
University of London

Imperial College of Science, Technology and Medicine

Department of Computing

Towards Abstractions For

Distributed Systems

Martin Berger

A thesis submitted for the degree of Doctor of Philosophy

of the University of London

and for the Diploma of Imperial College.

Revised Version (of November 24, 2004)

“Não sou nada.

Nunca serei nada.

Não posso querer ser nada.

À parte isso, tenho em mim todos os sonhos do mundo.”

iii

iv

Abstract

For historical, sociological and technical reasons, λ-calculi have been the dominant

theoretical paradigm in the study of functional computation. Similarly, but to a

lesser degree, π-calculi dominate advanced mathematical accounts of concurrency.

Alas, and despite its ever increasing ubiquity, an equally convincing formal foun-

dation for distributed computing has not been forthcoming. This thesis seeks to

contribute towards ameliorating that omission. To this end, guided by the assump-

tion that distributed computing is concurrent computing with partial failures of

various kinds, we extend the asynchronous π-calculus with

• a notion of sites,

• the possibility of site failure,

• a persistence mechanism to deal with site failures,

• the distinction between inter-site and intra-site communication,

• the possibility of message loss in inter-site communication and

• a timer construct, as is often used in distributed algorithms to deal with

various failure scenarios.

The basic theory of two of the resulting augmented π-calculi is explored in con-

siderable detail: the asynchronous π-calculus with timers and the asynchronous

π-calculus with timers, sites and message failure. The emphasis of this develop-

ment is on soundly approximating reduction congruence, the canonical equivalence

for asynchronous π-calculi. In the case of the asynchronous π-calculus with timers

we manage to obtain a characterisation of reduction congruence as a labelled bisim-

ilarity. Our results appear to be robust under variations of the underlying calculi.

In addition, as a test to evaluate the usefulness and the integration of the aforemen-

tioned extensions, we cleanly and incrementally represent the Two Phase Commit

Protocol – an important distributed algorithm, used to ensure consistency of dis-

tributed databases in the face of various kinds of (non-byzantine) failures – in the

asynchronous π-calculus, the asynchronous π-calculus with timers, sites and mes-

sage failure and in the asynchronous π-calculus with timers, sites, site failure and

v

vi

message failure. We establish the correctness of our representations by equational

reasoning.

Attribution

The results presented in this thesis are all by the author, except for the encodings

of the Two Phase Commit Protocol in Chapters 3, 6 and 8, which were obtained

in collaboration with Kohei Honda, as reported in [13, 14]. The corresponding

correctness proofs for this protocol were inspired by this collaboration, too, but

differ substantially in the details. Kohei Honda also suggested locality as a suitable

restriction for processes executing in sites, cf. Chapter 5.

vii

viii

Contents

1 Introduction 3

1.1 The Problem . 3

1.2 Distributed Systems?!? . 4

1.3 Why Use π-Calculi as a Basis for Modelling Distributed Systems? . 6

1.4 Our Contributions . 7

1.5 Structure of this Text . 9

2 Basic π-Calculi 11

2.1 Introduction . 11

2.2 π-Calculi . 16

2.3 Semantics . 20

2.4 Syntactic Variants . 43

2.5 Matching and Mismatching . 51

2.6 HOπ . 52

2.7 Variants (2): Restrictions . 54

2.8 Concluding Remark . 56

3 The Two Phase Commit Protocol 57

3.1 Introduction . 57

3.2 The Algorithmic Core of the 2PCP 58

3.3 Correctness of the 2PCP . 60

3.4 What Lies Ahead? . 70

4 Timers 71

4.1 Introduction . 71

4.2 The Calculus . 73

4.3 Semantics . 74

4.4 Equivalences . 84

4.5 Reduction-Based Characterisations of Tmax 98

4.6 Transition-Based Characterisations of Tmax 107

4.7 Alternative Equivalences? . 131

ix

x CONTENTS

4.8 Alternative Approaches . 137

4.9 Concluding Remarks . 149

4.10 The Church-Turing Thesis and Timed Computations 149

5 Message Loss 157

5.1 Introduction . 157

5.2 The Calculus . 159

5.3 Semantics . 161

5.4 Equivalences . 170

5.5 Reduction-Based Characterisations of Tmax 177

5.6 A Labelled Approximisation to Tmax 178

5.7 Expansion Laws and Distribution of Processes 181

5.8 Related Work . 194

5.9 Concluding Remarks . 196

6 The 2PCP With Message Failure 197

6.1 Introduction . 197

6.2 The Algorithm . 197

6.3 Correctness of the 2PCP . 199

6.4 Correctness of the 2PCP with One Participant 200

6.5 Concluding Remarks . 208

7 Persistence and Process Failures 209

7.1 Introduction . 209

7.2 The Calculus . 211

7.3 Semantics . 213

7.4 Concluding Remarks . 217

8 The Two-Phase Commit Protocol 219

8.1 Introduction . 219

8.2 The Full 2PCP . 219

8.3 Correctness of the 2PCP With One Participant 222

8.4 Correctness of the 2PCP with One Participant 223

8.5 Concluding Remarks . 234

9 Conclusions and Further Work 235

List of Figures

2.1 A process P with three interaction points x, y and z. 13

2.2 Three processes, P, Q and R composed in parallel. Their shared

names x and y are still available for further connections. The dot-

ted lines represent channels, paths for potential flow of information

between these processes. 13

2.3 A geometric view of the effect of restricting x in P. The process on

the right is (νx)P. 16

2.4 The effect of extending the scope of y. 24

2.5 The asynchronous transitions for the asynchronous π-calculus. 38

2.6 The synchronous transitions for the asynchronous π-calculus. 40

2.7 The synchronous transitions for the asynchronous π-calculus present-

ed without a need for closure under ≡. 41

4.1 The inductive definitions of the dynamics of the timed asynchronous

π-calculus. 75

4.2 The standard synchronous transitions for the asynchronous timed

π-calculus. 81

4.3 An alternative account of synchronous transitions for the asynchronous

timed π-calculus. 108

4.4 An alternative account of asynchronous transitions for the asyn-

chronous timed π-calculus. 112

4.5 Transitions for RtCCS. Here α ranges over all actions apart from
√

and t ∈ N is greater than 0. 143

4.6 Transitions for regular agents in Timed CCS 145

5.1 The inductive definition of the dynamics of πml networks, parametrised

over a π-calculus, such as πt of processes, with its associated dynam-

ics, structural congruence and notions of free and bound names. . . . 162

5.2 A synchronous transition system for the asynchronous timed π-calculus

with locations and message loss. Here →ε stands for →. 169

xi

xii LIST OF FIGURES

5.3 An asynchronous transition system for the timed, asynchronous π-

calculus with locations, message loss and message duplication. Tran-

sitions for processes are omitted and can be found in Figure 4.2. . . 179

7.1 The inductive definition of the free and bound names as well as the

structural congruence. 212

7.2 The inductive definition of the reduction relation. 214

7.3 The inductive definition of the reduction relation (continued). 215

7.4 An asynchronous transition system for the timed, asynchronous π-

calculus with locations, message loss and message duplication. Apart

from (S-Out), transitions for processes are omitted and can be found

in Figure 4.2. 216

Notation and Mathematical

Preliminaries

We assume the usual set-theoretic foundations of mathematics, in particular ordinals

and well-founded induction. We use ⊆ to denote subset inclusion and ⊂ but also

(for strict inclusion. We write P(A) for the powerset of A and Pfin(A) for the set

of all finite subsets of A. We write ~x to denote tuples 〈x0...xn−1〉 (n ≥ 0) and {~x}
is a shorthand for {x0...xn−1}, ie. duplicates will be removed. The natural numbers

are the set N = {0, 1, 2, 3, 4, ...}, while integers are Z = {...,−2,−1, 0, 1, 2, 3, 4, ...}.

We denote the reals by R, the non-negative reals by R+, the rationals by Q and the

non-negative rationals by Q+. If f : A → B is a function, we write dom(f) for A,

the domain of f , and cod(f) for the codomain B. A partial function f from A to B

is denoted f : A ⇀ B. The universal relation on a set A is A×A. If R ⊆ A×B is a

binary relation, then its transposition is R−1 = {(b, a) | (a, b) ∈ R}. The transitive

closure of R is R∗. Some binary relations will also be referred to by an arrow like

→, in which case the transitive, reflexive closure is�. If R ⊆ A×B and S ⊆ B×C
are relations, then we often abbreviate their relational composition S ◦R ⊆ A× C

to RS. Please note the reversal! If → is a binary relation, →n is a shorthand for

→· · ·→
︸ ︷︷ ︸

n

. We write →
+

if →n for some n > 0. If v is a binary relation on A, a ∈ A

is maximal if whenever b ∈ A and a v b, then a = b. If b v a for all b ∈ A then a

is A’s maximum element. We will often use ternary relations → ⊆ A×B ×A and

we write a
b→ a′ instead of (a, b, a′) ∈ → . If a0

b0→ a1
b1→ · · · an−1

bn−1→ an and

the details of a1, ..., an−1 don’t matter, we may write a0
〈b0,...,bn−1〉

� an. A graph is a

pair (V,→) where V is the carrier set of the graph and → is its reduction relation.

A string over a set A is an n-tuple of A’s elements, where n ∈ N. We usually write

〈a0, ..., an−1〉 for a string of length n: length(〈a0, ..., an−1〉) = n. The empty string

is written 〈〉. A signature Σ is a tuple (S1, · · · , Sm, f1, · · · , fn,#). Each Si is a

sort-symbol and the fi are function-symbols. The arity-function # maps fi to a

tuple #(fi) = (Si1 , · · · , Siki , S) of sort-symbols. Given Σ as above, a Σ-algebra A is

a tuple A = (SA
1 , · · · , SA

m, f
A
1 , · · · , fA

n) where each SA
i is a set and fA

i is a function

such that #(fi) = (Si1, · · ·Siki , S) implies fA
i : SA

i1
× · · · × SA

iki
→ SA. We assume

1

2 LIST OF FIGURES

the usual notions of term algebra and polynomial over Σ.

Chapter 1

Introduction

This chapter introduces the problem we are trying to solve and proposes answers

to two questions: what are distributed systems? And: why use the π-calculus as a

basis for modelling them?

1.1 The Problem

Distributed computing’s pervasiveness, already considerable at the time of writing,

will continue to grow dramatically as a consequence of the rapid computerisation of

industrial society. Examples of currently operating world-wide distributed comput-

ing systems are the Internet, the telephone network and the information infrastruc-

tures of globally acting organisations such as military services and multinational

companies. The evolution of computer mediated service provision, often referred to

under the simplifying name “electronic commerce”, will increase the dependency of

a significant part of the world’s population on distributed computing systems. This

raises the question of their reliability.

Currently, the situation seems rather bleak. Essentially, there are two estab-

lished ways of exploring the reliability of computing systems: testing and correctness

proofs. Although it can be argued that this distinction is a spurious one since proofs

are best understood as non-standard tests – as they are valid only under ultimately

unverified correctness assumptions, for example pertaining to the ability of proof

generating and verifying agents, whether human or automated, to avoid invalid de-

ductions – the distinction has much pragmatic appeal. Both, testing and correctness

proofs are often not easy to get right, even in a sequential setting. Introduction of

concurrency, which properly contains sequential computation, and distribution, it-

self encompassing concurrent computation, makes matters worse. Non-determinism,

interference, deadlocks, starvation, unfairness, message loss, partial process failure

and recovery in addition to a host of other phenomena greatly complicate testing

and generation of correctness proofs. Consequently, testing or correctness proofs of

3

4 CHAPTER 1. INTRODUCTION

distributed systems are usually partial, giving little reason to be unconcerned.

These difficulties non-withstanding, many distributed computing systems are

often considered to work reasonably or even remarkably well. Whether this is due

to the ingenuity of their designers or to low user expectations is an interesting

question, but the ever-increasing ubiquity of such systems suggests that they are

indeed reliable enough for many applications. Nevertheless, for at least the following

reasons it would seem appropriate to strive for improving the state-of-the-art.

• More and more, human well-being depends on properly functioning of dis-

tributed systems.

