
ALARM: Active LeArning of Rowhammer Mitigations
Amir Naseredini

University of Sussex

Royal Holloway University of London

sahnaseredini@gmail.com

Martin Berger

Montanarius Ltd

Turing Core, Huawei 2012 Labs, Huawei R&D UK

University of Sussex

contact@martinfriedrichberger.net

Matteo Sammartino

Royal Holloway University of London

University College London

matteo.sammartino@rhul.ac.uk

Shale Xiong

Arm Ltd

xiongshale@gmail.com

ABSTRACT
Rowhammer is a serious security problem of contemporary dy-

namic random-access memory (DRAM) where reads or writes of

bits can flip other bits. DRAM manufacturers add mitigations, but

don’t disclose details, making it difficult for customers to evaluate

their efficacy. We present a tool, based on active learning, that au-

tomatically infers parameter of Rowhammer mitigations against

synthetic models of modern DRAM.

CCS CONCEPTS
• Security and privacy → Hardware reverse engineering; Side-
channel analysis and countermeasures.

KEYWORDS
Computer Security, Memory, DRAM, Rowhammer, Active Learning,

Target Row Refresh, Error Correcting Code

ACM Reference Format:
Amir Naseredini, Martin Berger, Matteo Sammartino, and Shale Xiong. 2022.

ALARM: Active LeArning of Rowhammer Mitigations. In Proceedings of
Hardware andArchitectural Support for Security and Privacy (HASP ’22).ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Rowhammer [18] is a security vulnerability that exploits physi-

cal effects in DRAM (= dynamic random-access memory). DRAM

achieves high capacity by storing each individual bit with just a ca-

pacitor. Capacitors, however, are subject to interference by charge

fluctuations caused by accessing nearby bits, so reading or writing

a bit at one memory cell flips one or more bits at distinct neighbour-
ing cells with non-negligible probability. This probability correlates

not just with data stored in the neighbourhood, but also with fre-

quency of reads and writes in the neighbourhood of a target bit

(frequent access is called “hammering” the “victim”) between two

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

HASP ’22, October 01, 2022, Chicago, IL
© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

refreshes of the victim. Refreshing restores a memory cell’s charge

and dramatically reduces the probability of a bit flip for a short

while. See [31] for details of the physics of (DRAM) insecurity, and

[12] on how to execute a Rowhammer attack.

As of 2022, DRAM security is a cornerstone of computer security

in all mainstream systems, because many mechanisms for enforcing

software security, in particular page-tables and capabilities, are

stored in DRAM. The DRAM attack vector remains wide open even

for CHERI [33], the most rigorous, security-oriented computer

architecture available on the market today [22]. In marked contrast,

there is an optimistic view that “Rowhammer is solved”
1
. This belief

is based on the idea that existing Rowhammer mitigations detect

and prevent most attacks, and DRAM’s ECC (= error correcting

codes) ’mops up’ bit flips that evade the mitigations. Given DRAM

vendors’ secrecy about mitigations, should we simply accept the

optimistic view? There are reasons to be sceptical!

− The history of Rowhammer gives us no confidence, because

so far, every generation of DRAM was successfully attacked

[19], including DDR4, the last generation DRAM that is avail-

able on the market in appreciable quantities.

− The nature of semiconductor physics seems to suggest that

interference will necessarily increase with higher silicon

density. Indeed, modern DRAM is already so vulnerable that

“involuntary hammering”, for example from non-malicious

cache coherence traffic, is a problem [21]. 3D stacking [23]

of DRAM is likely to aggravate the problem.

− The nature of the DRAM market emphasises memory ca-

pacity over everything else, and all Rowhammer mitigations

cost silicon area, hence reduce memory capacity. This in-

centivises manufacturers to spend transistors on memory

capacity rather than robustness against Rowhammer.

− Mitigations can be powerful attack vectors [19].

− There is a widespread unease of “security by obscurity”.

With the ever increasing dependency of modern society on comput-

ers, it is vital for DRAM users not to rely just on unverifiable DRAM

manufacturer claims about invulnerability to Rowhammer. Instead,

and following the folk wisdom to “trust, but verify”, users need

independent and principled tooling to understand and evaluate:

(1) The Rowhammer mitigation capabilities of a vendor’s design.

(2) Rowhammer susceptibility of individual chips.

1
Private communication with several well-known and influential industrial computer

architects.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

HASP ’22, October 01, 2022, Chicago, IL Amir Naseredini, Martin Berger, Matteo Sammartino, and Shale Xiong

Given the complexity of that task, this means automated tooling.

A similar sentiment is implicit in [10, 13]. The present work uses

off-the-shelf machine-learning tools to automate (1).

Rowhammer mitigations. A widely held belief is that Rowham-

mer can be ’solved’ with ECC DRAM. While this is true in the sense

that we could throw enough redundancy at each bit to correct flips,

it is false in practise: the redundancy to make this work consumes

silicon area and hence reduces, often drastically so, memory capac-

ity. An important insight of Shannon’s is that ECC can be made

more efficient against an explicit error model. Historically, in the

context of DRAM, the term ECC memory has been used without

an explicit error model. Reading between the lines, it is clear that

the error model was always a non-malicious attacker, typically

nature (e.g., background radiation or cosmic particles) which flips

bits IID (= independent and identically distributed). ECC efficiently

deals with those. In contrast, Rowhammer flips are not IID: they are

generated by a malicious attacker “hammering”, and show distinct,

strongly correlated access patterns and bit flips. Moreover, ECC

corrects bit flips after they happen, but it’s better to prevent them
from happening altogether. Hence ECC in DRAM is sub-optimal as

mitigation against Rowhammer.

Dedicated Rowhammer mitigations are fine-tuned to the attack:

known Rowhammer attacks exhibit highly characteristic row
2
ac-

cess patterns which are deemed to be easily trackable with a small

number of counters, hence little silicon area is lost. If those coun-

ters indicate that rows are accessed in a suspicious way, we can

prematurely refresh neighbouring rows before a flip happens. This

is called TRR (= target row refresh), used, seemingly, in all modern

DRAM, and is described in more detail in Section 2. As ambient

radioactivity remains a problem, TRR is used in conjunction with

ECC. Our learner discovers parameters for both.

Towards learning the space of Rowhammer mitigations. Both ECC

and TRR have a large parameter space, e.g., block and message

lengths for Reed–Solomon codes. Since details of TRR are not public,

we have to deal with many additional uncertainties, for example:

what does it mean for rows to be accessed in suspicious ways?

