
operating system
The attacker is able to execute arbitrary code on the victim
machine
The victim code has an interface that we can interact with

The possibility of an attack happening depends on whether the
victim leaks

Therefore, we focus on the illegal data leakage
We use Speconnector to measure and verify this leakage

Note!

Note that this shows that an attack is possible, and crafting a con-
crete end-to-end exploit for each language only requires further en-
gineering steps

Presentation at the Department of Computer Science, UCL

19/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Speconnector

Threat Model

Threat Model
Regular Spectre attack threat model

The attacker is a co-located program running under the same
operating system
The attacker is able to execute arbitrary code on the victim
machine
The victim code has an interface that we can interact with

The possibility of an attack happening depends on whether the
victim leaks

Therefore, we focus on the illegal data leakage
We use Speconnector to measure and verify this leakage

Note!

Note that this shows that an attack is possible, and crafting a con-
crete end-to-end exploit for each language only requires further en-
gineering steps

Presentation at the Department of Computer Science, UCL

20/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Speconnector

Method

Method

The target code first allocates 256 pages of memory

The target code fills the allocated memory with a known
magic value

Speconnector also allocates the same amount of memory

Speconnector uses the information of the process of the target
code to scan for the pages that contain the magic value

Speconnector establishes shared memory between the two
processes

Any victim accesses to one of the now shared pages results in
a cache hit and Speconnector catches it by performing Flush
+ Reload

Presentation at the Department of Computer Science, UCL

20/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Speconnector

Method

Method

The target code first allocates 256 pages of memory

The target code fills the allocated memory with a known
magic value

Speconnector also allocates the same amount of memory

Speconnector uses the information of the process of the target
code to scan for the pages that contain the magic value

Speconnector establishes shared memory between the two
processes

Any victim accesses to one of the now shared pages results in
a cache hit and Speconnector catches it by performing Flush
+ Reload

Presentation at the Department of Computer Science, UCL

20/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Speconnector

Method

Method

The target code first allocates 256 pages of memory

The target code fills the allocated memory with a known
magic value

Speconnector also allocates the same amount of memory

Speconnector uses the information of the process of the target
code to scan for the pages that contain the magic value

Speconnector establishes shared memory between the two
processes

Any victim accesses to one of the now shared pages results in
a cache hit and Speconnector catches it by performing Flush
+ Reload

Presentation at the Department of Computer Science, UCL

20/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Speconnector

Method

Method

The target code first allocates 256 pages of memory

The target code fills the allocated memory with a known
magic value

Speconnector also allocates the same amount of memory

Speconnector uses the information of the process of the target
code to scan for the pages that contain the magic value

Speconnector establishes shared memory between the two
processes

Any victim accesses to one of the now shared pages results in
a cache hit and Speconnector catches it by performing Flush
+ Reload

Presentation at the Department of Computer Science, UCL

20/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Speconnector

Method

Method

The target code first allocates 256 pages of memory

The target code fills the allocated memory with a known
magic value

Speconnector also allocates the same amount of memory

Speconnector uses the information of the process of the target
code to scan for the pages that contain the magic value

Speconnector establishes shared memory between the two
processes

Any victim accesses to one of the now shared pages results in
a cache hit and Speconnector catches it by performing Flush
+ Reload

Presentation at the Department of Computer Science, UCL

20/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Speconnector

Method

Method

The target code first allocates 256 pages of memory

The target code fills the allocated memory with a known
magic value

Speconnector also allocates the same amount of memory

Speconnector uses the information of the process of the target
code to scan for the pages that contain the magic value

Speconnector establishes shared memory between the two
processes

Any victim accesses to one of the now shared pages results in
a cache hit and Speconnector catches it by performing Flush
+ Reload

Presentation at the Department of Computer Science, UCL

20/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Speconnector

Method

Method

The target code first allocates 256 pages of memory

The target code fills the allocated memory with a known
magic value

Speconnector also allocates the same amount of memory

Speconnector uses the information of the process of the target
code to scan for the pages that contain the magic value