• Increasing complexity and interdependence of distributed systems might make

some form of failure more likely or more disastrous.

• Understanding complex systems and discovering subtle bugs is aesthetically

pleasing.

This text seeks to help providing some groundwork towards more reliable distributed

systems. More specifically, it seeks to alleviate one of the shortcomings of current

methodologies for reasoning about distributed systems, the lack of convenient and

rigorous models of distributed computations, by providing fully formal models of the

following features of concurrent systems in a unified, process calculus framework:

time, location, location failure, persistence and non-byzantine message-failure.

1.2 Distributed Systems?!?

But what are Distributed Systems (or DS for short)? It would be nice if we could

begin with an incontrovertible definition of what will be our subject matter for the

next 230 or so pages. Alas this cannot be done in good conscience, because the

definition is part of the problem ... More precisely, nailing down the essence of

the phenomena that we associate with the fuzzy designator DS is one of the un-

solved problems characterising this field. The degree of confusion can be gauged by

comparing the respective first pages of two popular DS textbooks. “A distributed

system is one in which components located at networked computers communicate

and coordinate their actions only by passing messages” is how Coulouris, Dollimore

and Kindberg begin their [30], while Nancy Lynch claims, on the first proper page

of her monumental treatise [70] on distributed algorithms, that “[d]istributed al-

gorithms run on a collection of processors, which need to communicate somehow.

Some common methods of communication include accessing shared memory, sending

point-to-point or broadcast messages (either over a long distance or local area net-

work), or executing remote procedure calls”. How is a little guy1 to avoid confusion

1i.e. the present author, we, I, Martin Berger or maybe even “the present author”.

1.2. DISTRIBUTED SYSTEMS?!? 5

if even the big guns seem unable to? Fortunately, the process calculus perspective

on computing, with its mantra “computation is interaction” affords a way out of

this conundrum by representing interactions via shared memory as a peculiar form

of message passing. Anyway, coming back to characterising DS, we may arrive at a

sufficient understanding of DS by an idealising account of the historical development

of the usage of the term.

Once upon a time, when the world was still decent, computers where centralised.

Despite being complex, chaotic and analog physical devices (like everything else),

their organisation and the environments they operated in allowed them to exhibit

emergent or macroscopic properties [109] such as being digital, acting as if they

were finite state automata or Turing Machines, sequentially executing a program.

Another emergent property was that of being error free, or, if not error free, then

at least failing so rarely that few cared about the possibility. Or, most relevantly

here, if they’d fail, they’d do so cleanly or totally. That means they’d completely

and suddenly stop to function, without possibility of any further interaction or

observation of computation. This totality of failure of centralised computation is

their key difference from DS, but it should not be forgotten that it is “just” an

observer construct in the sense that if we’d bother to look at enough details, maybe

at the level of individual transistors, what appeared a total failure to the casual

observer became partial. It just happens that our interactions/observations with

centralised computation are mostly such that we don’t care about this, or at least

don’t look hard enough to notice. Of course this is always the case with emergent

properties: the reason that emergent, i.e. inaccurate description works, in the sense

of allowing to make predictions that are not falsified by (subsequent) observations,

is simply limited observational capabilities.

As computers became more popular, they were connected, for example to share

expensive resources such as printers, or to pool their processing power for solv-

ing some computationally expensive problem. The connection mechanism is now

mostly called “the net”, but “benign(ish) wires” may be a more descriptive phrase

because it captures the behavioural results of the (usually considerable) efforts the

interconnection has to invest to be of use. A benign wire would ideally transmit

data entered at one end to the other, without any delay or modification. The qual-

ification “’ish” is intended to convey that this cannot always be achieved: messages

get lost, duplicated and even corrupted, although corruption is much less frequent

than loss or duplication. In addition, messages are subject to often unpredictable

transmission delays, significantly exceeding the duration of atomic steps in the com-

putations of the connected computers. These imperfections in the interconnecting

benign(ish) wires have serious ramifications for the programs executed on the indi-

vidual computers. They are the reason for distinguishing DS from other types of

computation.

6 CHAPTER 1. INTRODUCTION

• Messages sent to other computers can no longer be assumed to arrive. More

generally, the points in time when messages will arrive (possibly more or less

than one, due to message loss or duplication) cannot be predicted by the

sender. This phenomenon is the asynchrony of DS.

• In addition, DS fail partially : an observer may interact with one networked

computer, while another has crashed. The failed computer still fails totally,

but the computation it carried out was but a part of a larger computational

process, other fragments of which can still be observed.

Both phenomena lead to what may be called informational uncertainty, the inability

of the participating computations to have precise information about the overall state

of the entire system. Information’s accuracy seems negatively correlated with its

distance from whatever it describes.

1.3 Why Use π-Calculi as a Basis for Modelling Dis-

tributed Systems?

“I make a disclaimer. I reject the idea that there can be a unique con-

ceptual model, or one preferred formalism, for all aspects of something

as large as concurrent computation, which is in a sense the whole of our

subject – containing sequential computation as a well-behaved special

area.” Robin Milner [76]

Asynchrony is not germane to DS. As just one example, the asynchronous π-calculus,

the formal basis of our subsequent development, was explicitly designed to be a

model of concurrent computation where message senders cannot be sure about when

their messages are received. In addition, all process calculi can be considered to

model partial computation because they allow more than one process to execute

in parallel. One may argue that this is not partiality in the sense of DS, because

there is no notion of failure. But clearly, one key feature of partial failure is present:

a spatial partition of the computation. It seems that the demarcation between

concurrent and distributed computations is blurred, justifying the opening gambit

of claiming the definition of DS was part of the problem under investigation.

Anyway, this proximity is a good thing! As π-calculi have proven to be powerful

tools for modelling computation, we may already have a well-developed formal basis

upon which to build a comprehensive mathematical theory of DS. The hope is that a

few well-chosen extensions to a powerful process calculus are sufficient for capturing

all key elements of DS. That is the guiding assumption behind this thesis. It may be

in blatant contradiction with the Milner quote above, but without trying one cannot

work out who’s correct. Less obvious than the π-calculus as a starting point is what

these extensions should be. Our proposals centre around providing a clearcut unit

of failure, a point of reference with respect to which various failures and means for

their neutralisation can be formalised.

1.4. OUR CONTRIBUTIONS 7

Once this approach is accepted, the details of a suitable calculus to be extend-

ed need to be identified. There are many to choose from. We have opted for

the asynchronous π-calculus for three reasons. Firstly, we are rather familiar with

it. Secondly because it “feels the right choice” and thirdly because a decade of

research on programming language expressivity has firmly put the asynchronous

π-calculus in the lead when it comes to convenient encodings of other computation-

al formalisms. This is evidence, though not compelling, that asynchronous name

passing interaction is indeed a powerful tool for semantic investigations.

Once extensions have been found and integrated, we need to ask if the result

is any good. It may be too early to say, not only because currently there are

rather few alternative proposals to compare against, but also because the quality of

a formalism lives mostly in the theoretical and practical developments it inspires.

Once they roll in, we hope they’ll show that our proposals exhibit the following

positive properties.

• Clarity, simplicity, elegance.

• Rigour, which means that everything relevant can be expressed in the language

of modern mathematics.

• We want to compare and integrate. This requires a certain uniformity of the

formalism and harmonious coexistence not only with the other extensions, but

also with the underlying π-calculus.

• Minimality, orthogonality. Each fundamental phenomenon of distributed sys-

tems should be modelled cleanly by one and only one construct. Each pro-

posed extension should be indispensable in the sense that in its absence, an

essential feature could not be expressed very well.

• The extensions should be incremental. This means that the existing π-calculus

technology and results should not be invalidated by the extensions. On the

contrary, it would be good if they could be recovered as canonical special

cases. In particular, we would like to retain reduction semantics, name-passing

synchronisation trees and bisimulations as key reasoning tools.

• Teachability. Our models for distributed systems should not only useful for

theoretical development but also for educational purposes.

1.4 Our Contributions

Starting from the asynchronous π-calculus, we propose three simple extensions.

8 CHAPTER 1. INTRODUCTION

• Timers and a notion of discrete time. This is the most drastic extension,

because it changes the computational behaviour more than our other modi-

fications. Nonetheless, timers are already well established extensions to pro-

cess calculi, so the syntactic details of this proposal should be uncontroversial.

Our contribution here is being the first to investigate the effect of timers on

π-calculi in earnest. This means an in-depth study of some of the canonical

equivalences, with the highlight being a characterisation of reduction con-

gruence as a labelled bisimulation. Comparable characterisations for other

π-calculi have so far proved elusive. That complicating a calculus seems to

simplify equational reasoning tools is a curious and as yet ill-understood phe-

nomenon.

• Sites and message failure. Sites, also called locations, are the point for ref-

erence for failures. Explicitly representing sites in syntax appears necessary,

because processes in the π-calculus have a somewhat under-determined syn-

tax in the sense that the structural congruence ≡ allows to modify syntactic

details to a considerable extent without semantic effect. This prevents the

division of processes into autonomous parts that could serve as a stable basis

for introducing the possibility of failures in communication without additional

syntax. We propose a simple syntactic addition and study the resulting calcu-

lus. In particular, we extract a particular form of timer usage that can serve

as a basis for a theory of converting from non-distributed into distributed

algorithms in a semantics-preserving way.

• Site failures and savepointing to model persistence. Our treatment of this

extension is much less thorough than that of the previous two, because we

are much less sure about its appropriateness. All we do is to propose the

mechanism and test it in an example.

Have our extensions met our stated criteria above? These criteria are mostly aes-

thetic in nature and hard to apply as objective evaluation criteria. We leave it for

the readers to decide ...

References to future aesthetic judgements may be seen as a bit of a cop-out, so

this thesis does something else, an “empirical” experiment: we take a fundamental

distributed algorithm, the Two Phase Commit Protocol, and try to express it in

the proposed calculi. If that were impossible, we surely had failed. Fortunately,

this turns out not to be the case. The algorithm scales gracefully as we turn up the

heat by introducing more sources of failure. In addition to encoding this algorithm,

we also verify its correctness using classical process-theoretic coinductive reasoning

techniques. This, too, is successful, except that we don’t verify the full Two Phase

Commit Protocol, only a special case. This is less of an omission then may appear

at first sight, because the special case already contains all the difficult issues other

1.5. STRUCTURE OF THIS TEXT 9

than the combinatorial explosion of trivial intermediate states. It is conceptually

straightforward to rewrite our proofs to verify the full protocol, but the price in

terms of notational complexity was deemed too high. This inability to compress all

those trivial intermediate states into something manageable shows that something

fundamental is still missing in the author’s understanding of the mathematics of

distributed computation.

1.5 Structure of this Text

The next chapter introduces the π-calculus and its key reasoning tools. In Chapter

3 we explain the basic ideas behind the Two Phase Commit Protocol and sketch

its proof assuming the absence of failure. Chapters 6 and 8 later will elaborate on

this proof by introducing failures. It may be interesting for the reader to see how

additional failures complicate parts of the proof. Chapter 4 introduces timers and

studies the properties of the resulting calculus in some detail. In Chapter 7, we add

sites and message failure to the timed π-calculus of Chapter 4 and study the effect

this has on the reduction congruence. In Chapter 7 sites find a second use when we

introduce site failure and persistence. Chapter 9 closes this thesis.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Basic π-Calculi

This chapter gives an overview of π-calculi with particular emphasis on concepts

that will be important later on. Basic knowledge of λ-calculi [11] and models of

concurrency is helpful [17]. More comprehensive accounts of π-calculi can be found

in [77, 103].

2.1 Introduction

In the first half of the 20th century, various formalisms were proposed to cap-

ture the informal concept of computable function, µ-recursive functions, Turing

Machines and the λ-calculus possibly being the most well-known examples today

[11, 31, 51, 87]. The surprising fact that they are essentially equivalent in the sense

that they are all encodable into each other is the content of the Church-Turing The-

sis [28, 51]. Another shared feature is more rarely commented on: they all are most

readily understood as models of sequential computation. With hindsight that is sur-

prising: after all, sequential computation can be understood as a peculiar form of

concurrency [16, 75]. In addition, paradigmatic forms of message passing that could

have served as an inspiration, such as the telephone system, were already deployed

in the western world at the time when the pioneering theorists of computability

contributed their insights. Whatever may have caused this early emphasis on se-

quentiality, in the end, the mathematical and philosophical problems that sparked

the search for formalisms could be solved entirely within the sequential world.