Which and how many neighbouring rows are considered under

attack? When are premature refresh commands issued, and for

what rows? Ideally we would like a tool that we can attach to a

physical DRAM and it learns the exact Rowhammer mitigation

the chip provides with substantial precision. Such a tool does not

currently exist, since there are numerous difficulties to overcome,

in addition to the large parameter space for ECC and TRR:

− Complex DRAM-access signalling protocols that must be

adhered to, but are not of interest to our learning mechanism.

− DRAM signalling runs at nano-second speed, which is hard

to reconcile with the speed of software-based learning mech-

anisms, hence hardware adaptation [14] is required.

We believe that overcoming all of them in one go is currently infea-

sible. Instead we split them into three largely orthogonal tasks.

2
Modern DRAM do not offer access to individual bits, but rather to only rows contain-

ing 2
𝑘
many bits. The size 𝑘 is not important for the attack to work, only that bits we

access have neighbours! It’s the neighbourhood relation on a DRAM that determines

which bits are in danger of being flipped.

LearnLib

Adapter

(Harness)

Synthetic

Model

Real

System

Figure 1: ’Recipe’ for using LearnLib against real systems.

− First design learning mechanisms against synthetic models

of DRAM, to develop the abstractions and infrastructure that

connects the generic learner with the world of DRAM.

− Use the off-the-shelf testing harness [3] to fine-tune the

learner so it handles DRAM signalling.

− Finally learn and validate parameters of physical DRAM.

The present work is concerned only with the first task, but the

long-term goal is to connect our learner to physical DRAM. We

now discuss what learning mechanism to use?

Active learning. Despite deep learning’s popularity, we use active
learning, which allows inferring an automaton model of a black-

box system by observing its output in response to queries. This

is opposed to passive learning, such as PAC learning [29], where

the training data is provided and no further interactions with the

system are possible. There are two main reasons for using active

learning. First, unlike neural networks, learned automata are easily

interpretable. This is important for us, since our’s is not a simple

supervised learning problem: we have no labelled training data, and

we do not know what the exact mitigations are that DRAM is using.

Instead, we must refine our learning process in response to what it

does and does not learn, and compare that with the assumptions

about TRR in the literature. Such an iterative refinement would

be difficult if the result of learning was a matrix of floating point

numbers. Second, we are motivated by the series of successful

applications of active learning to reverse-engineering real-world

hardware and software systems [5–9, 30].

We use LearnLib, a state-of-the-art active learning library [11,

16] to automatically infer an automaton model of the behaviour

of a DRAM module under Rowhammer attacks. The model will

represent memory accesses and their effects, including bit flips

and mitigations being applied. The core problem is the large state-

space of Rowhammer mitigation mechanisms, so our challenge

is to identify which information is relevant and thus needs to be

included in the model, and which information can be ignored or

abstracted away to make learning more scalable.

Exploring a concrete system 𝑆 with an active learner, visualised

in Figure 1, involves a few generic steps (see [1] for details):

Translation. Translate between the language of the active

learner and that of 𝑆 . This interaction is usually bidirectonal.

Abstraction. 𝑆 is often infinite and also contains information

not of interest to the learning process. This means the trans-

lation process is also an abstraction (when the information

flows from 𝑆 to the learner) and a corresponding concretisa-

tion (in the other direction). Sometimes, the abstraction layer

does not talk to 𝑆 , but instead represents 𝑆 by an additional

layer of simplification, the synthetic model of 𝑆 .
Adapter. Translation, abstraction and concretisation is typi-

cally handled by an adaptation layer (aka harness, connector,

ALARM: Active LeArning of Rowhammer Mitigations HASP ’22, October 01, 2022, Chicago, IL

or mapper), which has two interfaces, one with the learner

and another with 𝑆 .

Determinisation. In addition, if 𝑆 is non-deterministic, as

most real-world systems are in some form, we must make

the learner’s view of 𝑆 deterministic.

Subsequent sections explain how we instantiate those steps.

Our contributions. In summary, our contributions are as follows:

− A simple yet expressive automaton model of DRAM be-

haviour under Rowhammer attacks.

− The first formal model of TRR, including a new parameter,

TRR size, that we believe is key for analysing TRR.

− The first approach based on active learning for automati-

cally determining core parameters of realistic Rowhammer

mitigation mechanisms.

− An implementation of our techniques as an open-access tool

ALARM. All code is available from [26].

− A detailed set of experimental results.

2 MODELLING ROWHAMMER AND
ROWHAMMER MITIGATIONS

The target of our learning process will be a synthetic model (see

Figure 1) of DRAM with TRR, ECC, and probabilistic bit flips. The

learned model, on the other hand, will be much simpler – a deter-

ministic Mealy machine – providing a higher-level of abstraction;

in particular, any DRAM state information is abstracted away. The

remaining information lets us achieve our goal to read off easily the

TRR and ECC parameters of the system learned. We first discuss

Rowhammer mitigations and insights that informed the design of

our synthetic model, then we provide details of the two aforemen-

tioned models.

Mitigations overview. DRAM uses both ECC to mitigate non-

malicious faults and TRR as Rowhammer-specific mitigation. ECC

is well-known, so, for reasons of space, we only detail TRR here.

The key insight enabling mitigations is that Rowhammer attacks

have a clear attack pattern: “Rowhammer: It’s like breaking into
an apartment by repeatedly slamming a neighbor’s door until the
vibrations open the door you were after” [12]. In more detail: in

order to flip a bit 𝑏, we must, in quick succession and between two

refreshes, read from or write to bits that are physically close 𝑏. In

DRAM we cannot address individual bits, only rows, so in order to

flip a bit in a victim row, we need to read or write physically close

“aggressor” rows, between refreshes.

...

aggressor row→
b ← victim row

aggressor row→
...

victim cell

This suggests a clear mechanism for detecting and preventing

Rowhammer attacks

− Track rows that are accessed in rapid succession between

refreshes, called “potential aggressor rows”.

− Assume that rows close to potential aggressors are “potential

victim rows”.

− If the number of accesses to potential aggressor rows exceeds

a limit, prematurely refresh potential victim rows.

While the overall principle is clear, there are numerous details

that can vary.

− What does it mean for two rows to be neighbours to be

close? Relevant is the standard euclidean distance on chip,

but should only the immediate neighbour be considered at

risk, or, more generally, the closest 𝑛 rows on both sides?

What is the right choice of 𝑛?

− What exactly is a TRR counter here? We can use precise

TRR counters that track row access exactly, or we can use

sampling.