Speconnector establishes shared memory between the two
processes

Any victim accesses to one of the now shared pages results in
a cache hit and Speconnector catches it by performing Flush
+ Reload

Presentation at the Department of Computer Science, UCL

21/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Practice

Feasibility of Attacks in Practice

Presentation at the Department of Computer Science, UCL

22/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Practice

Interpreted Languages

Interpreted Languages

We were able to exploit one interpreter

Perl

A potential explanation for all the other interpreters is that

The speculation window might have been too small for them
to fit the attack in it

Attack
PLs

E
m
a
c
s
L
i
s
p

R
u
b
y
(
M
R
I
)

P
H
P

S
h
e
l
l
(
B
a
s
h
)

P
e
r
l

P
o
w
e
r
S
h
e
l
l

(
p
w
s
h
)

T
S
Q
L

L
u
a

V
i
m
s
c
r
i
p
t

Depends on setting - - - - - - - - -
Covert Channel X X X × X X × X ×
Spectre Attack × × × × X × × × ×

Presentation at the Department of Computer Science, UCL

22/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Practice

Interpreted Languages

Interpreted Languages

We were able to exploit one interpreter

Perl

A potential explanation for all the other interpreters is that

The speculation window might have been too small for them
to fit the attack in it

Attack
PLs

E
m
a
c
s
L
i
s
p

R
u
b
y
(
M
R
I
)

P
H
P

S
h
e
l
l
(
B
a
s
h
)

P
e
r
l

P
o
w
e
r
S
h
e
l
l

(
p
w
s
h
)

T
S
Q
L

L
u
a

V
i
m
s
c
r
i
p
t

Depends on setting - - - - - - - - -
Covert Channel X X X × X X × X ×
Spectre Attack × × × × X × × × ×

Presentation at the Department of Computer Science, UCL

22/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Practice

Interpreted Languages

Interpreted Languages

We were able to exploit one interpreter

Perl

A potential explanation for all the other interpreters is that

The speculation window might have been too small for them
to fit the attack in it

Attack
PLs

E
m
a
c
s
L
i
s
p

R
u
b
y
(
M
R
I
)

P
H
P

S
h
e
l
l
(
B
a
s
h
)

P
e
r
l

P
o
w
e
r
S
h
e
l
l

(
p
w
s
h
)

T
S
Q
L

L
u
a

V
i
m
s
c
r
i
p
t

Depends on setting - - - - - - - - -
Covert Channel X X X × X X × X ×
Spectre Attack × × × × X × × × ×

Presentation at the Department of Computer Science, UCL

22/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Practice

Interpreted Languages

Interpreted Languages

We were able to exploit one interpreter

Perl

A potential explanation for all the other interpreters is that

The speculation window might have been too small for them
to fit the attack in it

Attack
PLs

E
m
a
c
s
L
i
s
p

R
u
b
y
(
M
R
I
)

P
H
P

S
h
e
l
l
(
B
a
s
h
)

P
e
r
l

P
o
w
e
r
S
h
e
l
l

(
p
w
s
h
)

T
S
Q
L

L
u
a

V
i
m
s
c
r
i
p
t

Depends on setting - - - - - - - - -
Covert Channel X X X × X X × X ×
Spectre Attack × × × × X × × × ×

Presentation at the Department of Computer Science, UCL

22/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Practice

Interpreted Languages

Interpreted Languages

We were able to exploit one interpreter

Perl

A potential explanation for all the other interpreters is that

The speculation window might have been too small for them
to fit the attack in it

Attack
PLs

E
m
a
c
s
L
i
s
p

R
u
b
y
(
M
R
I
)

P
H
P

S
h
e
l
l
(
B
a
s
h
)

P
e
r
l

P
o
w
e
r
S
h
e
l
l

(
p
w
s
h
)

T
S
Q
L

L
u
a

V
i
m
s
c
r
i
p
t

Depends on setting - - - - - - - - -
Covert Channel X X X × X X × X ×
Spectre Attack × × × × X × × × ×

