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Introduction

The Problem

Spectre mitigations mainly rely on the OS level, or in the exe-
cution environment

We have a large number of mitigations

We have a vast variety of programming languages with associ-
ated execution environments

Problem

It is NOT clear which execution environments have effective mitiga-
tions and can securely be used to implement security critical code,
and which do not
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Introduction

Our Contributions

We systematically analyse the security (with respect to Spectre)
of programming languages and their execution environments

We introduce Speconnector

It is a novel tool
It is to evaluate and exploit Spectre gadgets
It works independent of the target programming language

We demonstrate the security impact with two case studies of
security-related libraries, and show that we can leak secrets from
them.
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Background

Speculative Execution

Speculative Execution

Programs run conditional branching hence CPUs often do not
have a way to choose the next instruction to execute

With speculative execution, the CPU holds the current state,
predict the more probable path based on the history of similar
events and speculatively executes in the predicted direction

If the prediction is not correct the CPU rolls back the architec-
tural state

HOWEVER, the microarchitectural state is not reverted
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Background

Transient-Execution Attacks

Transient-Execution Attacks

Since the microarchitectural state is not reverted the effects of
transient instructions can be reconstructed on the architectural
level

Attacks of this type traditionally use side-channel attacks to
reconstruct the architectural state
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Background

Gadgets

Gadgets

Definition

A gadget is a piece of code used to transfer the secret information
from the victim’s side into a covert channel from which the attacker
can then retrieve it

Here is an example of an index gadget
⇓

Example

if(x < length_of_data){

tmp &= lookup_table[data[x] << 12];

}
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Background

Program Execution

Program Execution

We categorize the execution environments into three
categories based on the program execution

Interpreted Program Execution
Compiled Program Execution
Managed Program Execution

Note!

This distinction is orthogonal to programming language choice since
every language can be interpreted, compiled, and executed in hy-
brids.
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Background

Program Execution

Interpreted Program Execution

Interpreted languages need to be translated every time they
are being run

Therefore they are more portable as only the interpreter is
platform specific
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Background

Program Execution

Compiled Program Execution

Compiled languages only incur the overhead of translating the
code once

Therefore compilers can perform more sophisticated
optimisations since their translation time is less important
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Background

Program Execution

Managed Program Execution

The aim is to combine the advantages of compiled and
interpreted languages
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Feasibility of Attacks in Documentations

Interpreted Languages

Interpreted Languages

We studied 9 different interpreters

We looked into the publicly available documentation of each
case

As an additional source of information, we contacted developers
of the respective interpreters

Unfortunately, this step did not provide any additional insights
for 8 of them

Attack
PLs Ru

by

(M
RI
)

PH
P Sh

el
l

(B
as
h)

Pe
rl Po

we
rS
he
ll

(p
ws
h)

TS
QL

Lu
a Vi

m

sc
ri
pt

Em
ac
s

Li
sp

Spectre-PHT × × × 4 × × × × ×
Spectre-BTB × × × 4 × × × × ×
Spectre-RSB × × × 4 × × × × ×
Spectre-STL × × × 4 × × × × ×

Presentation at the Department of Computer Science, UCL



15/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Interpreted Languages

Interpreted Languages
We studied 9 different interpreters

We looked into the publicly available documentation of each
case

As an additional source of information, we contacted developers
of the respective interpreters

Unfortunately, this step did not provide any additional insights
for 8 of them

Attack
PLs Ru

by

(M
RI
)

PH
P Sh

el
l

(B
as
h)

Pe
rl Po

we
rS
he
ll

(p
ws
h)

TS
QL

Lu
a Vi

m

sc
ri
pt

Em
ac
s

Li
sp

Spectre-PHT × × × 4 × × × × ×
Spectre-BTB × × × 4 × × × × ×
Spectre-RSB × × × 4 × × × × ×
Spectre-STL × × × 4 × × × × ×

Presentation at the Department of Computer Science, UCL



15/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Interpreted Languages

Interpreted Languages
We studied 9 different interpreters

We looked into the publicly available documentation of each
case

As an additional source of information, we contacted developers
of the respective interpreters

Unfortunately, this step did not provide any additional insights
for 8 of them

Attack
PLs Ru

by

(M
RI
)

PH
P Sh

el
l

(B
as
h)

Pe
rl Po

we
rS
he
ll

(p
ws
h)

TS
QL

Lu
a Vi

m

sc
ri
pt

Em
ac
s

Li
sp

Spectre-PHT × × × 4 × × × × ×
Spectre-BTB × × × 4 × × × × ×
Spectre-RSB × × × 4 × × × × ×
Spectre-STL × × × 4 × × × × ×