− Howmany rows are being tracked: if we track𝑘 rows naively,

then a saturation attack that uses more than 𝑘 aggressors

would overwhelm the aggressor tracking capability.

− What kind of temporal discounting to use: if a TRR counter

tracks attacks on a victim row 𝑟 and the attacks move from

𝑟 to another row, when should the information aggregated

for 𝑟 be forgotten?

− How precise should row tracking information be? For exam-

ple if row addresses have 𝑠 bits but TRR counters associate

only 𝑡 bits of the address, with 𝑡 < 𝑠 , then TRR counters

effectively track multiple rows. This has advantages and

disadvantages.

− Aggressor centric vs victim centric tracking, meaning that

the TRR keeps track of either the potential aggressor rows

to find the victim rows, or the potential victim rows to be

able to refresh the victims before they get flipped.

There are numerous other parameters, see [13] for a discussion.

Unfortunately, DRAM manufactures keep details confidential, and

our work is in parts motivated by wanting to provide tooling that

gives DRAM customers access to such information.

Synthetic DRAM model. In order to develop our active learner in

a simplified setting before working with physical DRAM, we have

implemented a model of relevant DRAM behaviour in Java. Our

model has four main components: Memory, Environment, ECC and

TRR. We will now briefly describe each component.

We model memory as a map 𝜎 : Row→ Val where Row is a set

of rows (for example addressed by 32 bit unsigned integers, or an

infinite set {𝑥𝑛 | 𝑛 ∈ Nat} in theoretical models) and Val is a set of
values that are stored in each row (e.g., individual bits, bytes, i.e., 8
bit unsigned integers, or Z). For simplicity, we assume that each row

contains a single value. Memory also provides functionalities for

reading from and writing, we omit the straightforward details. Real

DRAM distinguish between internal (“topological”) and externally

visible addresses. As this is an orthogonal concern we ignore this

distinction. The distance between rows is a core parameter for

Rowhammer, both in terms of where flips can happen and how they

can be mitigated. In order to model this, we assume that Row itself

is a metric space [28] with a notion of distance dist(𝑟𝑜𝑤1, 𝑟𝑜𝑤2).
In order to orchestrate running a DRAM, and handling Rowham-

mer mitigations, we need to maintain global information, for exam-

ple time since the last refresh, the number of accesses to each row

HASP ’22, October 01, 2022, Chicago, IL Amir Naseredini, Martin Berger, Matteo Sammartino, and Shale Xiong

since the last refresh, etc. We call this the DRAM’s environment.
For simplicity, and without loss of generality, rather than issuing

one refresh command at a time, the environment refreshes all the

rows together. This will reset all TRR counters associated with

Rowhammer mitigations.

Modelling bit flips is simple: we associate a flip probability with

read and write operations. Three additional core global parameters

in our model that affect flip probability are the refresh interval, the
blast radius, and the Rowhammer threshold. The first is the time

between two regular refreshes (i.e., not in reaction to a potential

Rowhammer attack), the second is the maximum distance between

attacker row and victim row that can make bit flips happen. The

last is the minimal number of accesses between two refreshes to

rows in the blast-radius, before a flip can happen. Hence 𝑟𝑜𝑤1 is a

neighbour of 𝑟𝑜𝑤2 if

𝑟𝑜𝑤1 ≠ 𝑟𝑜𝑤2 and dist(𝑟𝑜𝑤1, 𝑟𝑜𝑤2) ≤ blast radius.

There are other parameters – e.g., time since last refresh, which we

omit for brevity, see our code for details, or our forthcoming [27]

for a detailed mathematical description of probabilistic models of

Rowhammer.

However, the algorithms included in LearnLib only work for de-

terministic systems under exploration. We determinise our model

by being overly conservative: we fix flip probabilities to 1 when the

number of accesses (before the next refresh) is above the Rowham-

mer threshold. Since Rowhammer mitigations must work even in

the worst-case (i.e., flips happens as early as possible) to be effective,
we believe this to be a reasonable compromise between realism

of modelling, and our ability to use existing, well-honed learning

tools. The use of sampling to deal with probabilistic behaviour of

physical DRAM is future work.

Our ECC component uses the Reed-Solomon code for error cor-

rection (nothing relies on this choice, we have also implemented

Hamming(8,4) as an alternative). When ECC corrects a bit flip, our

model raises a signal to notify the user that ECC was triggered.

This is not far fetched, as in reality ECC being triggered can be

detected via a side channel attack [20].

Finally, TRR, the most important component, implements a range

of TRR policies. For instance, we have implemented the TRR policies

observed for vendors A,B and C in [13].

We note that different ECC and TRR mitigations can be inte-

grated in the model without needing to adapt our tool, thanks to

the black-box nature of the learning process (see Section 3).

Rowhammer machines. The automata learned by our tool are de-

terministic finite-state Mealy machines, which are well-understood

and widely used models. LearnLib includes efficient learning algo-

rithms for these (e.g., TTT [15]). We introduce a specific class of

Mealy machines, which we call Rowhammer machines, whose states
are abstractions of relevant DRAM state (for example the number

rowswewish tomodel; hereafter we fix a set𝑛memory rows, which

we represent as natural numbers 1, 2, . . . , 𝑛). We explain them in

more detail, since they are used in most of this paper.

Definition 2.1. A Rowhammer machine is a tuple

⟨𝑄,𝑞0,ACC,OBS, 𝛿⟩

where 𝑄 is a finite set of states including a distinguished flip state
⊥, and a distinct initial state 𝑞0. We also have finite input and

output alphabetsACC andOBS. The input alphabetACC represents

repeated accesses to the 𝑛 rows: 𝑎 𝑟⇒𝑓 stands for row 𝑟 being

accessed 𝑎 times, with the intent of flipping 𝑓 bits. The output

alphabet OBS describes the observable effects of those accesses:

✓ if no flips are observed in the neighbouring rows; Flip if the

intended number of flips is observed in one of the neighbouring

rows; TRR if TRR is triggered; ECC if ECC is applied. Finally, we

have the transition function 𝛿 : 𝑄 × ACC → OBS × 𝑄 such that

𝛿 (𝑞, 𝑖) = (Flip, 𝑞′) implies 𝑞′ = ⊥, for all 𝑞, 𝑞′ ∈ 𝑄 and 𝑖 ∈ ACC; in
other words, observing a Flip always leads to the flip state.