Presentation at the Department of Computer Science, UCL

22/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Practice

Interpreted Languages

Interpreted Languages

We were able to exploit one interpreter

Perl

A potential explanation for all the other interpreters is that

The speculation window might have been too small for them
to fit the attack in it

Attack
PLs

E
m
a
c
s
L
i
s
p

R
u
b
y
(
M
R
I
)

P
H
P

S
h
e
l
l
(
B
a
s
h
)

P
e
r
l

P
o
w
e
r
S
h
e
l
l

(
p
w
s
h
)

T
S
Q
L

L
u
a

V
i
m
s
c
r
i
p
t

Depends on setting - - - - - - - - -
Covert Channel X X X × X X × X ×
Spectre Attack × × × × X × × × ×

Presentation at the Department of Computer Science, UCL

23/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Practice

Compiled Languages

Compiled Languages

We were able to establish a covert channel in 14 out of 15
compilers

And 12 of them were generating a code that is vulnerable
against at lease one varient of Spectre attack

Attack
PLs

G
o

C
+
+
(
G
C
C
)

C
+
+
(
M
S
)

C
+
+
(
I
n
t
e
l
)

C
+
+
(
L
L
V
M
)

C
(
G
C
C
)

C
(
M
S
)

C
(
I
n
t
e
l
)

C
(
L
L
V
M
)

R
u
s
t
(
L
L
V
M
)

S
w
i
f
t
(
L
L
V
M
)

D
M

O
b
j
e
c
t
i
v
e
-
C

(
L
L
V
M
)

H
a
s
k
e
l
l
(
G
H
C
)

O
C
a
m
l

(
o
c
a
m
l
o
p
t
)

Depends on setting ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ - ∗ - -
Covert Channel X X X X X X X X X X X × X X X
Spectre Attack X X X X X X X X X X × × X × X

Presentation at the Department of Computer Science, UCL

23/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Practice

Compiled Languages

Compiled Languages

We were able to establish a covert channel in 14 out of 15
compilers

And 12 of them were generating a code that is vulnerable
against at lease one varient of Spectre attack

Attack
PLs

G
o

C
+
+
(
G
C
C
)

C
+
+
(
M
S
)

C
+
+
(
I
n
t
e
l
)

C
+
+
(
L
L
V
M
)

C
(
G
C
C
)

C
(
M
S
)

C
(
I
n
t
e
l
)

C
(
L
L
V
M
)

R
u
s
t
(
L
L
V
M
)

S
w
i
f
t
(
L
L
V
M
)

D
M

O
b
j
e
c
t
i
v
e
-
C

(
L
L
V
M
)

H
a
s
k
e
l
l
(
G
H
C
)

O
C
a
m
l

(
o
c
a
m
l
o
p
t
)

Depends on setting ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ - ∗ - -
Covert Channel X X X X X X X X X X X × X X X
Spectre Attack X X X X X X X X X X × × X × X

Presentation at the Department of Computer Science, UCL

23/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Practice

Compiled Languages

Compiled Languages

We were able to establish a covert channel in 14 out of 15
compilers

And 12 of them were generating a code that is vulnerable
against at lease one varient of Spectre attack

Attack
PLs

G
o

C
+
+
(
G
C
C
)

C
+
+
(
M
S
)

C
+
+
(
I
n
t
e
l
)

C
+
+
(
L
L
V
M
)

C
(
G
C
C
)

C
(
M
S
)

C
(
I
n
t
e
l
)

C
(
L
L
V
M
)

R
u
s
t
(
L
L
V
M
)

S
w
i
f
t
(
L
L
V
M
)

D
M

O
b
j
e
c
t
i
v
e
-
C

(
L
L
V
M
)

H
a
s
k
e
l
l
(
G
H
C
)

O
C
a
m
l

(
o
c
a
m
l
o
p
t
)