The subsequent consolidation of computer science required a more subtle formu-

lation of the notion of computation, in particular explicit representations of concur-

rency and communication. Petri-Nets [94, 95] and process calculi such as CSP [52],

CCS [74] and π-calculi are currently the most prominent calculi to have emerged

from this line of enquiry.

The process calculus approach gathered momentum in the 1970s when it be-

came increasingly clear that the then dominant functional approach to modelling

11

12 CHAPTER 2. BASIC π-CALCULI

computation [48] was unlikely to yield satisfactory accounts of non-deterministic,

non-terminating and interacting agents. Instead, early pioneers, such as Milner and

Hoare decided to make interaction between agents executing in parallel the basic

computational primitive. This can be done in several ways, but the CSP and CCS

approach, from which π-calculi descend, can be broadly characterised by three core

design decisions.

• Computing agents have zero or more discrete points of connection and inter-

action called, interchangeably, names, channels or interaction points. This

can be graphically represented. Figure 2.1 gives an example of a process

with 3 interaction points x, y and z. Parallel composition of two agents in-

volves connecting their interaction points by links, whenever they share a name

(cf. Figure 2.2) [56]. Crucially, a link does not preclude further connections

at a name. The Internet is a good source of analogies here: names correspond

to IP addresses (plus port numbers, but let’s ignore this detail for simplicity).

For this analogy to work, the interaction points of a process are all the IP

addresses it can receive data on and all the IP addresses it uses to send data

to. Because computing agents can be conceptualised as simple ‘geometric’

objects, as in Figures 2.1 and 2.2, this approach is sometimes referred to as

the “pineapple approach to concurrency”.

• Computation itself is binary, point-to-point interaction between independent

agents. Interaction happens along names by handshaking or synchronisation

between a sender and a receiver. This handshaking may or may not involve

passing data from the sender to the receiver. In the Internet, interaction

happens by sending IP packets between computers.

• Interaction is an atemporal event it the sense that it does not have a duration.

Interactions may be ordered in time. Here the Internet analogy breaks down

because the duration of packet delivery from sender to receiver has important

semantic consequences.

With this in mind, we can sketch the process calculus approach to modelling con-

currency, as exemplified by π-calculi.

To define a process calculus, one starts with a set of names, the discrete in-

teraction points. Names have no internal structure apart from what is required to

distinguish names from one another. Hence names are pure in the sense of Needham

[83]. Their only purpose is to denote interaction points. In many implementations,

names have rich internal structure to improve efficiency, but this is abstracted away

in almost all process theoretic models. With points of interaction fixed we must

have means to form new processes from old. In other words, we need an algebra of

processes. The crucial algebraic operators, always present in some form or other,

allow

2.1. INTRODUCTION 13

xyz

P

Figure 2.1: A process P with three interaction points x, y and z.

xyz

P

x zab

Q

x yc

R

Figure 2.2: Three processes, P, Q and R composed in parallel. Their shared names x

and y are still available for further connections. The dotted lines represent channels,

paths for potential flow of information between these processes.

14 CHAPTER 2. BASIC π-CALCULI

• the parallel composition of processes,

• to specify which channels to use for sending and receiving data,

• sequentialisation of interactions,

• hiding of interaction points and

• recursion or replication.

Parallel composition of two processes P and Q, usually written P |Q is the key

primitive distinguishing sequential models of computation from process calculi. It

allows computation in P and Q to proceed simultaneously and independently. But it

also allows interaction, that is synchronisation and flow of information from P to Q

on a channel shared by both (or vice versa). Channels are created by shared names

in parallel composition. Clearly, | is an associative and commutative operation.

Interaction in all the calculi we shall consider is a directed flow of information.

That means, input and output are distinguished as dual interaction primitives. We

have an input operator x(v) or just x and an output operator x〈y〉 or x, all of

which name an interaction point (here x) that is used to synchronise with a dual

interaction primitive. This name is called subject. Should information be exchanged,

it will flow from the outputting to the inputting process. The output primitive will

specify the data to be sent. In x〈y〉, this data is y and it is called the object in x〈y〉.
Similarly, if an input expects to receive data, one or more bound variables will act as

place-holders to be substituted by data, when it arrives. In x(v), v plays that role.

But what kind of data is exchanged in an interaction? There are various choices. It

will turn out that this choice is a key distinguishing feature between process calculi.

Sometimes interactions must be temporally ordered, because we might want to

specify algorithms like “first receive some data on x and then send that data on

y”. Sequential composition can be used for such purposes. It is well-known from

other models of computation. In process calculi, the sequentialisation operator is

usually integrated with input or output or both. For example the process x(v).P

will wait for an input on x. Only when this input occurs, the continuation P will

be activated with the received data substituted for v.

The key operational rule – comparable to β-reduction in λ-calculi, containing

the computational essence of process calculi, can be given solely in terms of paral-

lel composition, sequentialisation, input and output: although the details vary, it

always looks something like this.

(Com) x〈y〉.P | x(v).Q → P | Q{y/v}

The process x〈y〉.P sends a message, here y, along the channel x. Once that message

has been sent, x〈y〉.P becomes the process P. P is the continuation of x〈y〉.P. Dually,

2.1. INTRODUCTION 15

the process x(v).Q receives that message on channel x to become Q{y/v}, which is

Q with the place-holder v substituted by y, the data received on x. The class of

processes that P is allowed to range over as the continuation of the output operation

substantially influences the properties of the calculus.

It may be instructive to compare (Com) with

(β) (λx.M)N → M{N/x},

the corresponding rule of λ-calculi [11]. In both cases, some data is distributed in

the target term. In processes, y is replacing v in Q whereas for λ-calculi, N replaces

x in M . The crucial difference is that y is always a trivial entity, devoid of internal

structure apart form what is guaranteeing its identity, while N can be arbitrarily

complex. It can be shown that β-reduction can be decomposed into several (Com)

operations in a clean and natural fashion [16, 75, 103]. Converse encodings have not

been considered much. Those that have been proposed are cumbersome and lack

various desirable mathematical properties such as compositionality (cf. §2.4). This

asymmetry is likely to be one of the key reasons for the better expressivity of (some)

process calculi, in comparison with λ-calculi.

Regarding hiding, as already pointed out, the view of agents as geometric objects

with discrete interaction points does not limit the number of connection that can

be made at a given interaction point. Figure 2.2 gave an example of multiple

channels at one port. But interaction points allow interference (i.e. interaction).

For the synthesis of compact, minimal and compositional systems, the ability to

restrict interference is crucial. Hiding operations allow to control the connections

made between interaction points when composing agents in parallel. In sequential

models of computation, scoping rules, procedures and objects facilitate hiding (but

they might have other uses, too: functional features in the case of procedures and

subtyping with its associated dispatch mechanisms for objects). We denote the

hiding of a name x in P by (νx)P. Figure 2.3 shows the effect of going from P to

(νx)P. The process P on the left can interact with the outside world on x, y and z.

In contrast, (νx)P on the right can only use y and z for this purpose. The restriction

does not prevent usage of x inside P. But what happens if x gets sent to a process

outside of (νx)P, as may happen in (νx)(y〈x〉 |Q), provided x 6= y? Whether or not

it is possible to communicate a name hidden this way is another important point of

divergence between different calculi.

The operations presented so far allow to describe only finite interaction and

are consequently insufficient for full computability, which includes non-terminating

behaviour. Recursion or replication are operations that allow finite descriptions of

infinite behaviour. Recursion is well-known from the sequential world. Replication

!P can be understood as abbreviating P |P |P..., the parallel composition of a count-

ably infinite number of P’s. Replication is often more convenient than recursion,

16 CHAPTER 2. BASIC π-CALCULI

xyz

P

x

yz

P

Figure 2.3: A geometric view of the effect of restricting x in P. The process on the

right is (νx)P.

but either can express the other.

So far all algebraic operators allowed to produce new processes from old, but

how do we get off the ground? The most popular solution is a null process which

has no interaction points. It is utterly inactive and its sole purpose is to act as the

inductive anchor on top of which we can generate more interesting processes.

The set of processes is usually given as a term algebra. Once the syntax of a

process calculus has been defined, its semantics or dynamics are given by a binary

reduction relation → on processes, induced by the basic rules of interaction, as

sketched above. In addition to the operators introduced so far, calculi may of course

also have other algebraic operations, often with serious semantic consequences.

This concludes the abstract account of what we understand as processes. Of

course many more details need to be specified for any particular process model. We

finish this section we summarise the key factors that roughly distinguish between

important classes of process calculi.

• What kind of data is exchanged in interactions?

• How do hiding of interaction points and communication relate?

• What kind of continuations is the output operation allowed to have?

2.2 π-Calculi

Having sketched the key characteristics of process calculi, we now present its most

well-studied instance, π-calculi. The first thing to know about π-calculi is that

they are name passing formalisms. That means the data exchanged is names and

names only. Since names are in some ways the only kind of data that needs to

be present in a process calculus, π-calculi give the simplest possible answer to our

question “What kind of data is exchanged in interactions”. As names are exchanged

in interactions, our second question also becomes pertinent: can restricted names

2.2. π-CALCULI 17

be communicated to the outside? The answer is an emphatic “yes”: π-calculi

exhibit scope mobility. What that means is explained below, because it is easier to

describe after the syntax of π-calculi has been clarified. It has been quite a surprise

that despite the simplistic nature of the data under exchange, π-calculi are among

the most expressive formalisms. Scope mobility is the key novelty distinguishing

π-calculi from their predecessors. The third question above is orthogonal to the

concept of a π-calculus, in the sense that different π-calculi give drastically different

answers.

We begin with the asynchronous π-calculus because it is probably the simplest

variant. Later we describe, albeit more briefly, other π-calculi, partly because con-

trasting variants might aid understanding and because some of the variants will

be useful in our development of abstractions for DS, but also to communicate the

current lack of canonicity in π-calculi.

2.2.1 The Asynchronous π-Calculus

The asynchronous π-calculus was first introduced independently by Honda and

Tokoro [54, 58, 59] and by Boudol [22]. It is a simplification of the original π-

calculus of Milner, Parrow and Walker [78] both, in its syntactic presentation and

in its mathematical properties. The aim of its development was to extract the very

essence of name passing: to have a calculus as expressive as the original π-calculus,

but without redundant operations. Because it in some respects the most simple

π-calculus possible, it will be our reference calculus throughout this text.

But what is asynchrony? This term is often explained with reference to in-

teracting systems where messages are exchanged via a medium (such as an explicit

networking layer) that decouples senders from receivers: for example, if the medium

acts like an unbounded buffer, and that is quite a realistic abstraction of exchang-

ing messages over the Internet, the delay between sending a message and its receipt

may grow arbitrarily large. Selinger [106] axiomatises this notion of asynchrony for

CCS-like calculi at the level of semantics. If the delay between sending a message

and its receipt cannot be bounded, it is probably not a good idea to block senders

until receipt of their messages. This, then, is asynchrony: that senders are not

directly affected by the receipt (or otherwise) of their messages. Of course receivers

may send explicit acknowledgements back to senders which will change the original

senders, but in this case it is the receipt of the acknowledgement message, not the

receipt of the original message that institutes the change.

To make this more formal, assume a countably infinite set of names, ranged over

by v,w, z, y, z, a, b... The syntax of the asynchronous π-calculus is straightforward

18 CHAPTER 2. BASIC π-CALCULI

and given by the following grammar.

P ::= x〈~y〉 output

|| x(~y).P input prefix

|| !x(~y).P lazy replication

|| P |Q parallel composition

|| (νx)P hiding

|| 0 inaction

Apart from the parallel composition P |Q of processes P and Q, which works exactly

as described in the introduction, we have 5 other constructors which we shall now

present in some (more) detail.