We write 𝑞
𝑖 / 𝑜
−−−−→ 𝑞′ for a transition from 𝑞 to 𝑞′ with input 𝑖

and output 𝑜 , formally: 𝛿 (𝑞, 𝑖) = (𝑜, 𝑞′). The flip state acts as a sink

because we are only interested in DRAM behaviour until flips occur.

Example Rowhammer machines. We will now give some exam-

ples of Rowhammer machines modelling a range of scenarios.

Example 2.2. Suppose we consider 2 rows. We want to model

a situation in which we access those rows multiples of 100 times

with the intent of flipping 1 bit. The Rowhammer threshold for both

rows is 120 and no Rowhammer mitigations are in place. The input

alphabet is as follows:

ACC = {100 1⇒1, 100 2⇒1}
The Rowhammer machine modelling our scenario is (loops over

the flip state are omitted):

𝑞0

𝑞1

𝑞2

⊥

10
0

1⇒1
/ ✓

100
1⇒

1 / Flip

100
2⇒

1 / ✓
10
0

2⇒1
/ Fli

p

1
0
0

2⇒
1
/
✓

1
0
0

1
⇒

1
/
✓

States 𝑞1 and 𝑞2 are memory states in which the flip has not hap-

pened yet; it takes an additional 100 accesses for the flip to occur in

a neighbour of row 1. Note that the machine is not able to exactly

characterise the Rowhammer threshold, namely 120: it only tells us

that a flip is observed between the 100th (exclusive) and the 200th

(inclusive) access, i.e., the threshold in the interval (100, 200]. The
top and bottom paths are symmetrical because we are assuming

that the two rows have the same Rowhammer threshold.

The example above assumes knowledge of the Rowhammer

threshold. This is not usually the case, and indeed one of our goals is

to learn it. In order to do so, it is useful to include a range of inputs,

with lower numbers of accesses. For instance, the input alphabet

ACC = {50 1⇒1, 50 2⇒1} will provide a better estimate for the

example above, namely (100,150]. Allowing for multiple accesses in

one transition makes the model more scalable, however the larger

the steps are the less expressive the model is and vice-versa. We

ALARM: Active LeArning of Rowhammer Mitigations HASP ’22, October 01, 2022, Chicago, IL

will see in Section 4 that this capability brings a trade off between

expressiveness and runtime of the learning algorithm.

Example 2.3. Under the same scenario as Example 2.2, suppose

now that the DRAM supports ECC that can detect and correct 1-bit

data corruption. In order to expose it, we may consider an alphabet

with a range of target bit flips. For instance:

ACC = {100 1⇒1, 100 2⇒1, 100 1⇒2, 100 2⇒2}
Then our model would include the following transitions:

𝑞0 𝑞1 ⊥
100 1⇒1 / ✓ 100 1⇒2 / Flip

100 1⇒1 / ECC

Here ECC is able to correct 1-bit flips, hence the transition back

to 𝑞0, however 2-bit flips are not successfully corrected, hence the

transition to the flip state.

Example 2.4. Suppose now that theDRAM supports a simple TRR

policy which refreshes a row after 110 accesses. In the automaton

of Example 2.2, the TRR refresh of row 1 is represented by an extra

transition going from 𝑞1 back to 𝑞0 (and a similar transition from

𝑞2 to 𝑞0 for row 2):

𝑞0 𝑞1
100 1⇒1 / ✓

100 1⇒1 / TRR

Also, transitions to the flip state are removed, as it is no longer

possible to reach the 120 consecutive accesses needed for bit flips to

occur. Note that this policy, although appealing, is impractical for

real-world DRAM, as it requires one TRR counter per row. Therefore

Rowhammer attacks are still possible for realistic TRR policies and

we shall see that our tool is able to expose them.

Example 2.5. In the previous example TRR led to the initial state.

This is not necessarily the case, as some rows may be left in a more

vulnerable state in more complex scenarios, and this needs to be

recorded in the automaton. For instance, suppose we have 4 rows.

We have the following (relevant) transitions:

𝑞0 𝑞1 𝑞2

𝑞3

100 1⇒1 / ✓ 100 4⇒1 / ✓

100 1⇒1 / TRR

1
0
0

1
⇒1
/ TR

R1
0
0

4⇒
1 / TRR

Here we have accessed row 4 in transition from 𝑞1 to 𝑞2. In this

state (𝑞2), accessing row 1 will get TRR triggered, but will no longer

take us back to 𝑞0, since the impact of the accesses to row 4 have

made the neighbouring rows more vulnerable, hence TRR may be

triggered again. Indeed, the automaton will move to another state

(𝑞3), from which TRR happens.

3 ALARM
Our tool ALARM, available at [26], relies on LearnLib’s automata

learning algorithms to learn a Rowhammer machine from the syn-

thetic DRAM model; it then uses this automaton to infer key mit-

igation parameters. The high-level architecture, instantiating the

approach of Figure 1, is shown in Figure 2. We now describe how

the tool works in detail.

Active learning. Active learning can be seen as a game where a

learner interacts with a teacher via queries, in the attempt to build

an unknown target Mealy machine 𝑀 . The learner can pose two

kinds of queries:

− Membership query: What is the output of a given input trace

𝜎? The teacher replies with the output sequence observed

when executing 𝜎 on𝑀 .

− Equivalence query: is a given hypothesis Mealy machine 𝐻

equivalent to𝑀? If it is, the algorithm terminates; otherwise,

the teacher has to provide a counterexample, i.e., a trace

distinguishing 𝐻 and𝑀 .

The learner will iteratively refine the model by incorporating the

query results. When an equivalence query is answered positively,

the algorithm terminates, and the learner will output the current

hypothesis 𝐻 .

When applying active learning to infer models of real-world

systems, the target Mealy machine is an abstraction of the tar-

get system’s behaviour; membership queries are implemented as

tests, and equivalence queries are approximated via membership

queries using a conformance checker such as Random Walk [2]

and WP-method [17]. The main challenge here is to implement the

teacher as an abstraction layer between the learner and the DRAM,

capable of translating abstract membership queries as generated

by LearnLib to concrete tests and, vice-versa, concrete outputs to

abstract ones. For this purpose, we have implemented an interme-

diate Rowhammer Adapter, which we now describe in detail.

Rowhammer Adapter. The target model we want to learn is a

Rowhammer machine. For this, LearnLib will generate queries in

the form of input sequences from ACC, and is expecting outputs

as sequences from OBS. The purpose of the Rowhammer Adapter

is two-fold: a) it translates queries from LearnLib to the target

(and vice-versa); b) it records information that is relevant for the

synthetic DRAM model, but not for the learner.