Depends on setting ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ - ∗ - -
Covert Channel X X X X X X X X X X X × X X X
Spectre Attack X X X X X X X X X X × × X × X

Presentation at the Department of Computer Science, UCL

23/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Practice

Compiled Languages

Compiled Languages

We were able to establish a covert channel in 14 out of 15
compilers

And 12 of them were generating a code that is vulnerable
against at lease one varient of Spectre attack

Attack
PLs

G
o

C
+
+
(
G
C
C
)

C
+
+
(
M
S
)

C
+
+
(
I
n
t
e
l
)

C
+
+
(
L
L
V
M
)

C
(
G
C
C
)

C
(
M
S
)

C
(
I
n
t
e
l
)

C
(
L
L
V
M
)

R
u
s
t
(
L
L
V
M
)

S
w
i
f
t
(
L
L
V
M
)

D
M

O
b
j
e
c
t
i
v
e
-
C

(
L
L
V
M
)

H
a
s
k
e
l
l
(
G
H
C
)

O
C
a
m
l

(
o
c
a
m
l
o
p
t
)

Depends on setting ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ - ∗ - -
Covert Channel X X X X X X X X X X X × X X X
Spectre Attack X X X X X X X X X X × × X × X

Presentation at the Department of Computer Science, UCL

24/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Practice

Managed Languages

Managed Languages

We were able to demonstrate a functioning covert channel in
100% of managed languages

We introduced attacks for compilers that were so far not known
to be vulnerable, i.e., no Spectre attack on these has been
demonstrated before

It includes Dart, Java, C#, Scala, Groovy, Kotlin and OCaml
(ocamlc/ocamlrun)

Attack
PLs

D
a
r
t

J
a
v
a

(
O
r
a
c
l
e
J
D
K
)

J
a
v
a
(
O
p
e
n
J
D
K
)

J
a
v
a
(
G
r
a
a
l
V
M
)

J
a
v
a
S
c
r
i
p
t

(
S
p
i
d
e
r
M
o
n
k
e
y
)

J
a
v
a
S
c
r
i
p
t

(
V
8
)

J
a
v
a
S
c
r
i
p
t

(
C
h
a
k
r
a
)

T
y
p
e
S
c
r
i
p
t

C
o
f
f
e
e
S
c
r
i
p
t

P
y
t
h
o
n
(
P
y
P
y
)

C
#

S
c
a
l
a

E
l
i
x
i
r

C
l
o
j
u
r
e

P
y
t
h
o
n

(
C
P
y
t
h
o
n
)

O
C
a
m
l

(
o
c
a
m
l
c
/
o
c
a
m
l
r
u
n
)

K
o
t
l
i
n

G
r
o
o
v
y

Depends on setting - - - ∗ ∗ ∗ ∗ - - - - - - - - - - -
Covert Channel X X X X X X X X X X X X X X X X X X
Spectre Attack X X X X X X X X X × X X × × × X X X

Presentation at the Department of Computer Science, UCL

24/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Practice

Managed Languages

Managed Languages

We were able to demonstrate a functioning covert channel in
100% of managed languages

We introduced attacks for compilers that were so far not known
to be vulnerable, i.e., no Spectre attack on these has been
demonstrated before

It includes Dart, Java, C#, Scala, Groovy, Kotlin and OCaml
(ocamlc/ocamlrun)

Attack
PLs

D
a
r
t

J
a
v
a

(
O
r
a
c
l
e
J
D
K
)

J
a
v
a
(
O
p
e
n
J
D
K
)

J
a
v
a
(
G
r
a
a
l
V
M
)

J
a
v
a
S
c
r
i
p
t

(
S
p
i
d
e
r
M
o
n
k
e
y
)

J
a
v
a
S
c
r
i
p
t

(
V
8
)

J
a
v
a
S
c
r
i
p
t

(
C
h
a
k
r
a
)

T
y
p
e
S
c
r
i
p
t

C
o
f
f
e
e
S
c
r
i
p
t

P
y
t
h
o
n
(
P
y
P
y
)