Input prefixing x(~y).P is really an abbreviation for x(y0...yn−1).P with n ≥ 0

and adds a discrete interaction point x to those of P which may or may not already

contain x. The process x(~y).P waits on x for an interaction with a corresponding

output, blocking its continuation P until such an interaction happens. When it

happens, the process receives a tuple ~z of names which will be substituted in P

for ~y (the substitution operation will be defined below). The names y0, ..., yn−1 are

bound in x(~y).P, hence input prefixing will in general remove free names. Input

prefixing is the only form of sequencing the asynchronous π-calculus offers. We

will usually write x.P for x().P. We allow tuples ~y to be used for convenience

and generality. We can restrict to the monadic asynchronous π-calculus, where all

tuples are of length 1. This does not significantly affect the available computations,

cf. §2.4.3.

The process x〈~y〉, short for x〈y0...yn−1〉 with n ≥ 0, is called free output or just

output. The process sends a message, containing ~y as objects, along the subject

channel x. All names x, y0...yn−1 are free. That means they are the interaction

points of the process x〈~y〉. We will discuss below, why it makes sense to consider

the ~y interaction points, even though x〈~y〉 cannot itself send or receive messages on

any yi in ~y. Output does not involve sequencing as it does not have a continuation:

we cannot form the process x〈~y〉.P . Alternatively, we may say that P = 0 is

the only legal continuation for x〈~y〉.P. This is how asynchrony is achieved in the

asynchronous π-calculus. It will become clear later when we present the semantics

of this calculus, that the lack of an output continuation means, a process can never

be affected by the receipt (or otherwise) of messages it emitted. We abbreviate x〈〉
to x.

Lazy replication !x(~v).P is an instance of the more general replication, sketched

in the previous section and !x(~v).P can be considered the parallel composition of

infinitely many copies of x(~v).P. Unrestricted replication !P is another possible

syntactic choice here, but it scales less gracefully to DS, as we will detail in Section

2.4.2 and Chapter 4.

2.2. π-CALCULI 19

0 is the inactive or inert process. It cannot perform any computation. It is

often omitted when immediately preceded by an input: so we will usually write

x(~v) rather than x(~v).0.

The remaining operation, hiding of a name x in P is achieved by (νx)P, will be

explained after the semantics of the asynchronous π-calculus has been defined.

Free Names, Bound Names

We have repeatedly emphasised the importance of names or interaction points for

processes. We defined them to be the places that may be used for interference

(ie. interaction), that is, for sending or receiving messages. Now that we have the

syntax of the asynchronous π-calculus nailed down, we can be precise about the

names of a process: the sets fn(P) of free names of P and bn(P) of bound names of

P are given inductively by the following clauses.

fn(x〈~y〉) = {x, ~y} bn(x〈~y〉) = ∅
fn(x(~v).P) = {x} ∪ (fn(P) \ {~v}) bn(x(~v).P) = bn(P) ∪ {~v}
fn(!x(~v).P) = {x} ∪ (fn(P) \ {~v}) bn(!x(~v).P) = bn(P) ∪ {~v}

fn(P |Q) = fn(P) ∪ fn(Q) bn(P |Q) = bn(P) ∪ bn(Q)

fn((νx)P) = fn(P) \ {x} bn((νx)P) = bn(P) ∪ {x}
fn(0) = ∅ bn(0) = ∅

We sometimes write P 1 Q to indicate that fn(P) ∩ fn(Q) = ∅. “Free names” is yet

another term for names or interaction points.

What is the rationale behind this definition? For example, why is y ∈ fn(x(v).y〈v〉)?
The process x(v).y〈v〉 can neither send nor receive data on y (if x 6= y). All it can

do is input on x. Of course by receipt of, say, a at x, x(v).y〈v〉 evolves into y〈a〉,
but y〈a〉 is not x(v).y〈v〉! And what about y being free in x〈y〉? There are two

reasons for our definition of fn(·).

1. We want interaction points to be “stable under computation”: P�Q must

imply fn(Q) ⊆ fn(P). This means we see free names as a form of specification

of process behaviour: no matter what P does, it will never receive or send

data via names that are not in fn(P).

2. To keep the mathematics simple, we prefer fn(P) to be defined by induction

on the structure of P.

Without (2), it would be possible, for example, to have fn(x〈y〉) = {x}, but

fn((νx)(x〈y〉 |x(v).v)) = {y}, at the expense of a significantly more complicated

definition of fn(·). It is conceivable that different accounts of what counts as free

names are possible, but so far they have not been forthcoming.

20 CHAPTER 2. BASIC π-CALCULI

2.3 Semantics

The semantics of process calculi – their computational essence – can be presented

in various ways. We focus on reductions and labelled transitions. They are most ele-

mentary in the sense that they require the least amount of mathematical machinery,

and are currently the most popular tools for this purpose.

Reductions, often denoted →, are binary relations on processes. A reduction

P→Q should be understood as specifying an atomic computational step. We say

that P evolves into Q or that Q is a one step reduct of P if P→ Q. In process

calculi, such atomic steps would usually involve the exchange of a message between

two processes, but alternatives are possible: for calculi with functional features, β-

reduction could count as atomic [11] and imperative features could be modelled with

state change and conditional branches [92, 119]. In calculi of mobile computation,

agent migration between locations would feature in this role [25].

While reduction based accounts of computation are robust, meaning that it is

almost always straightforward to use reductions to formalise whatever notion of

computation one has in mind, they sometimes make it a bit cumbersome to define

the observables of processes. Observables are crucial as soon as one wants to answer

questions like “are P and Q the same” or “can I replace P by Q without changing

the semantics”? The observables of a process P describe what kind of interactions

P offers to the environment. This is where labelled transitions shine. While usually

more difficult to set up, once in place, they define the computations of a process by

the observations an observer can make of the process. A transition P
l→ Q can be read

as “the process P allows an observer to make the observation l and if the observation

takes place, P evolves into Q”. This view of observations assumes that observers

are themselves processes and posits an intimate connection between observations

and atomic computational steps. In practise one needs both: reductions to have a

firm and straightforward notion of semantics and labelled transitions for a theory

of observation and process equivalence to allow efficient reasoning. Unfortunately,

a mechanical way of going from reductions to labelled transitions has not been

forthcoming, except for restricted classes of processes [67, 107].

2.3.1 Dynamics

We specify the reduction semantics of the asynchronous π-calculus using structural

congruences. This approach was pioneered by Berry’s and Boudol’s Chemical Ab-

stract Machine [20] and first applied to π-calculi by Milner [75].

Structural Congruence

To allow convenient presentation, structural congruences reduce the rigidity of the

syntax of processes by equating processes that are computationally equivalent but

2.3. SEMANTICS 21

have distinct syntactic representations. The reduction relation must be closed under

the chosen structural congruence. An example of a distinction introduced by the

syntax would be that between P |Q and Q |P, which should behave exactly the same

in every conceivable semantics of processes.

The structural congruence ≡ is the smallest binary congruence over terms sat-

isfying the following axioms.

1. If P ≡α Q then P ≡ Q.

2. P |Q ≡ Q |P,

3. P | (Q |R) ≡ (P |Q) |R,

4. (νx)(νy)P ≡ (νy)(νx)P,

5. (νx)0 ≡ 0,

6. P | 0 ≡ P.

7. P | (νx)Q ≡ (νx)(P |Q) if x /∈ fn(P),

Axiom 1 formalises that we do not distinguish between processes that are α-convertible.

The next two axioms, 2 and 3, make parallel composition into an associative and

commutative operation. Restriction becomes a “commutative” operation by Axiom

4. Axioms 5 and 6 are the garbage collection axioms. They allow to remove some

simple processes that cannot do any computation. Some processes that cannot par-

ticipate in computations cannot be removed with ≡, however: deadlocked processes

that still contain input or output primitives, for example, are deemed too compli-

cated to warrant garbage collection by the structural congruence. Finally, Axiom 7

allows scope extension, an operation that distinguishes π-calculi from most of their

predecessors. Scope extension allows to enlarge the set of processes permitted to

use a given hidden name. In particular, it allows to dynamically create private chan-

nels between processes. The additional expressivity that distinguish π-calculi from

CCS and related models of concurrency resides mainly in this ability to dynamically

create private links. Scope extension will be described in more detail shortly.

Not all the axioms are equally important for the computational content of the

asynchronous π-calculus, for example the garbage collection axioms can be dropped.

Other variants are possible.

22 CHAPTER 2. BASIC π-CALCULI

Reductions

The reduction relation we shall be using is defined inductively on processes by the

following five rules.

(Com)
length(~v) = length(~y)

x(~v).P | x〈~y〉 → P{~y/~v}

(Rep)
length(~v) = length(~y)

!x(~v).P | x〈~y〉 → !x(~v).P | P{~y/~v}

(Par) P→P′

P |Q→P′ |Q

(Res) P→Q

(νx)P→ (νx)Q

(Cong) P ≡ P′ P′→Q′ Q′ ≡ Q

P→Q

The (Com) and (Rep) rules contain the computational essence of the asynchronous

π-calculus: a process waiting for an input on channel x can receive a tuple of names

from another process, running in parallel, that sends names along x, provided the

length of the tuple of names to be sent coincides with the length of the tuple of names

to be received. The only difference between the two is that in the (Rep) rule, the

receiver stays in the configuration unchanged. It spawns off a process to receive the

data from the sender while in (Com), the receiver evolves into its continuation with

a suitable substitution of the received values for their place-holders. The (Par) rule

and the (Res) rule allow to infer computations taking place under restrictions or in

processes running in parallel with other processes. Naturally, neither restriction nor

parallel composition limit computation taking place inside subprocesses. Finally,

the (Cong) rule connects the structural congruence and → by closing the latter

under ≡. This keeps the axioms for → simple.

Coming back to the question of asynchrony, if Q is an arbitrary process, then

(x〈y〉 | Q) |x(v).P→Q |P{y/v}

(and similarly for interaction with a repeated input). So the consumption of x〈y〉
has no effect on the rest of (x〈y〉 | Q). Hence the calculus is indeed asynchronous.

Interestingly, the rules do not allow to infer P |Q→P′ |Q′ from P→P′ and Q→Q′,
in other words, our semantics does not allow to have more than one interaction at

a time. This means that our model accounts only for concurrent computation but

not for (real) parallelism (also termed “true concurrency”). There are two reasons

for this restriction.

2.3. SEMANTICS 23

• Almost all phenomena, in particular all those we are trying to model in this

text, that make parallel computation interesting and difficult, already show

up in concurrent computation.

• Models of parallelism are much more involved than models of concurrency and

much less mathematically tractable.

Hence we do not loose anything with the restriction to concurrency but gain feasi-

bility. Nevertheless, models of parallelism are a fascinating topic and we refer the

interested reader to [36, 44, 45, 86, 118, 120] for further information.

Hiding and Scope Extension

We are now ready to explain hiding and scope extension in the asynchronous π-

calculus. It works in the same way in all other π-calculi. We have already sketched

that the operator (νx) restricts the outside from sending messages to P in (νx)P.

This is enforced by the definition of→. In (Com) and (Rep), the two communicating

processes do not feature a restriction guarding the inputting or outputting party.

With that as base, we can show by induction on the derivation of reduction steps,

that communication on a channel x never crosses a restriction (νx). The interesting

issue is what happens when a restricted name wants to be communicated outside

the scope of the restriction, as exemplified by the following processes, assuming

x 6= y.