As an example, in Figure 2 we see that each action within the

given query is translated by the Rowhammer Adapter to a sequence

of read accesses to the concrete rows 0𝑥10 and 0𝑥11, with the intent

of flipping 2 bits. The Rowhammer Adapter keeps track of the

content of the neighbouring rows (i.e., the rows within blast radius

= 1 in this example) and, after the accesses are performed, it will

check whether the content of those rows match its internal records.

In case they don’t, it will return Flipwhenever the number of flipped

bits matches the input action, namely 2. In all other cases (i.e., the
number of flipped bits is either 0 or 1) it will return ✓. In Figure 2,

2 bit flips have been observed in row 0x10 after the last sequence

of accesses, therefore a Flip output is returned.

HASP ’22, October 01, 2022, Chicago, IL Amir Naseredini, Martin Berger, Matteo Sammartino, and Shale Xiong

LearnLib

Rowhammer

Adapter

Synthetic

DRAM model

100 1⇒2 100 2⇒2 100 2⇒2

MembershipQuery

𝑟𝑒𝑎𝑑 (0𝑥10)︸ ︷︷ ︸
×100

𝑟𝑒𝑎𝑑 (0𝑥11)︸ ︷︷ ︸
×100

𝑟𝑒𝑎𝑑 (0𝑥11)︸ ︷︷ ︸
×100

blast

radius

{
check 0x09 check 0x10 check 0x10

check 0x11 check 0x12 check 0x12

✓ ✓ Flip
Query Result

Figure 2: ALARM architecture.

We note that the concrete row addresses and their content are

abstracted away by the Rowhammer Adapter. This information is ir-

relevant for our purposes, and hiding it from the learning algorithm

is key for scalability.

Another responsibility of the Rowhammer Adapter is to check

whether TRR and ECC have been triggered and to inform the learner

via the correct outputs, namely TRR and ECC. In our synthetic

DRAM model this is achieved via Java exceptions, in reality the

adapter will have to apply suitable heuristics (see, e.g., [13, 20]) to

detect the activation of Rowhammer mitigations.

We note that the adapter supports any implementation of TRR

and ECC. In fact, interactions with the synthetic model are via reads

in a purely black-box fashion.

Inferring mitigation parameters. Once a Rowhammer machine

has been learned, ALARM will use it to infer important features

of Rowhammer mitigations. We now detail how this is achieved.

We will also define a new concept – TRR size – which provides a

uniform measure for quantifying the effectiveness of TRR policies.

This measure is enabled by the abstraction power of a Rowham-

mer machine, which only captures the behaviour of those policies,

ignoring implementation details.

Rowhammer threshold. To extract an estimate of the Rowham-

mer threshold (see Section 2 for the definition) from a Rowhammer

machine, we perform a breadth-first search of the underlying graph,

starting from the initial state end ending at the flip state. The short-

est path (or any of them) between those states will allow us to

estimate the Rowhammer threshold, and the sequence of accesses

in that path may be considered as a program capable of inducing

bit flips. More precisely, suppose that the shortest path is:

𝑞0
𝑎0 𝑟0⇒𝑓0 / 𝑜0−−−−−−−−−−−−→ . . .

𝑎𝑛−1 𝑟𝑛−1⇒𝑓𝑛−1 / 𝑜𝑛−1−−−−−−−−−−−−−−−−−−−−→ 𝑞𝑛
𝑎𝑛 𝑟𝑛⇒𝑓𝑛 / Flip−−−−−−−−−−−−−−→ ⊥

Let𝐴 be the number of accesses until state 𝑞𝑛 , namely𝐴 =
∑𝑛−1
𝑖=0 𝑎𝑖 .

Then the Rowhammer threshold is in the interval (𝐴,𝐴 + 𝑟𝑛]. Note
that any other paths between those states will give us a sequence

(hence a program) capable of triggering bit flips, albeit longer.

Example 3.1. Consider the model below, with 1 access per step:

𝑞0 𝑞1 𝑞2

𝑞3𝑞4⊥

1 1⇒1 / ✓ 1 1⇒1 / ✓

1
1⇒

1
/
✓

1 1⇒1 / ✓1 1⇒1 / ✓

We see that the Rowhammer threshold is given by the path length,

namely (4, 5] = 5. However, to achieve better scalability and obtain

a more compact model, we can increase the number of accesses in

the input alphabet, for instance:

𝑞0 𝑞1 ⊥
3 1⇒1 / ✓ 3 1⇒1 / Flip

We now have a smaller model, but the estimate is coarser – (3, 6].
TRR threshold. The TRR threshold is the minimum number of

accesses to a row required for TRR to refresh neighbouring rows

that are considered potential victims.

To extract the TRR threshold from the output model, we first

look for the shortest cycle in the underlying graph which contains

a TRR output. Then we can compute an interval estimating the TRR

threshold from that cycle by adding up the accesses before TRR is

triggered, similarly to what we did for the Rowhammer threshold.

If several such shortest cycles exist, any of them will provide a valid

estimate, and a sequence of accesses that can trigger TRR.

Example 3.2. Consider the Rowhammer machine below:

𝑞0 𝑞1 𝑞2
5 1⇒1 / ✓ 9 1⇒1 / ✓

5 1⇒1 / TRR

The cycle involving all nodes gives us an estimate of the TRR

threshold in (14, 19]. We can further refine the estimate by reducing

the number of accesses in the input alphabet.

TRR size. TRR policies rely on TRR counters to keep track of

accesses to rows that may cause a bit flip. The quality of a TRR

policy does not solely depend on the number of TRR counters;

perhaps more crucially, it depends on the way those TRR counters

are used. We define a new concept, TRR size, that measures how

effectively TRR counters are used.

Definition 3.3 (TRR Size). Suppose the DRAM supports TRR. The

TRR Size is the minimum number of rows that need to be accessed

in order for a bit flip to occur.

To illustrate this concept, we shall now go through three exam-

ples. In all three cases we assume that there are two TRR counters.

We also assume that TRR threshold and Rowhammer threshold

values are close.

Example 3.4 (Static policy). Let’s assume we have the memory

layout in Figure 3a, and the Rowhammer blast radius is 1. The TRR

policy has statically assigned each TRR counter to keep track of

accesses to 0x10 and 0x11 respectively. In this case, one can hammer

0x14 and cause flips in 0x13 without TRR being able to stop it. The

TRR size for this policy is 1 since we were able to cause a bit flip by

accessing only 1 row (namely 0x14).