C
#

S
c
a
l
a

E
l
i
x
i
r

C
l
o
j
u
r
e

P
y
t
h
o
n

(
C
P
y
t
h
o
n
)

O
C
a
m
l

(
o
c
a
m
l
c
/
o
c
a
m
l
r
u
n
)

K
o
t
l
i
n

G
r
o
o
v
y

Depends on setting - - - ∗ ∗ ∗ ∗ - - - - - - - - - - -
Covert Channel X X X X X X X X X X X X X X X X X X
Spectre Attack X X X X X X X X X × X X × × × X X X

Presentation at the Department of Computer Science, UCL

24/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Practice

Managed Languages

Managed Languages

We were able to demonstrate a functioning covert channel in
100% of managed languages

We introduced attacks for compilers that were so far not known
to be vulnerable, i.e., no Spectre attack on these has been
demonstrated before

It includes Dart, Java, C#, Scala, Groovy, Kotlin and OCaml
(ocamlc/ocamlrun)

Attack
PLs

D
a
r
t

J
a
v
a

(
O
r
a
c
l
e
J
D
K
)

J
a
v
a
(
O
p
e
n
J
D
K
)

J
a
v
a
(
G
r
a
a
l
V
M
)

J
a
v
a
S
c
r
i
p
t

(
S
p
i
d
e
r
M
o
n
k
e
y
)

J
a
v
a
S
c
r
i
p
t

(
V
8
)

J
a
v
a
S
c
r
i
p
t

(
C
h
a
k
r
a
)

T
y
p
e
S
c
r
i
p
t

C
o
f
f
e
e
S
c
r
i
p
t

P
y
t
h
o
n
(
P
y
P
y
)

C
#

S
c
a
l
a

E
l
i
x
i
r

C
l
o
j
u
r
e

P
y
t
h
o
n

(
C
P
y
t
h
o
n
)

O
C
a
m
l

(
o
c
a
m
l
c
/
o
c
a
m
l
r
u
n
)

K
o
t
l
i
n

G
r
o
o
v
y

Depends on setting - - - ∗ ∗ ∗ ∗ - - - - - - - - - - -
Covert Channel X X X X X X X X X X X X X X X X X X
Spectre Attack X X X X X X X X X × X X × × × X X X

Presentation at the Department of Computer Science, UCL

24/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Practice

Managed Languages

Managed Languages

We were able to demonstrate a functioning covert channel in
100% of managed languages

We introduced attacks for compilers that were so far not known
to be vulnerable, i.e., no Spectre attack on these has been
demonstrated before

It includes Dart, Java, C#, Scala, Groovy, Kotlin and OCaml
(ocamlc/ocamlrun)

Attack
PLs

D
a
r
t

J
a
v
a

(
O
r
a
c
l
e
J
D
K
)

J
a
v
a
(
O
p
e
n
J
D
K
)

J
a
v
a
(
G
r
a
a
l
V
M
)

J
a
v
a
S
c
r
i
p
t

(
S
p
i
d
e
r
M
o
n
k
e
y
)

J
a
v
a
S
c
r
i
p
t

(
V
8
)

J
a
v
a
S
c
r
i
p
t

(
C
h
a
k
r
a
)

T
y
p
e
S
c
r
i
p
t

C
o
f
f
e
e
S
c
r
i
p
t

P
y
t
h
o
n
(
P
y
P
y
)

C
#

S
c
a
l
a

E
l
i
x
i
r

C
l
o
j
u
r
e

P
y
t
h
o
n

(
C
P
y
t
h
o
n
)

O
C
a
m
l

(
o
c
a
m
l
c
/
o
c
a
m
l
r
u
n
)

K
o
t
l
i
n

G
r
o
o
v
y

Depends on setting - - - ∗ ∗ ∗ ∗ - - - - - - - - - - -
Covert Channel X X X X X X X X X X X X X X X X X X
Spectre Attack X X X X X X X X X × X X × × × X X X