(νy)(x〈y〉 | y(v).P) |x(v).(v〈a〉 |Q)

Here (νy)(x〈y〉 | y(v).P) has the channel y as a private resource, but would like

to communicate it to x(v).(v〈a〉 |Q), maybe to allow P and Q to interact without

interference from the outside. But (Com) cannot be applied because (νy) is in the

way. Can we find a way around this? Yes, we use scope extension:

(νy)(x〈y〉 | y(v).P) |x(v).(v〈a〉 |Q) ≡ (νy)(x〈y〉 | y(v).P |x(v).(v〈a〉 |Q))

assuming that y /∈ fn(x(v).(v〈a〉 |Q)). The scope of (νy) has been highlighted. Now

we can infer

x〈y〉 |x(v).(v〈a〉 |Q)→y〈a〉 |Q{y/v}
x〈y〉 |x(v).(v〈a〉 |Q) | y(v).P→ y〈a〉 |Q{y/v} | y(v).P

(νy)(x〈y〉 |x(v).(v〈a〉 |Q) | y(v).P)→ (νy)(y〈a〉 |Q{y/v} | y(v).P)

(νy)(x〈y〉 | y(v).P) |x(v).(v〈a〉 |Q)→ (νy)(y〈a〉 |Q{y/v} | y(v).P)

where the last step uses (Cong). Figure 2.4 give a graphic representation of scope

extension. What this shows is that in π-calculi, private links can be dynamically

generated between processes. Although we don’t understand expressiveness of pro-

gramming languages well enough to dare a formal statement, this ability is likely

24 CHAPTER 2. BASIC π-CALCULI

x

y

x〈y〉

y

y(v).P

x

x(v).Q ≡

x

y

x〈y〉

y

y(v).P

x

x(v).Q

Figure 2.4: The effect of extending the scope of y.

to be the key ingredient making π-calculi much more expressive than their prede-

cessors.

We often abbreviate (νx0)...(νxn−1)P to (ν~x)P or (νx0...xn−1)P and, if S =

{x0, ..., xn−1}, (νS)P as a shorthand for (νx0...xn−1)P, understanding that (ν∅)P ≡
(ν〈〉)P ≡ P.

Variable Convention and α-Convertibility

Having already used α-convertibility, we now briefly explain what it is. Two pro-

cesses are α-convertible if one can be obtained from the other by renaming of bound

names. For example

(νx)(x〈y〉 |x(v).v) and (νa)(a〈y〉 | a(w).w)

are α convertible. This identification corresponds to equating f(x) = x2 with

f(y) = y2 or
∑m

i=1 ai with
∑m

j=1 aj in classical mathematics. We shall not formally

define the α-equality relation and refer the reader to [54] for the straightforward but

tedious details. By ≡α we denote the smallest congruence equating all α-convertible

terms.

Throughout the rest of this thesis we shall make liberal – and often tacit – use

of the variable convention: in each process we consider, all occurring free names are

assumed to be distinct from all occurring bound names [11]. It is easy but tedious

and not very enlightening to adapt all proofs and definitions so that they would

work even in the absence of the variable convention.

2.3. SEMANTICS 25

Substitution

One of the key ingredients of computation in π-calculi is substitution of names for

names. Here is its definition. If ~x = 〈x0, . . . , xn−1〉 and ~y = 〈y0, . . . , yn−1〉 are two

possibly empty tuples of names such that i 6= j implies yi 6= yj then the substitution

{~x/~y} is a unary function on processes defined as follows.

x〈z0, . . . , zm−1〉{~x/~y} = x{~x/~y}〈z0{~x/~y}, . . . , zm−1{~x/~y}〉
(x(~v).P){~x/~y} = x{~x/~y}(~v).(P{~x/~y})

(!x(~v).P){~x/~y} = !x{~x/~y}(~v).(P{~x/~y})

(P |Q){~x/~y} = (P{~x/~y}) | (Q{~x/~y})

((νx)P){~x/~y} = (νx)(P{~x/~y})

0{~x/~y} = 0

Substitution on names is straightforward.

x{~x/~y} =

xi if x = yi

x if x 6= yi for all appropriate i

Please note that this definition of substitution already uses the variable convention

to ensure that in the clauses that deal with name binding operations (input prefix,

lazy replication and restriction) all the bound names are distinct from all names

occurring in {~x/~y}.

Contexts

For the development of the theory of π-calculi n-holed linear (affine) contexts are a

convenient tool. Mathematically, they are term algebras over a set of variables, the

n holes, such that each hole occurs exactly (at most) once. In process theory, it is

customary to present contexts by way of a BNF-grammar and we do this for linear,

one holed contexts.

C[·] ::= [·] || C[·] |P || P |C[·] || x(~y).C[·] || (νx)C[·] || !x(~v).C[·]

Plugging a process P into a context C[·] is denoted C[P] and is a straightforward

substitution operation, except that some of P’s free variables might get captured :

for example, if C[·] = P | [·] |R, then C[Q] = P|Q |R but if C[·] = x(yz).[·], then

C[x〈yyabz〉] = x(yz).x〈yyabz〉. The generalisation to n-holed contexts is also

straightforward: if C[·]1[·]2 = (νx)([·]2 | [·]1), then C[P]1[x〈yz〉]2 = (νx)(x〈yz〉 |P).

We will often be concerned with subclasses of context, such as reduction contexts

where holes are not allowed to be under a sequencing operator. An important sub-

class of n-holed linear (affine) contexts are n-holed linear (affine) reduction contexts

26 CHAPTER 2. BASIC π-CALCULI

which are reduction contexts containing exactly (at most) one hole. For example,

one-holed linear reduction contexts are generated by the following grammar.

C[·] ::= [·] || C[·] |P || P |C[·] || (νx)C[·]

From now on, whenever we speak of contexts without further qualifications, they

should be understood as one-holed linear contexts. Similarly, reduction contexts are

one-holed linear reduction contexts.

Sorts and Sortings

The rules given so far do not prevent the formation of processes like

P = x〈yz〉 |x(abc) |Q

which can be considered faulty because the process x(abc) expects three names

where a sender x〈yz〉 supplies only two. This phenomenon is called arity mismatch.

In our account of the semantics of the asynchronous π-calculus, P is simply stuck,

but it would also be possible to produce an explicit error instead [40].

In analogy with sequential languages [90], arity mismatch can be considered

a consequence of ill-typing and type systems can be used to prevent it. The π-

calculus community refers to processes that can exhibit arity mismatch as ill-sorted

and typing systems that prevent ill-sorting as sortings or sorts. We concur with

this naming tradition. Sortings are one of the simplest instances of typing systems

for interacting processes and the only ones considered in this text.

Definition 1 [77] Given a set Σ of sorts, a sorting is a consists of an assignment

of sorts to names and a partial function

sort : Σ ⇀ Σ∗.

We write x : σ if the sort σ ∈ Σ is assigned to the name x. If yi : σi for each yi in

~y we write ~y : ~σ. A process respects a sorting sort if for each of its subterms x(~y).Q

or x〈~y〉, whenever x : σ then ~y : sort(x). A process is sortable if it respects at least

one sorting.

As an example of sorting, consider the sorts A,B and C and the sorting

A 7→ (B,C) B 7→ (A) C 7→ ().

If we assign x : A, y : B and z : C, then it sorts the process

x(yz).(y〈x〉 | z〈〉) but not y(zx).(z〈y〉 |x〈〉).

The relevant facts about sortings are summarised in the theorem below. Its

proofs are scattered around the literature, cf. [116]

2.3. SEMANTICS 27

Theorem 1 1. Let sort be a sorting. If P→Q or P ≡ Q and P respects sort then

Q respects sort.

2. Not every process is sortable.

3. Some processes are sortable by more than one sorting.

4. The set of all sortable processes is not recursive.

5. Sortable processes do not exhibit arity-mismatch.

Although we cannot mechanically decide whether a process is sortable, this is not a

problem in practise as processes written by humans tend to adhere to straightfor-

ward sorting disciplines. In addition, sorting inference algorithms [40, 115] work well

in many situations. Only with the introduction of second order types and generic

interactions [16] sortings become somewhat challenging.

For the rest of this text, except where explicitly noted otherwise, we always

assume all processes under consideration to be sortable. This allows to omit ar-

ity restrictions in communication rules. We will never present sortings explicitly

because they are straightforward in all cases to be considered.

In addition, all equivalences and congruences on processes are assumed to be

well-sorted. That means, they relate only well-sorted processes. This entails a

weakening of the notion of congruence: for example, for R to be a binary, well-

sorted, congruence, we require implications like (P1,P2) ∈ R ⇒ (P1 |Q,P2 |Q) ∈ R
to hold only if P1 |Q and P2 |Q are well-sorted.

Well-sortedness is a sufficient, but not a necessary requirement for the absence

of arity-mismatches as the ill-sorted process

(νx)(x〈~a〉 |x(v).(x〈bc〉 |x(wu).v〈wu〉))

shows that reuses x, but in ways that prevent arity-mismatches.

2.3.2 Equivalences

We defined ≡ to weaken the rigidity of our syntax, because we did not want to

distinguish certain processes, despite syntactic differences, P |Q and Q |P being an

example. But does ≡ equate enough processes? One can show that 0 6≡ (νx)x.a,

yet both processes are utterly inactive and cannot possibly influence any other

computation. By this we mean, it is inconceivable that there could be a context

C[·] where C[0] behaves differently from C[(νx)x.a]. So ≡ is still too fine a relation

and we must look for something more appropriate.

This raises two related issues.

28 CHAPTER 2. BASIC π-CALCULI

1. Given a binary relation ≈ on processes, how do we know it is right? In other

words, what are the criteria that allow to judge that ≈ equates exactly those

processes that cannot be distinguished computationally?

2. How do we define relations that could equate exactly the right processes, or,

at least be a good approximation?

Unfortunately, neither question has been resolved conclusively so far. All we can

do here is survey the state-of-the-art. Question (1) is philosophical rather than

mathematical, because it relates formalisms with intuition. Hence certainty is un-

likely to be forthcoming. Nevertheless, process theorists seem to have converged

towards something like the following criterion: a candidate relation ≈ must at least

satisfy P ≈ Q if and only if for all contexts C[·]: C[P] ≈ C[Q]. This formalises the

requirement that two processes are equal exactly when no observers (considered as

processes in the same calculus) can detect any difference. Detection of differences

can only happen by interaction. Because this requirement only allows intrinsic ob-

servation of processes, that is observers are other processes in the same calculus

and observations are computations, this approach to equivalences can be consid-

ered atheistic. It lacks omniscient outside observers who can make observations not

available to the populace of the (computational) universe.

Anyway, this constraint is insufficient, because it is met by too many inappropri-

ate relations, in particular by the identity and the universal relation on processes.

Hence we need additional requirements. Here is a list of some proposals that a

candidate relation ≈ could be asked to meet.

1. Consistency of ≈. That means P 6≈ Q for at least some processes P and Q.

Without consistency, the resulting equivalence would be trivial, but we know

from bitter programming experience that concurrent computation is anything

but.

2. Since process theorists are generally lazy – well, at least this one is – it would

be nice if ≈ was maximum or at least maximal. Extremality simplifies rea-

soning.

3. If ≈ was a congruence, then that, too, would make reasoning about the cal-

culus more modular and feasible.

4. We have some strong intuitions that some processes should be equated by

≈, P |Q and Q |P being our standard example. Hence ≡ ⊆ ≈ could be an-

other requirement. In addition we’d probably also want to equate all pro-

cesses P and Q that can never interact with other processes, such as 0 or

(νxy)(x | y |x.y.x.a). Such terms are called insensitive by [61] and will be

important later.

2.3. SEMANTICS 29

5. If P≈Q and P�P′ then there should be a process Q′ with Q�Q′ and P′≈Q′.

Otherwise ≈ would equate processes that could be said to compute differently.

The technical term for this requirement is reduction closure.

6. A key parameter in process calculi is the notion of observable. Abstractly,

observables are just unary predicates on processes, often called barbs. Not all

unary predicates are computationally meaningful. We’d like a barb to be in

correspondence with computational effects. That is, a process should allow

a given observation exactly when some other process can make its behaviour

contingent upon whether it can make that observation (by interaction) or not.

For ≈ this means that ≈ must preserve observations: if P≈Q and P allows a

certain observation to be made, then Q must also admit this observation.

Do we have to impose all these requirements at the same time? It is not clear how to

answer this question in general, but the development below of the main equivalences

for the asynchronous π-calculus indicates redundancies in the requirements (1) - (6).

Next we introduce the most popular equivalences for π-calculi. They can be

roughly classified according to their answers to the following questions.

• How is congruency achieved?

• What kind of barbs do they preserve?