ALARM: Active LeArning of Rowhammer Mitigations HASP ’22, October 01, 2022, Chicago, IL

...

0x10

0x11

0x12

0x13

0x14

...

(a) Static TRR policy

...

0x10

0x11

0x12

0x13

0x14

0x15

0x16

...

(b) Dynamic TRR policy

...

0x10

0x11

0x12

0x13

0x14

0x15

0x16

0x17

0x18

0x19

0x1a

...

(c) Threshold TRR policy

Figure 3: Example TRR policies. Grey rows are potential aggressor rows, green ones are potential victims that are refreshed by TRR, and red
ones are victim rows.

Example 3.5 (Dynamic policy). Consider now the layout in Fig-

ure 3b. Now the TRR policy keeps track of accesses to the first
and second rows that are accessed after a refresh. Suppose we first

access 0x11 and then 0x13, so that both TRR counters are assigned

(one to 0x11 and one to 0x13), then we access 0x15, and we start

over from 0x11. Here we observe bit flips in 0x16 because TRR is

not able to keep track of the accesses to 0x15. The TRR size for this

policy is 3 since we were able to cause a bit flip by accessing three

rows, namely 0x11, 0x13, and 0x15.

Example 3.6 (Threshold policy). Consider now thememory layout

in Figure 3c. The policy for this example keeps track of accesses to

the first and second rows that are accessed. When one of the TRR

counters reaches the threshold 𝑘 , all the potential victims of the

associated row are refreshed and the TRR counters are assigned to

new rows. In addition, if a row is not accessed again within a time

threshold 𝑡 , its TRR counter is reassigned and the potential victims

are refreshed.

Suppose 𝑘 = 𝑟𝑜𝑤ℎ𝑎𝑚𝑚𝑒𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑/2 and 𝑡 is equivalent to the
time needed to access a row a few times (e.g., 5 times). And we

access the grey rows in the figure in a loop going from 0x11 to

0x19. At first the two TRR counters are assigned to 0x11 and 0x13
respectively. Once the TRR counter for 0x11 reaches 𝑘 , its victims

are refreshed, and the TRR counter is re-assigned to 0x15; similarly

for 0x13, with its TRR counter being re-assigned to 0x17 when it

reaches 𝑘 . Now, 0x19 has been accessed without TRR tracking it,

so 0x1a is getting hammered and bit flips will eventually occur. In

this example the TRR size is 5, because we were able to cause a bit

flip by accessing rows 0x11, 0x13, 0x15, 0x17 and 0x19.

Note that all three examples rely on two TRR counters, but these

are used differently: the first policy is the least effective – bit flips

may occur due to accessing only one row, i.e., , the TRR size is 1 –

and the last one is the most effective – bit flips require accesses to

five rows, i.e., , the TRR size is 5. In other words, a TRR policy cannot

be evaluated on the basis of the number of TRR counters alone; we

need a behavioural model such as our Rowhammer machines to

fully appreciate the policy’s effectiveness.

Again, the TRR size can be extracted via a visit. Now we are

looking for a path between the starting and flip states containing

the minimum number of accessed rows; this number is exactly the

TRR size. Such a path will give us an efficient – in the sense of the

number of rows getting accessed – way to bypass TRR.

Example 3.7. Consider the following Rowhammer machine, mod-

elling 4 rows. The DRAM supports a similar TRR policy as Exam-

ple 3.5, with one TRR counter to count accesses; refresh happens

after after 110 accesses. The Rowhammer threshold is 200 (irrele-

vant state and transitions are not shown):

𝑞0 𝑞1 𝑞2

𝑞3⊥

100 1⇒1 / ✓ 100 4⇒1 / ✓

100 1⇒1 / TRR

1
0
0

1⇒
1
/
TR

R

1
0
0

4
⇒
1
/ F
lip

100 4⇒1 / Flip

1
0
0

1
⇒

1
/
✓

The path mentioning the fewest rows is 𝑞0 → 𝑞1 → 𝑞2 → ⊥ –

namely, it mentions 1 and 4 – therefore the TRR size is 2.

ECC threshold. We call ECC threshold the maximum number of

bits that ECC can correct. To extract the ECC threshold from the

model, we take the maximum 𝑓 over all transitions of the form

𝑞𝑖
𝑎 𝑟⇒𝑓 / ECC
−−−−−−−−−−−−→ 𝑞 𝑗 .

4 EXPERIMENTS AND MEASUREMENTS
In this section we measure the runtime of our tool against different

configurations of our synthetic memory. The TRR policy used in the

experiments is a victim centric policy that assigns a TRR counter on

a first-come-first-serve way, and we use Reed-Solomon ECC with

the ability to correct 4 bits. Models can be successfully learned in

most cases, however we shall see that LearnLib parameters affect

runtime and accuracy of the output model. In the experiments, we

focused on one parameter at a time and fixed the rest on defaults

values shown in the table on the next page.

Memory size. Memory size has a direct impact on the runtime,

i.e., the larger the memory size the longer the runtime. Particularly,

with a larger memory size, the model not only has many distinct

memory access patterns, but also more TRR, ECC and Flip events.

However, as Figure 4a suggests, the runtime after eight rows is

HASP ’22, October 01, 2022, Chicago, IL Amir Naseredini, Martin Berger, Matteo Sammartino, and Shale Xiong

1 2 3 4 5 6 7 8 9 10

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

Memory Size

R
u
n
t
i
m
e
[
s
]

Memory Size Measurement

Runtime

(a) Memory Size

0 1 2 3 4 5 6 7 8 9

0

20

40

60

80

100

120

140

#TRR Counters

R
u
n
t
i
m
e
[
s
]

Number of TRR Counters Measurement

Runtime

(b) Number of TRR Counters

0 1 2 3 4 5 6 7 8 9

0

100

200

300

400

500

600

700

Maximum Number of Bits to Flip

R
u
n
t
i
m
e
[
s
]

Maximum Number of Bits to Flip Measurement

Runtime

(c) Maximum Number of Bits to Flip

200 300 400 500 1000 1500 2000 3000 5000 20000

0

1

2

3

4

5

6

7

TRR Threshold - ECC Off

R
u
n
t
i
m
e
[
s
]

TRR Threshold Measurement

Runtime

(d) TRR Threshold (when ECC is off)

200 300 400 500 1000 1500 2000 3000 5000 20000

0

1

2

3

4

5

6

7

8

9

Rowhammer Threshold - ECC Off

R
u
n
t
i
m
e
[
s
]

Rowhammer Threshold Measurement

Runtime

(e) Rowhammer Threshold (when ECC is off)

100 200 300 400 500 1000 1500 2000 3000 5000

0

50

100

150

200

250

300

350

400

450

Accesses

R
u
n
t
i
m
e
[
s
]

Number of Accesses Measurement

Runtime

(f) Number of accesses

Figure 4: The Impact of Different Parameters on the Runtime

unstable. This is because the Random Walk algorithm with 100

steps is unable to explore the target system in sufficient depth to

find a counterexample that the learner can use to further refine

the model. This is, in general, a caveat of practical active learning:

parameters of the conformance checker may affect the accuracy of

the resulting model.