Presentation at the Department of Computer Science, UCL

24/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Practice

Managed Languages

Managed Languages

We were able to demonstrate a functioning covert channel in
100% of managed languages

We introduced attacks for compilers that were so far not known
to be vulnerable, i.e., no Spectre attack on these has been
demonstrated before

It includes Dart, Java, C#, Scala, Groovy, Kotlin and OCaml
(ocamlc/ocamlrun)

Attack
PLs

D
a
r
t

J
a
v
a

(
O
r
a
c
l
e
J
D
K
)

J
a
v
a
(
O
p
e
n
J
D
K
)

J
a
v
a
(
G
r
a
a
l
V
M
)

J
a
v
a
S
c
r
i
p
t

(
S
p
i
d
e
r
M
o
n
k
e
y
)

J
a
v
a
S
c
r
i
p
t

(
V
8
)

J
a
v
a
S
c
r
i
p
t

(
C
h
a
k
r
a
)

T
y
p
e
S
c
r
i
p
t

C
o
f
f
e
e
S
c
r
i
p
t

P
y
t
h
o
n
(
P
y
P
y
)

C
#

S
c
a
l
a

E
l
i
x
i
r

C
l
o
j
u
r
e

P
y
t
h
o
n

(
C
P
y
t
h
o
n
)

O
C
a
m
l

(
o
c
a
m
l
c
/
o
c
a
m
l
r
u
n
)

K
o
t
l
i
n

G
r
o
o
v
y

Depends on setting - - - ∗ ∗ ∗ ∗ - - - - - - - - - - -
Covert Channel X X X X X X X X X X X X X X X X X X
Spectre Attack X X X X X X X X X × X X × × × X X X

Presentation at the Department of Computer Science, UCL

25/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Case Studies

Case Studies

Presentation at the Department of Computer Science, UCL

26/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Case Studies

Case Studies

We take two case stdies to demonstrate how a Spectre attack
can be used to leak secret information from real-world libraries

These two are:

Alice, which is a libray written in Java
cryptokit, which is a libray written in OCaml

We also argue that a mitigation at the compiler level prevents
our attacks

Note!

Both case studies are using the vulnerable programming languages
demonsterated in Section Feasibility of Attacks in Practice of this
presentation

Presentation at the Department of Computer Science, UCL

26/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Case Studies

Case Studies

We take two case stdies to demonstrate how a Spectre attack
can be used to leak secret information from real-world libraries

These two are:

Alice, which is a libray written in Java
cryptokit, which is a libray written in OCaml

We also argue that a mitigation at the compiler level prevents
our attacks

Note!

Both case studies are using the vulnerable programming languages
demonsterated in Section Feasibility of Attacks in Practice of this
presentation

Presentation at the Department of Computer Science, UCL

26/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Case Studies

Case Studies

We take two case stdies to demonstrate how a Spectre attack
can be used to leak secret information from real-world libraries

These two are:

Alice, which is a libray written in Java
cryptokit, which is a libray written in OCaml

We also argue that a mitigation at the compiler level prevents
our attacks

Note!

Both case studies are using the vulnerable programming languages
demonsterated in Section Feasibility of Attacks in Practice of this
presentation

Presentation at the Department of Computer Science, UCL

26/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Case Studies

Case Studies

We take two case stdies to demonstrate how a Spectre attack
can be used to leak secret information from real-world libraries

These two are:

Alice, which is a libray written in Java

cryptokit, which is a libray written in OCaml

We also argue that a mitigation at the compiler level prevents
our attacks

Note!

Both case studies are using the vulnerable programming languages
demonsterated in Section Feasibility of Attacks in Practice of this
presentation

Presentation at the Department of Computer Science, UCL

26/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Case Studies

Case Studies

We take two case stdies to demonstrate how a Spectre attack
can be used to leak secret information from real-world libraries

These two are:

Alice, which is a libray written in Java
cryptokit, which is a libray written in OCaml

We also argue that a mitigation at the compiler level prevents
our attacks

Note!