• What kind of equations are enforced by definition? This question relates to

the definition of equivalences, which are often of the form “... R is the largest

binary relation on processes such that R′ ⊆ R and ...”. It is R′ that is relevant

here. For example, several equivalences are required to contain ≡.

• How are the continuations of related processes related? This last point may

require some explanation. Assume P ≈ Q and P (where ≈ is the equation

under discussion) can do some computation to become P′. Or an observer

can observe some of P’s behaviour, in the course of which P evolves into P′.

All equivalences we consider here, require Q to somehow match what P can

do. This matching yields a process Q′. Do we always want P′ ≈ Q′ or does it

sometimes make sense to be less restrictive?

We begin the journey through the exciting world of π-calculus equivalences with

some very general definitions which will prove useful throughout this thesis, but in

various restricted forms.

Definition 2 A congruence is an equivalence relation R on processes such that

≡ ⊆ R and whenever P R Q then for all contexts C[·]: C[P] R C[Q].

30 CHAPTER 2. BASIC π-CALCULI

The inclusion of ≡ into congruences is a mild deviation from the its conventional

algebraic definition. It prevents congruences from being too sensitive to syntactic

details.

Definition 3 Given a set B of barbs, a symmetric binary relation R on processes

is a sound B-reduction theory if R is a congruence and (P,Q) ∈ R implies

• for every barb b ∈ B: if b(P) then there is a reduction sequence Q�Q′ such

that b(Q′),

• whenever P�P′ then there is a reduction sequence Q�Q′ such that (P′,Q′) ∈
R.

The union of all sound B-reduction theories is easily seen to be a sound B-reduction

theory itself and denoted
rc≈B . It is called B-reduction congruence.

One peculiarity of the previous definition is that computation sequences P→· · ·→
︸ ︷︷ ︸

m

P′

are matched by Q→· · ·→
︸ ︷︷ ︸

n

Q′ without constraints on m and n. One does not have to

be so liberal.

Definition 4 With B as in Definition 3, a symmetric binary relation R on pro-

cesses is a strong sound B-reduction theory if R is a congruence and (P,Q) ∈ R
implies

• for every barb b ∈ B: if b(P) then b(Q),

• whenever P→P′ then there is a reduction step Q→Q′ such that (P′,Q′) ∈ R.

The union of all strong sound B-reduction theories is easily seen to be a strong

sound B-reduction theory itself and denoted
rc∼B . It is called strong B-reduction

congruence.

How does (strong) B-congruence fare with respect to the above crude taxonomy

of equivalences? Preservation of B-barbs is by definition and parametric on B.

Continuations of related processes are only related for reduction sequences, but not

for barbs. The only equations enforced by the definition are those given by ≡. As

to congruency, the definition of
rc≈B and

rc∼B is coinductive and achieves congruency

by requiring all suitable pre-fixpoints (the (strong) sound B-reduction theories)

to be congruences. One can argue that it is overkill to require congruency of all

approximants to the largest equivalence, since we only use the maximum fixpoint for

reasoning. It would be sufficient if that was a congruence. Milner’s and Sangiorgi’s

classical definition of B-barbed congruence [79] is an example of such a more liberal

construction.

2.3. SEMANTICS 31

Definition 5 Given a set B of barbs, a symmetric binary relation R on processes

is a B-barbed bisimulation if (P,Q) ∈ R implies

• for every barb b ∈ B: if b(P) then there is a reduction sequence Q�Q′ such

that b(Q′),

• whenever P�P′ then there is a reduction sequence Q�Q′ such that (P′,Q′) ∈
R.

The union of all B-barbed bisimulations is a B-barbed bisimulations and denoted
be≈B. It is called B-barbed equivalence.

B-barbed congruence, denoted
bc≈B, is the largest congruence inside

be≈B :

bc≈B = {(P,Q) | ∀C[·] : C[P]
be≈B C[Q]}.

Strong B-barbed bisimulations, strong B-barbed bisimilarity, strong B-barbed con-

gruence,
be∼B and

bc∼B are obtained analogously.

The only difference between (strong) B-barbed congruence and strong B-reduction

congruence is the way congruency is achieved. For some important choices of barbs,
rc≈B and

bc≈B coincide, see Theorem 2.

Asynchronous Barbs

But what should barbs be? In π-calculi, an observer of a process P is another process

Q, executing in parallel with P. It is not clear at all exactly what Q can or should

observe: Q’s observational power depends on just what kind of process it is allowed

to be. Let’s look at a simple scenario first: observers are arbitrary processes in the

asynchronous π-calculus. Then an observer can receive messages from P and make

its behaviour contingent upon just what it has received. Hence such observers can

observe outputs of the process under observation; in particular, they can determine

what channels it outputs on. On the other hand, as the receipt of a message cannot

directly influence its sender in asynchronous calculi, asynchronous observers cannot

observe inputs. The following definition is one way of characterising the essence of

asynchronous observation as a unary predicate P↓x.

Definition 6 The asynchronous barb P ↓x is defined inductively by the following

rules.

x〈~y〉↓x
P↓x

P |Q↓x
P↓x x 6= y

(νy)P↓x
Weak asynchronous barbs P⇓x are derived from asynchronous barbs as follows: P⇓x
if and only if there is a reduction sequence P�Q such that Q↓x. P↓x is to be read

as: the process P can make an output on the channel x.

32 CHAPTER 2. BASIC π-CALCULI

The rule involving the parallel combinator has a symmetric variant that has been

omitted.

Lemma 1 If P ≡ Q, then P↓x implies Q↓x and P⇓x implies Q⇓x.

B-reduction congruence induced by taking B to be all asynchronous barbs coincides

with that generated by weak asynchronous barbs. It is denoted
rc≈ and called re-

duction congruence. Similarly, the B-barbed congruence induced by asynchronous

barbs coincides with that induced by weak asynchronous barbs and is denoted
bc≈.

It is called barbed congruence. For quite a while it was an open question if reduction

congruence and barbed congruence are the same relation, but in the asynchronous

π-calculus, the matter is now settled in the most satisfactory manner.

Theorem 2 (Fournet and Gonthier [38])
rc≈ =

bc≈

Unfortunately, in some other π-calculi the two relations differ [104]. It is not clear

what this means. The present author is inclined towards the opinion that this hints

at the superiority of the asynchronous π-calculus. Sangiorgi and Walker argue [104]

that reduction congruence is unnatural.

But why only take into account x in outputs x〈~y〉? We could also consider the

names being transmitted:

x〈~y〉↓x〈~y〉
(we omit the other cases as they are sufficiently similar to the definition of↓x, except

that scope extensions must be taken into account, cf. [61]). The resulting congru-

ences are less well understood and play no role for what we do in the subsequent

chapters.

Synchronous Barbs

Just observing outputs is natural if observers are processes in the asynchronous π-

calculus, but what if we had a synchronous observer? In Section 2.4.2 will introduce

synchronous π-calculi where processes are affected by receipt of their messages, but

it is easy to see how to augment the rules generating asynchronous barbs to also

detect inputs.

x(~v).P↓sx !x(~v).P↓sx x〈~y〉↓sx
P↓sx

P |Q↓sx
P↓sx x 6= y

(νy)P↓sx

Lemma 2 If P ≡ Q, then P↓sx implies Q↓sx (P↓x implies Q↓x).

The next theorem shows that these synchronous barbs cannot be recovered from

asynchronous barbs by closure under contexts.

2.3. SEMANTICS 33

Theorem 3 If
rc≈s is the reduction congruence induced by synchronous barbs then

rc≈s (
rc≈.

[61] discusses the differences between these relations in more detail.

Other Barbs and Congruences Without Barbs

Of course ↓x and ↓sx are far from being the only notions of observations we may

consider. Fournet and Gonthier consider other choices and discuss how the resulting

equivalences relate in the asynchronous π-calculus [38] and in Join calculi [37].

In Chapter 4 we will equip observers with clocks that can tell how much time it

takes a process to do computations. This has dramatic influences on the resulting

congruence.

This proliferation of barbs calls for a general theory that allows to decide on the

right choice of observation predicate, or even suggest barbs for calculi where it is

not clear what they might look like (such as Ambient calculi [25]) In [61], Honda

and Yoshida propose an important step towards this goal. Their approach is based

on two main ideas.

• Instead of requiring barb preservation with all the associated problems of

finding the right notion of barb, they suggest to identify a basic set of equations

that any reasonable equivalence must contain.

• They introduce the concept of insensitive processes and propose to require

their equality by definition. As described in (4), processes are insensitive if

they cannot possible communicate with other processes. It turns out that

the notion of insensitivity is easily defined from the syntax and reduction

semantics of processes, without any additional notion of observation.

[61] defines a relation, also called reduction congruence and denoted
rc≈, as the largest

consistent congruence that is reduction-closed and identifies all insensitive terms.

Identification of insensitive terms is vital to ensure uniqueness of definition. In the

asynchronous π-calculus, this definition of reduction congruence coincides with our

Definition 3. This sets the pattern for classifying barbs: only if
rc≈B coincides with

rc≈, B is an appropriate notion of observation.

Notational Convention

We will often have to construct equivalences R. To simplify this process, we assume

R to be the least symmetric relation on processes containing a set of pairs. This

set of pairs will usually be specified as follows.

P1 R Q1 whenever φ(P1,Q1)
...

Pn R Qn whenever φ(Pn,Qn)

34 CHAPTER 2. BASIC π-CALCULI

Here the φi are binary predicates on processes and only those pair that meet the

appropriate predicate should be in in the set of processes that induces R. We omit

φi if it is trivial. We may compress the definition even more by writing things like

P1

...

Pm

R

Q1

...

Qn

whenever φ(~P, ~Q)

which stands for

P1 R Q1 whenever φ(P1,Q1)
...

Pm R Q1 whenever φ(Pm,Q1)

P1 R Q2 whenever φ(P1,Q2)
...

Pm R Q2 whenever φ(Pm,Q2)
...

P1 R Qn whenever φ(P1,Qn)
...

Pm R Qn whenever φ(Pm,Qn).

2.3.3 Transitional Semantics

In practise, the equivalences considered so far are difficult to use for reasoning. The

problem lies with quantification over contexts for ensuring congruency. A closer

look at why this quantification is required suggests that it is due to the way barbs

are matched: for example, if P↓x, we are given information about P but not about

the process that P evolves into when the observation takes place. This has the

effect that the definitions 3 and 4 above cannot directly place constraints on how

the continuations of observed processes are to be matched. It is only indirectly,

through closure under contexts, that these continuations are related.

Labelled transitions are an alternative to reductions that allow to directly con-

strain how continuations of observed processes are related. As mentioned in the

introduction to this section, labelled transitions are of the form P
l→ Q and can be

read as “the process P allows an observer to make the observation l and while the

observation takes place, P evolves into Q”. The observation l can be understood as

a minimal offering (computation, observation) an environment has to make for P to

be able to evolve into Q. Labelled transitions allow alternative characterisations of

important equivalences such as reduction congruence (at least in the asynchronous

π-calculus) without requiring closure under arbitrary context. Consequently, they

often simplify reasoning. Hence labelled transitions can be understood as a tool to

obtain interesting results about equivalences defined using reductions.

2.3. SEMANTICS 35

Equivalences defined using labelled transitions work by matching transitions

P
l→ P′ with sequences Q→ · · · → l→ → · · · → Q′ and requiring P′ and Q′ to be

equated. As we do not want labelled transitions to be mixed with reductions,

we need a distinguished label τ to denote internal interaction that is invisible to

observers: if P
τ→ Q then P takes a step in its computation to become Q. Such

transitions correspond to reductions in the sense that we certainly want P→Q iff

P ≡ τ→ ≡ Q to hold. It can be shown that for the calculi we are interested in, this

is indeed the case.

To define labelled equivalences as sketched in the previous paragraph, we must

be able to formally “ignore” τ transitions. The next definition provides a tool to

do this.

Definition 7 Let A be a set not containing τ . The function ŝ maps strings s over

{τ} ∪ A to strings over A, removing all occurrences of τ while preserving all other

letters and their ordering.