Parameter Default Value

Learning Algorithm TTT

Equivalence Oracle Random Walk

Memory Size 3

TRR Counters 1

Maximum Number of Bits to Flip 6

Number of Accesses in Each Transition 1300

TRR Threshold 2500

Rowhammer Threshold 3000

Refresh Interval 6500

Blast Radius 1

TRR Radius 1

Maximum Steps for the Random Walk Algorithm 100

TRR counters. TRR counters have a direct impact on the TRR, as

explained in Section 3. Figure 4b illustrates the relation between

TRR counters and the runtime. We observe that the runtime stays

the same when the number of TRR counters is greater than 2. In

fact, for the involved TRR policy, two TRR counters are enough

to prevent any bit flips; adding more TRR counters will not add

anything to the model.

Maximum number of bits to flip. We investigate the impact of

bit flips on the runtime by changing the input alphabet. The results

are shown in Figure 4c. The x axis in Figure 4c is the maximum

number (inclusive) of bit flips in the memory; for example, 2 means

that flips of 0, 1 and 2 may occur if accesses to a row reach the

Rowhammer threshold before the next scheduled memory refresh.

We see that the runtime goes up until 3 bits, and becomes unstable

afterwards, because once the maximum number of bit flips is more

than 4, the state-space explodes and cannot be fully explored by

the Random Walk conformance checker.

TRR threshold. In these experiments, we turned off the ECC

mechanism for less noise. The result is in Figure 4d. When TRR

threshold is smaller than 2000, active learning outputs a model

almost immediately. This is because TRR protects the memory

from the majority of bit flips and the resulting model is signifi-

cantly smaller. The runtime peaks at 3000 – which is equal to the

Rowhammer threshold – due to the learned model being large. Yet

once we move beyond 3000, the runtime decreases since bit flips

occur and several transitions now end up in the sink state, which

results in a smaller model.

Rowhammer threshold. ECC is off for this experiment to avoid

noise. The results are presented in Figure 4e. The Rowhammer

threshold is influenced by the TRR threshold and refresh interval.

When the Rowhammer threshold is smaller than the default TRR

threshold at 2500 accesses, the runtime is low, because the sink

state is quickly reached, hence the model is smaller. When the

Rowhammer threshold is above the refresh interval at 6500 accesses,

ALARM: Active LeArning of Rowhammer Mitigations HASP ’22, October 01, 2022, Chicago, IL

we observe the runtime dropping because the flip state can no

longer be reached, and the model has fewer states and transitions.

Therefore, as expected, we observe that the model is at its highest

complexity when the Rowhammer Threshold resides between TRR

Threshold and refresh interval.

Number of accesses. Varying the number of accesses, as was

explained in Definition 2.1, increases scalability of the model. The

larger it is the smaller and the less precise the model is. In Figure 4f,

we observe that in the beginning the runtime is low. This is because,

for smaller access numbers, models generated by the learner are

bigger, and the Random Walk algorithm is unable to cope with

them, therefore a smaller, incomplete model is generated. However,

as the figure shows, after 1500 accesses the model is simpler but

more accurate, and the runtime decreases.

5 CONCLUSION
The most up-to-date publicly available information on Rowhammer

mitigations, in particular TRR, is [13, 19], which has strongly in-

formed our modelling. Both papers involve a lot of ’manual’ labour,

and use FPGAs to observe concrete DRAM hardware. Neither uses

systematic, ML-based techniques to explore the Rowhammer miti-

gation space automatically. The present work is complementary to

[13, 19] and aims to automate such exploration. Vendors test reliabil-

ity of DRAM chips using standardised test, see [25, 32]. Knowledge

of the physical memory layout is required to run such tests, so

this is often not possible for DRAM customers, and [24] show that

these tests do not reliably detect all cells that might be vulnerable to

Rowhammering. The active learning community has done impres-

sive work on reverse engineering systems [4–6, 8, 9, 30]. Like us,

they follow, broadly, the “recipe” from Figure 1, and most have to

deal with issues such as non-deterministic behaviour, for instance

unpredictable packet arrival times in networking protocols such as

OpenSSL [4], SSH [9], DTLS [8] and QUIC [6]. The most striking

application to hardware is [30], where cache-replacement policies

are inferred from hardware caches.

As future work we mention that it is interesting to make our

model more sophisticated, so it can explore, with more accuracy,

further details of Rowhammer mitigations. We expect that more

details will be forced on us when we attach our learner to physical

DRAM.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for

their comments. This research was partially supported by EPSRC

(EP/S028641/1).

REFERENCES
[1] Fides Aarts, Bengt Jonsson, Johan Uijen, and Frits W. Vaandrager. 2010. Gener-

ating models of infinite-state communication protocols using regular inference

with abstraction. Formal Methods in System Design 46 (2010), 1–41.

[2] Dana Angluin. 1987. Learning regular sets from queries and counterexamples.

Information and Computation 75, 2 (1987), 87–106.

[3] Antmicro. 2022. RowhammerTester. https://github.com/antmicro/rowhammer-

tester.

[4] Joeri de Ruiter. 2016. A Tale of the OpenSSL State Machine: A Large-Scale

Black-Box Analysis. In NordSec 2016 (LNCS, Vol. 10014). 169–184.
[5] Joeri de Ruiter and Erik Poll. 2015. Protocol State Fuzzing of TLS Implementations.

In USENIX Security Symposium. USENIX Association, 193–206.

[6] Tiago Ferreira, Harrison Brewton, Loris D’Antoni, and Alexandra Silva. 2021.

Prognosis: closed-box analysis of network protocol implementations. In ACM
SIGCOMM. 762–774.

[7] Paul Fiterau-Brostean, Ramon Janssen, and Frits W. Vaandrager. 2016. Combining

Model Learning and Model Checking to Analyze TCP Implementations. In CAV
(LNCS, Vol. 9780). 454–471.