Both case studies are using the vulnerable programming languages
demonsterated in Section Feasibility of Attacks in Practice of this
presentation

Presentation at the Department of Computer Science, UCL

26/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Case Studies

Case Studies

We take two case stdies to demonstrate how a Spectre attack
can be used to leak secret information from real-world libraries

These two are:

Alice, which is a libray written in Java
cryptokit, which is a libray written in OCaml

We also argue that a mitigation at the compiler level prevents
our attacks

Note!

Both case studies are using the vulnerable programming languages
demonsterated in Section Feasibility of Attacks in Practice of this
presentation

Presentation at the Department of Computer Science, UCL

26/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Case Studies

Case Studies

We take two case stdies to demonstrate how a Spectre attack
can be used to leak secret information from real-world libraries

These two are:

Alice, which is a libray written in Java
cryptokit, which is a libray written in OCaml

We also argue that a mitigation at the compiler level prevents
our attacks

Note!

Both case studies are using the vulnerable programming languages
demonsterated in Section Feasibility of Attacks in Practice of this
presentation

Presentation at the Department of Computer Science, UCL

27/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Conclusion

Conclusion

Presentation at the Department of Computer Science, UCL

28/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Conclusion

Conclusion

We did a systematic analysis of different programming lan-
guages and their respective compilers/interpreters against Spec-
tre

We analysed them in theory and practice

We introduced Speconnector

We showed Spectre attacks in 8 programming languages not
investigated so far and not known to be vulnerable

We illustrated the security impact of our results using two case
studies

Presentation at the Department of Computer Science, UCL

28/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Conclusion

Conclusion

We did a systematic analysis of different programming lan-
guages and their respective compilers/interpreters against Spec-
tre

We analysed them in theory and practice

We introduced Speconnector

We showed Spectre attacks in 8 programming languages not
investigated so far and not known to be vulnerable

We illustrated the security impact of our results using two case
studies

Presentation at the Department of Computer Science, UCL

28/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Conclusion

Conclusion

We did a systematic analysis of different programming lan-
guages and their respective compilers/interpreters against Spec-
tre

We analysed them in theory and practice

We introduced Speconnector

We showed Spectre attacks in 8 programming languages not
investigated so far and not known to be vulnerable

We illustrated the security impact of our results using two case
studies

Presentation at the Department of Computer Science, UCL

28/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Conclusion

Conclusion

We did a systematic analysis of different programming lan-
guages and their respective compilers/interpreters against Spec-
tre

We analysed them in theory and practice

We introduced Speconnector

We showed Spectre attacks in 8 programming languages not
investigated so far and not known to be vulnerable

We illustrated the security impact of our results using two case
studies

Presentation at the Department of Computer Science, UCL

28/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Conclusion

Conclusion

We did a systematic analysis of different programming lan-
guages and their respective compilers/interpreters against Spec-
tre

We analysed them in theory and practice

We introduced Speconnector

We showed Spectre attacks in 8 programming languages not
investigated so far and not known to be vulnerable

We illustrated the security impact of our results using two case
studies

Presentation at the Department of Computer Science, UCL

28/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Conclusion

Conclusion

We did a systematic analysis of different programming lan-
guages and their respective compilers/interpreters against Spec-
tre

We analysed them in theory and practice

We introduced Speconnector

We showed Spectre attacks in 8 programming languages not
investigated so far and not known to be vulnerable

We illustrated the security impact of our results using two case
studies

Presentation at the Department of Computer Science, UCL

29/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Thank you for your attention

Presentation at the Department of Computer Science, UCL

	Introduction
	Background
	Speculative Execution
	Transient-Execution Attacks
	Gadgets
	Program Execution

	Feasibility of Attacks in Documentations
	Interpreted Languages
	Compiled Languages
	Managed Languages

	Speconnector
	Threat Model
	Method

	Feasibility of Attacks in Practice
	Interpreted Languages
	Compiled Languages
	Managed Languages

	Case Studies
	Conclusion
	