ŝ =

〈〉 s = 〈〉
t̂ s = τ.t

a.t̂ s = a.t, a 6= τ

We have now assembled the tools to define bisimilarity, the canonical labelled equiv-

alence. Here and subsequently we omit to explicitly mention the labelled transition

system relative to which bisimilarity is defined, hoping that disambiguation is always

possible from the context.

Definition 8 A symmetric binary relation R on processes is a bisimulation if

(P,Q) ∈ R and P
s
� P′ imply the existence of a labelled transition sequence Q

t
� Q′

such that ŝ = t̂ and (P′,Q′) ∈ R. The union of all bisimulations is itself a bisimu-

lation and called bisimilarity. It is often denoted ≈.

As in the previous section, we can require more stringent matching of computational

steps, which means that τ is not given a special status as an invisible action that

can be ignored by observers.

Definition 9 A symmetric binary relation R on processes is a strong bisimulation

if (P,Q) ∈ R and P
a→ P′ imply the existence of a labelled transition Q

a→ Q′ such

that (P′,Q′) ∈ R. The union of all bisimulations is itself a strong bisimulation and

called strong bisimilarity. It is often denoted ∼.

The following theorem characterises bisimilarity and simplifies checking processes

for being bisimilar.

Theorem 4 P ≈ Q iff

36 CHAPTER 2. BASIC π-CALCULI

• whenever P
τ→ P′ then there is Q′ such that Q

τ→ . . .
τ→ Q′ and P′ ≈ Q′,

• whenever P
l→ P′ for l 6= τ then there is Q′ such that Q

τ→ . . .
τ→

︸ ︷︷ ︸

≥0

l→ τ→ . . .
τ→

︸ ︷︷ ︸

≥0

Q′

and P′ ≈ Q′,

and vice versa.

Given a reduction based equivalence, say
r≈, the problem is to define labelled transi-

tions such that not only→ and
τ→ coincide up to ≡, but also to ensure that ≈ =

r≈,

or at least ≈ ⊆ r≈. It turns out that achieving ≈ =
r≈ is difficult in the asynchronous

π-calculus, but ≈ ⊆ r≈ is quite doable. In practise, ≈ ⊆ r≈ is usually sufficient for

reasoning, because ≈ misses coincidence with
r≈ only just and the processes that

are equated by
r≈ but not by ≈ are often not the ones we are interested in equating.

Trace Equivalences

Bisimulations of various sorts are usually the equivalences of choice for composi-

tional reasoning about concurrent systems but they are not without flaws. Firstly,

they are often too discriminating when considering systems as a whole rather than

as components to be composed with other components. For example, most bisim-

ulations do not equate P ⊕ (Q ⊕ R) with (P ⊕ Q) ⊕ R because of their differing

branching structure. This seems to be the price we have to pay for congruency and

reduction closure, which are indispensable for compositional reasoning. Secondly,

because they are defined coinductively, it is often quite tricky to show directly that

two processes are not bisimilar. Traces [52] help overcome both problems at once.

Since they are not sensitive to branching structure, they equate many more pro-

cesses than bisimulations, in particular the above P⊕ (Q⊕R) and (P⊕Q)⊕R. It is

also mostly straightforward to verify that two processes are not trace-equivalent. It

is this latter property that we will use in this text because bisimilarity is a proper

subrelation of trace-equivalence: so for showing two processes not to be bisimilar it

is enough to establish that they are not trace-equivalent.

Definition 10 The sets of traces and strong traces of a process P, respectively

denoted tr(P) and str(P), have this definition:

str(P) = {σ | ∃P1...Pn.P
l1→ P1

l2→ · · · ln→ Pn, σ = 〈l1...ln〉},
tr(P) = {σ̂ | σ ∈ str(P)}.

Two processes P and Q are trace equivalent, denoted P≈tr Q if tr(P) = tr(Q). They

are strongly trace equivalent if str(P) = str(Q). In the latter case we write P∼str Q.

As you can see, the only difference between the definition of traces and bisimula-

tions is that traces do not require relating the continuations of observations while

2.3. SEMANTICS 37

bisimulations do. The next theorem summarises the relationship between traces

and reduction congruence. It is stated for the asynchronous π-calculus, but holds

of any reasonable process calculus.

Theorem 5 ([54]) In the asynchronous π-calculus: if P
rc≈ Q then tr(P) = tr(Q).

The reverse implication does not hold.

We will now present three different labelled transition systems for the asyn-

chronous π-calculus. The first two approximate
rc≈ and

rc≈s while the third rephrases

the second, but is more useful for practical reasoning.

Asynchronous Transitions

A labelled transition system comprises a set S of states, a set Σ of labels or actions

and a family (
l→)l∈Σ of transitions which are binary relations on S.

The set of labels for the asynchronous π-calculus is given by the following gram-

mar.

l ::= τ || x〈(ν~z)~y〉 || x(~v)

Here x ranges over names and ~x, ~y, ~z and ~v range over finite tuples of names. We

abbreviate x〈(ν())~y〉 to x〈~y〉, x〈()〉 to x and x(()) to x. We will often have to

speak about the free and bound names of a label l. The following equations provide

suitable definitions.

fn(τ) = ∅ bn(τ) = ∅
fn(x〈(ν~z)~y〉) = {x} ∪ ({~y} \ {~z}) bn(x〈(ν~z)~y〉) = {~z}
fn(x(~v)) = {x} bn(x(~v)) = {~v}

The rules for asynchronous transitions are given in Figure 2.5. Rules involving the

parallel combinator have a symmetric version which we omit here and subsequently.

Before explaining the rules in detail, we state two essential facts connecting labelled

transitions with their reduction based counterpart.

Theorem 6 [75] Transition and reduction semantics coincide up to structural con-

gruency, that is: → = (
τ→ ◦ ≡).

This theorem shows that τ does indeed capture computation in the asynchronous

π-calculus. The next one says that ≈ soundly approximates reduction congruence.

Theorem 7 [75] Bisimilarity approximates reduction congruence: ≈ ⊆ rc≈.

The (Out) rule says that an asynchronous observer of x〈~y〉, i.e. another process

in the asynchronous π-calculus, can observe the emission of x〈~y〉, by executing the

corresponding input that consumes the message. As a consequence of this interac-

tion, the observed process would evolve into 0. The (Ina) is symmetric: on observer

38 CHAPTER 2. BASIC π-CALCULI

(Out)
x〈~y〉 x〈~y〉→a0

(Ina)
0
x(~y)→ax〈~y〉

(Par)
P

l→aP
′ bn(l) ∩ fn(Q) = ∅
P | Q

l→aP
′ | Q

(Com)
x〈~y〉 | x(~v).Q

τ→aQ{~y/~v}
(Rep)

x〈~y〉 | !x(~v).Q
τ→aQ{~y/~v} | !x(~v).Q

(Res)
P

l→aQ x /∈ fn(l) ∪ bn(l)

(νx)P
l→a(νx)Q

(Open)
P

x〈(ν~y)~z〉→aQ v 6= x, v ∈ {~z} \ {~y}
(νv)P

x〈(ν~y,v)~z〉→aQ

(Cong) P ≡ P′ P′ l→aQ
′ Q′ ≡ Q

P
l→aQ

Figure 2.5: The asynchronous transitions for the asynchronous π-calculus.

can always send an output to an arbitrary process even if there is no receiving input,

because, as the observer is asynchronous, it cannot detect the consumption of its

output by the process under observation. In order to cater for the possibility that

the sent message is not (immediately) consumed, we simply add it to the observed

process for potential latter consumption (it is enough to have 0 in this rule because

we can run arbitrary processes in parallel with 0 without changing observations by

the (Par) rule below). The transition, P
x(~y)→ Q should be understood as saying

“an observer of P can send a message x〈~y〉 to P. If this happens, P evolves into Q”.

Despite this innocent interpretation, (INa) is controversial. The problem is that

process theorists raised in the CCS tradition interpret transitions P
l→ Q as “P can

do l while evolving into Q”. Under this interpretation, (Ina) posits 0 to be able to

do an input and evolve into an output. This would be plainly nonsense, as 0 is the

prototypical inactive process. It is possible to produce a labelled semantics of the

asynchronous π-calculus that allows to approximate
rc≈ by bisimilarity without vio-

lating this conventional interpretation of labelled transitions [7]. The price to pay is

that the definition of bisimulation must be modified considerably in ways that are

inappropriate for other semantic scenarios, for example for synchronous observers.

The modifications essentially mimic the ability to add arbitrary messages to the

process under observation. The (Par) rule says that observations are not affected

by parallel composition with other processes. (Com) and (Rep) allow to infer that

2.3. SEMANTICS 39

the observed process computes internally, but they do not leak specifics about this

computation.

So far we have only talked about outputs of the form x〈~y〉, so what is the point

of having the more general x〈(ν~y)~z〉? And how is observation of scope extension

accounted for? Consider (νy)(x〈yz〉 |P): if x 6= y, then an observer of the form

x(vw).Q can detect the bound output on x by enacting the dual input. This is

reflected in the label x〈(ν~y)~z〉 which lists all the names ~y that can only be received

by scope extension. So clearly x /∈ {~y}. In addition one can easily show {~y} ⊆ ~z.

But what is the continuation of the process under observation? Clearly

(νy)(x〈yz〉 |P) |x(vw).Q→ (νy)(P |Q{yz/vw})

is a different computation from

x〈yz〉 |P |x(vw).Q→P |Q{yz/vw}

because P |Q{yz/vw} can be interfered with from the outside by sending messages

on y. This is not possible for (νy)(P |Q{yz/vw}). (Res) formalises that observa-

tions are not affected by hiding of a name x, as long as x does not occur in the

observation, but if a bound output is observed the restriction is taken off from the

observed process. Finally, (Cong) closes observations under the structural congru-

ence.

By ≈a we denote the bisimilarity induced by asynchronous transitions. The

next result shows that ≈a is semantically sound, but does not capture
rc≈.

Theorem 8 ([54]) ≈a ⊂
rc≈.

[61] discusses this matter further and argues that the gap between ≈a and
rc≈ is

rather small.

Synchronous Transitions (1)

The labelled transitions presented in the previous section essentially formalise asyn-

chronous observers. It is also possible to give labelled semantics corresponding to

synchronous observers, Figure 2.6 gives one way of doing this. The only differ-

ence from Figure 2.5 is in the rule for input. In its synchronous form it essentially

says that an observer of x(~y).P can observe the execution of this input, by doing a

matching output on x. This observation is of course only possible if doing an out-

put has an effect on the observer, in other words, if the observer is a synchronous

process. It is not possible in the asynchronous π-calculus. In §2.4.2 we modify the

syntax slightly to obtain the synchronous π-calculus. This boils down to allowing

non-trivial output continuations.

40 CHAPTER 2. BASIC π-CALCULI

(Out)
x〈~y〉 x〈~y〉→ 0

(In)
x(~v).P

x(~z)→ P{~z/~v}

(Par)
P

l→ P′ bn(l) ∩ fn(Q) = ∅
P | Q

l→ P′ | Q

(Com)
x〈~y〉 | x(~v).Q

τ→ Q{~y/~v}
(Rep)

x〈~y〉 | !x(~v).Q
τ→ Q{~y/~v} | !x(~v).Q

(Res)
P

l→ Q x /∈ fn(l) ∪ bn(l)

(νx)P
l→ (νx)Q

(Open)
P

x〈(ν~y)~z〉→ Q v 6= x, v ∈ {~z} \ {~y}
(νv)P

x〈(ν~y,v)~z〉→ Q

(Cong) P ≡ P′ P′ l→ Q′ Q′ ≡ Q

P
l→ Q

Figure 2.6: The synchronous transitions for the asynchronous π-calculus.

The actual computations of the asynchronous π-calculus are not affected by

having synchronous rather than asynchronous observations, as the next theorem

shows.

Theorem 9 [75] Transition and reduction semantics coincide, that is: → =
τ→ ≡.

The following theorem shows that just as asynchronous observations allow sound

approximation of the reduction congruence, so do synchronous observers. But as an

approximation of reduction congruence, ≈s, the bisimilarity induced by synchronous

transitions, is worse than ≈a.