[8] Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget, Joeri de Ruiter, Konstanti-

nos Sagonas, and Juraj Somorovsky. 2020. Analysis of DTLS Implementations

Using Protocol State Fuzzing. In USENIX.
[9] Paul Fiterau-Brostean, Toon Lenaerts, Erik Poll, Joeri de Ruiter, Frits W. Vaan-

drager, and Patrick Verleg. 2017. Model learning and model checking of SSH

implementations. In SPIN. 142–151.
[10] Loïc France, Maria Mushtaq, Florent Bruguier, David Novo, and Pascal Benoit.

2021. Vulnerability Assessment of the Rowhammer Attack Using Machine Learn-

ing and the Gem5 Simulator - Work in Progress. In Proc. SAT-CPS ’21. 104–109.
[11] Markus Frohme, Falk Howar, and Malte Isberner. 2022. LearnLib. https://github.

com/Learnlib/learnlib.

[12] Daniel Gruss. 2017. Rowhammer Attacks: An Extended Walkthrough Guide.

Guest Talk @ SBA Research, Vienna, Austria. https://gruss.cc/files/sba.pdf.

[13] Hasan Hassan, Yahya Can Tugrul, Jeremie S. Kim, Victor van der Veen, Kaveh

Razavi, and Onur Mutlu. 2021. Uncovering In-DRAM RowHammer Protection

Mechanisms:A New Methodology, Custom RowHammer Patterns, and Implica-

tions. In MICRO. 1198–1213.
[14] Hasan Hassan, Nandita Vijaykumar, Samira Khan, Saugata Ghose, Kevin Chang,

Gennady Pekhimenko, Donghyuk Lee, Oguz Ergin, and Onur Mutlu. 2018.

SoftMC: Practical DRAM Characterization Using an FPGA-Based Infrastructure.

[15] Malte Isberner, Falk Howar, and Bernhard Steffen. 2014. The TTT Algorithm:

A Redundancy-Free Approach to Active Automata Learning. In RV, Vol. 8734.
Springer, 307–322. https://doi.org/10.1007/978-3-319-11164-3_26

[16] Malte Isberner, Falk Howar, and Bernhard Steffen. 2015. The Open-Source Learn-

Lib - A Framework for Active Automata Learning. In CAV, Vol. 9206. Springer,
487–495.

[17] Fujiwara Bochmann Khendek, S Fujiwara, GV Bochmann, F Khendek, M Amalou,

and A Ghedamsi. 1991. Test selection based on finite state models. IEEE Transac-
tions on software engineering 17, 591-603 (1991), 10–1109.

[18] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,

Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory

without accessing them: An experimental study of DRAM disturbance errors.

ACM SIGARCH Computer Architecture News 42, 3 (2014), 361–372.
[19] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz Lipp, Nicolas

Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss. 2022. Half-Double: Ham-

mering From the Next Row Over. In USENIX Security’22. USENIX Association,

3807–3824.

[20] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. 2020. RAMBleed:

Reading Bits in Memory Without Accessing Them. In S&P.
[21] Kevin Loughlin, Stefan Saroiu, AlecWolman, Yatin A.Manerkar, and Baris Kasikci.

2022. MOESI-Prime: Preventing Coherence-Induced Hammering in Commodity

Workloads. In Proc. ISCA 22. 670–684.
[22] Arm Ltd. 2022. Arm Morello Program. https://www.arm.com/architecture/cpu/

morello.

[23] Bryon Moyer. 2021. Will Monolithic 3D DRAM Happen? Semiconductor Engi-

neering. https://semiengineering.com/will-monolithic-3d-dram-happen/.

[24] Lev Mukhanov, Dimitrios S. Nikolopoulos, and Georgios Karakonstantis. 2020.

DStress: Automatic Synthesis of DRAM Reliability Stress Viruses using Genetic

Algorithms. In Proc. MICRO’20. 298–312.
[25] R. Nair, S. M. Thatte, and J. A. Abraham. 1978. Efficient Algorithms for Testing

Semiconductor Random-Access Memories. IEEE Trans. Comput. 27, 6 (1978),

572–576.

[26] Amir Naseredini. 2022. Implementation of ALARM. https://github.com/

sahnaseredini/alarm.

[27] Amir Naseredini and Martin Berger. 2022. A Simple Model of Rowhammer.

(August 2022). Manuscript, in preparation.

[28] Walter Rudin. 1976. Principles of mathematical analysis (third ed.). McGraw-Hill.

[29] L. G. Valiant. 1984. A Theory of the Learnable. Commun. ACM 27, 11 (1984),

1134–1142.

[30] Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Köpf. 2020. CacheQuery:

learning replacement policies from hardware caches. In PLDI. ACM, 519–532.

https://doi.org/10.1145/3385412.3386008

[31] Andrew Walker, Sungkwon Lee, and Dafna Beery. 2021. On DRAM Rowhammer

and the Physics of Insecurity. IEEE Transactions on Electron Devices (2021), 1–11.
https://doi.org/10.1109/TED.2021.3060362

[32] Laung-TerngWang, Cheng-WenWu, and XiaoqingWen. 2006. VLSI Test Principles
and Architectures: Design for Testability (Systems on Silicon). Morgan Kaufmann

Publishers Inc.

[33] Robert N.M.Watson et al. 2015. CHERI: A Hybrid Capability-System Architecture

for Scalable Software Compartmentalization. In 2015 IEEE Symposium on Security
and Privacy. 20–37. https://doi.org/10.1109/SP.2015.9

https://github.com/antmicro/rowhammer-tester
https://github.com/antmicro/rowhammer-tester
https://github.com/Learnlib/learnlib
https://github.com/Learnlib/learnlib
https://gruss.cc/files/sba.pdf
https://doi.org/10.1007/978-3-319-11164-3_26
https://www.arm.com/architecture/cpu/morello
https://www.arm.com/architecture/cpu/morello
https://semiengineering.com/will-monolithic-3d-dram-happen/
https://github.com/sahnaseredini/alarm
https://github.com/sahnaseredini/alarm
https://doi.org/10.1145/3385412.3386008
https://doi.org/10.1109/TED.2021.3060362
https://doi.org/10.1109/SP.2015.9

	Abstract
	1 Introduction
	2 Modelling Rowhammer and Rowhammer mitigations
	3 ALARM
	4 Experiments and measurements
	5 Conclusion
	Acknowledgments
	References