Presentation at the Department of Computer Science, UCL



15/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Interpreted Languages

Interpreted Languages
We studied 9 different interpreters

We looked into the publicly available documentation of each
case

As an additional source of information, we contacted developers
of the respective interpreters

Unfortunately, this step did not provide any additional insights
for 8 of them

Attack
PLs Ru

by

(M
RI
)

PH
P Sh

el
l

(B
as
h)

Pe
rl Po

we
rS
he
ll

(p
ws
h)

TS
QL

Lu
a Vi

m

sc
ri
pt

Em
ac
s

Li
sp

Spectre-PHT × × × 4 × × × × ×
Spectre-BTB × × × 4 × × × × ×
Spectre-RSB × × × 4 × × × × ×
Spectre-STL × × × 4 × × × × ×

Presentation at the Department of Computer Science, UCL



15/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Interpreted Languages

Interpreted Languages
We studied 9 different interpreters

We looked into the publicly available documentation of each
case

As an additional source of information, we contacted developers
of the respective interpreters

Unfortunately, this step did not provide any additional insights
for 8 of them

Attack
PLs Ru

by

(M
RI
)

PH
P Sh

el
l

(B
as
h)

Pe
rl Po

we
rS
he
ll

(p
ws
h)

TS
QL

Lu
a Vi

m

sc
ri
pt

Em
ac
s

Li
sp

Spectre-PHT × × × 4 × × × × ×
Spectre-BTB × × × 4 × × × × ×
Spectre-RSB × × × 4 × × × × ×
Spectre-STL × × × 4 × × × × ×

Presentation at the Department of Computer Science, UCL



15/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Interpreted Languages

Interpreted Languages
We studied 9 different interpreters

We looked into the publicly available documentation of each
case

As an additional source of information, we contacted developers
of the respective interpreters

Unfortunately, this step did not provide any additional insights
for 8 of them

Attack
PLs Ru

by

(M
RI
)

PH
P Sh

el
l

(B
as
h)

Pe
rl Po

we
rS
he
ll

(p
ws
h)

TS
QL

Lu
a Vi

m

sc
ri
pt

Em
ac
s

Li
sp

Spectre-PHT × × × 4 × × × × ×
Spectre-BTB × × × 4 × × × × ×
Spectre-RSB × × × 4 × × × × ×
Spectre-STL × × × 4 × × × × ×

Presentation at the Department of Computer Science, UCL



16/29

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Feasibility of Attacks in Documentations

Compiled Languages

Compiled Languages

We considered 15 different compilers in our study

We followed the same approach as the previous part

Based on our analysis, the Go compiler has the best situation
regarding its mitigations against differenct Spectre variants
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Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

Speconnector

Threat Model

Threat Model

Regular Spectre attack threat model

The attacker is a co-located program running under the same
operating system
The attacker is able to execute arbitrary code on the victim
machine
The victim code has an interface that we can interact with

The possibility of an attack happening depends on whether the
victim leaks

Therefore, we focus on the illegal data leakage
We use Speconnector to measure and verify this leakage

Note!

Note that this shows that an attack is possible, and crafting a con-
crete end-to-end exploit for each language only requires further en-
gineering steps
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Speconnector

Method

Method

The target code first allocates 256 pages of memory

The target code fills the allocated memory with a known
magic value

Speconnector also allocates the same amount of memory

Speconnector uses the information of the process of the target
code to scan for the pages that contain the magic value

Speconnector establishes shared memory between the two
processes

Any victim accesses to one of the now shared pages results in
a cache hit and Speconnector catches it by performing Flush
+ Reload
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Feasibility of Attacks in Practice

Interpreted Languages

Interpreted Languages

We were able to exploit one interpreter

Perl

A potential explanation for all the other interpreters is that

The speculation window might have been too small for them
to fit the attack in it
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Depends on setting - - - - - - - - -
Covert Channel X X X × X X × X ×
Spectre Attack × × × × X × × × ×
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Compiled Languages

We were able to establish a covert channel in 14 out of 15
compilers
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Case Studies

Case Studies

We take two case stdies to demonstrate how a Spectre attack
can be used to leak secret information from real-world libraries

These two are:

Alice, which is a libray written in Java
cryptokit, which is a libray written in OCaml

We also argue that a mitigation at the compiler level prevents
our attacks

Note!

Both case studies are using the vulnerable programming languages
demonsterated in Section Feasibility of Attacks in Practice of this
presentation
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Conclusion

We did a systematic analysis of different programming lan-
guages and their respective compilers/interpreters against Spec-
tre

We analysed them in theory and practice

We introduced Speconnector

We showed Spectre attacks in 8 programming languages not
investigated so far and not known to be vulnerable

We illustrated the security impact of our results using two case
studies
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Thank you for your attention
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