Theorem 10 ([54]) ≈s ⊂ ≈a ⊂
rc≈.

Nevertheless, for many purposes, ≈s is the most convenient choice for reasoning

about
rc≈.

Synchronous Transitions (2)

The two labelled semantics presented so far, while appealing in their simplicity and

uniformity, have one basic shortcoming in that they require explicit closure under

≡. This is essential to allow inference of interaction between processes that are more

complicated than those in the (Com) rule. Figure 2.7 presents labelled semantics

for synchronous observers that overcomes this problem. This type of semantics is

2.3. SEMANTICS 41

(Out)
x〈~y〉 x〈~y〉→ 0

(In)
x(~v).P

x(~z)→ P{~z/~v}

(Par)
P

l→ P′ bn(l) ∩ fn(Q) = ∅
P | Q

l→ P′ | Q

(Com)
P

x〈(ν~y)~z〉→ P′ Q
x(~z)→ Q′ {~y} ∩ fn(Q) = ∅

x〈~y〉 | x(~v).Q
τ→ Q{~y/~v}

(Rep)
P

x〈(ν~y)~z〉→ P′ Q
x(~z)→ Q′ {~y} ∩ fn(Q) = ∅

x〈~y〉 | !x(~v).Q
τ→ Q{~y/~v} | !x(~v).Q

(Res)
P

l→ Q x /∈ fn(l) ∪ bn(l)

(νx)P
l→ (νx)Q

(Open)
P

x〈(ν~y)~z〉→ Q v 6= x, v ∈ {~z} \ {~y}
(νv)P

x〈(ν~y,v)~z〉→ Q

(Alpha) P′ l→ Q P ≡α P′

P
l→ Q

Figure 2.7: The synchronous transitions for the asynchronous π-calculus presented

without a need for closure under ≡.

usually the most convenient for practical reasoning. Semantics for asynchronous

observers that do not require explicit closure under ≡ are not currently known.

The key novelty of the standard synchronous semantics is that (Com) is de-

duced from dual observations rather than directly from the syntax. If we can ob-

serve P
x〈(ν~y)~z〉→ P′ but also a dual output Q

x(~z)→ Q′, then an interaction P |Q τ→
(ν~y)(P′ |Q′) can be inferred. This does not require the interacting input and output

to be in syntactic proximity. Hence we do not need ≡ to rearrange syntax.

The two synchronous semantics for the asynchronous π-calculus, presented in

Figures 2.6 and 2.7 coincide.

Theorem 11 Transitions
l→ derivable in Figure 2.6 coincide (up to ≡) with those

derivable in Figure 2.7. The two induced notions of bisimulation and hence bisimi-

larity also coincide.

2.3.4 Examples

Let’s consider some examples of processes and their behaviour. If P and Q are two

processes,

P ⊕ Q = (νx)(x |x.P |x.Q)

42 CHAPTER 2. BASIC π-CALCULI

(where x is a fresh name) is called the internal choice between P and Q. It selects

P or Q, but the outside cannot influence which. Selection in this context mean that

P ⊕ Q has exactly two immediate reductions (up to ≡):

P ⊕ Q→P | (νx)x.Q or P ⊕ Q→Q | (νx)x.P.

Every reasonable equivalence (in particular, all we have presented in this chapter,

apart from the structural congruence ≡ which is a tool to conveniently define reduc-

tion semantics, not a proper process equivalence) equates P with P | (νx)x.Q and Q

with Q | (νx)x.P.

Although most π-calculi do not have basic data types such as booleans or natural

numbers, it it easy to define them as interacting agents in ways that resemble

how one solves the same problem for λ-calculi [11]. As an example, consider the

implementation of booleans.

truex = x(yz).y falsex = x(yz).z

Both processes wait to receive two names and then choose to send an empty message

along one of them. This choice represents a truth value and is intended to be

consumed by a conditional:

if(B,P,Q) = (νxyz)(y.P | z.Q |x〈yz〉) |B.

One peculiar feature of this implementation of booleans is that it is destructive in the

sense that once a truth value has been communicated, the truth values disappear as

processes. It is easy to rectify this by setting truex =!x(yz).y and similarly for falsex.

For practical implementations one would not implement basic values as interacting

processes, because it would be cumbersome, but rather extend the calculus with

primitives for basic data types, again, much like in λ-calculi.

Let x and y be two names. A forwarder relays to y a message destined for an

interaction point x.

fwxy =!x(~v).y〈~v〉

Then

fwxy |x〈abc〉→ fwxy | y〈abc〉

A particularly interesting forwarder is the identity receptor

idx = fwxx

because it separates two types of process equivalences: those that equate idx with

0 and those that don’t. The former are sometimes considered synchronous while

the latter are asynchronous. The reason for this terminology is that idx can do an

input while 0 cannot, but that input can only be detected by synchronous observers.

2.4. SYNTACTIC VARIANTS 43

Honda bases an extensive study of bisimilarities for asynchronous π-calculi on this

peculiarity of identity receptors [54].

An equator is made up of two forwarders

eqxy = fwxy | fwyx.

It forwards messages from x to y and vice versa. It can easily lead to non-

termination.

eqxy |x〈abc〉→ eqxy | y〈abc〉→ eqxy |x〈abc〉→ eqxy | y〈abc〉→ . . .

A process that cannot do anything apart from infinite looping is

Ω = (νx)(idx |x).

2.4 Syntactic Variants

The asynchronous π-calculus is probably the simplest example of a π-calculus but

it is hardly canonical. Many syntactic and semantic variants are possible and this

lack of canonicity is sometimes taken as an indication that our understanding of

name passing is still incomplete [42]. In this section we present some important

variants of π-calculi and sketch how they relate. The variants have been chosen

because of their historical importance, for didactic purposes or because they will be

used in later chapters. An interesting question is if the extensions we propose later

to model DS will coexist peacefully with these variants, in the same way they do

with the asynchronous π-calculus.

With the proliferation of π-calculus variants the problem of their relative ex-

pressiveness becomes pertinent. It is easy to show that all variants discussed here

can encode Turing Machines, so, putting faith in the Church-Turing Thesis, despite

the reservations to be discussed in §4.10, it is reasonable to assume that they are

all equally expressive in the weak sense that they can all somehow “simulate” each

other. This formulation of expressiveness is unsatisfactory for two reasons: firstly,

the more disparate the computational formalisms under comparison, the less clear

it is just what counts as simulation. Secondly, the mere fact that some sort of

simulation is possible does not clarify how easy, effective or natural that simulation

may or can be. Practical programming experience often shows that certain types

of problems are much more readily solved in one programming language than in

another. The Church-Turing Thesis glosses over such expressivity differences.

Current research on programming language expressivity deals with both issues

with the help of encodings. An encoding maps programs P in the source language

to target programs [[P]]. The more constraints [[·]] meets, the more expressive the

target language is considered to be. Alas, as yet no fully convincing set of constraints

44 CHAPTER 2. BASIC π-CALCULI

has been agreed on, and it may even be the case that no single set of constraints

will lead to an unanimous classification of language expressivity. Currently, some

requirements are generally assumed to be indispensable. For example, we expect

encodings to be sound :

[[P]] ≈t [[Q]] implies P ≈s Q

where ≈t is an equivalence for target language and ≈s is likewise for the source

language. For an encoding to be useful for reasoning, full abstraction is probably a

minimal requirement:

[[P]] ≈t [[Q]] if and only if P ≈s Q.

If the operations of the source and target language are sufficiently similar, one

usually requires preservation of some operators by the encoding: if, for example,

source and target are both process calculi, we would expect

[[P |Q]] = [[P]] | [[Q]]

to hold. Preservation of an operator f is referred to as compositionality with respect

to f . Preservation of | is simply compositionality. Surprisingly, it is almost always

possible to find compositional and fully abstract encodings but they are compu-

tationally meaningless [12]. It is not even clear exactly what makes an encoding

computationally meaningful, but often computational correspondence is taken to be

sufficient. Computational correspondence essentially means that the computational

steps are decomposed in a uniform manner into computational steps of the target

calculus. It is important to realise that soundness, full abstraction, compositionality

and the like are all defined with respect to two equivalences, one for the source and

one for the target calculus. Some such property might hold for [[·]] with respect to

some equivalences but not for others.

Unfortunately, not all the π-calculus variants we shall talk about are known

to have fully abstract compositional encodings into the asynchronous π-calculus

which exhibit computational correspondence, although some do. We believe that

at least in the case of π-calculi with timers, like that to be introduced in Chapter

4, such encodings are in principle impossible. In addition, some, if not most, of the

known encodings for the π-calculi variants we are going to present in the rest of this

chapter, will not work in the presence of the extensions for DS to be introduced

subsequently.

In summary, expressiveness of computational formalisms in general and π-calculi

in particular is badly understood and deserves closer scrutiny.

2.4.1 Recursion and Other Forms of Replication

For a computational formalism to be universal in the sense of the Church-Turning

Thesis, the ability to express infinite behaviour is indispensable. To be pragmatical-

2.4. SYNTACTIC VARIANTS 45

ly viable, the syntax of a formalism must be finite. In the asynchronous-π-calculus,

(lazy) replication bridges the gap between finite syntax and infinite behaviour. His-

torically, lazy replication in π-calculi was probably conceived in analogy with the

!-modality of linear logic [41, 75] but has a close conceptual match in process forking,

as customarily found in many operating systems [10]. Nevertheless, it is sometimes

more convenient to specify processes using recursive equations, for example

P〈xy〉 = x〈y〉 |Q〈z〉 Q〈x〉 = x(v).R〈v〉 R〈x〉 = . . .

It is straightforward to modify the asynchronous-π-calculus to replace lazy replica-

tion by recursive equations:

P ::= x(~y).P input prefix

|| x〈~y〉 output

|| P |Q parallel composition

|| (νx)P hiding

|| X〈~y〉 instantiated agent variable

|| 0 inaction

A recursive equation is then simply a pair X〈~y〉 = P such that fn(P) = {~y}. It

is usually a good idea to restrict recursive definitions to sets of equations that are

decidable and to ensure that each agent variable has exactly one defining equation.

The structural congruence is adjusted by removing all axioms mentioning ! and

replacing them by the rule below.

fn(P) ⊆ {~v} X〈~v〉 = P

X〈~y〉 ≡ P{~y/~v}

The corresponding labelled transition systems is obtained from the one in Figures

2.5, 2.6 and 2.7 by removing (Rep) and replacing it by

(Rec)
P{~y/~v} l→ Q X〈~v〉 = P

X〈~y〉 l→ Q

It is straightforward to encode lazy replication using recursion in a fully abstract,

compositional and computationally corresponding manner. A third alternative are

fixpoint operators, well known from λ-calculi [48], which effectively incorporate re-

cursive equations into the syntax of a computational calculus [57, 59]. Conversely, if

a process is given by a finite set of defining equations, a fully abstract, composition-

al and computationally corresponding encoding can easily be given [75]. Although

we have been unable to confirm this in the literature, we believe that this result

holds even for arbitrary recursive sets of defining equations.

Of course the restriction to lazy replication is unnecessary. We could allow other

forms such as !x〈~y〉, or even !P without placing constraints on the shape of P. If

46 CHAPTER 2. BASIC π-CALCULI

we’d do the latter, (Rep) would have to be replaced by an additional axiom for ≡:

!P ≡ P | !P

that ensures !P really acts like the parallel composition of infinitely many copies of P

(one could also add !!P ≡!P or !0 ≡ 0, but those are not required to infer substantial

computation). Both forms of replication are convincingly encodable into each other.

Our reason for preferring lazy replication are threefold. Firstly, !x(~v).P is the only

way we use replication in applications. Secondly, unrestricted replication does not

sit well with truly concurrent semantics as it would allow infinitely many interactions

to happen at the same time. While that might be acceptable as a limit case, it is

more realistic to just have finitely many interactions occurring in one reduction

step. Finally, unrestricted replication also causes problems when timers are added

to π-calculi, as we do in Chapter 4, where we elaborate on the issue.

It is also possible to combine replication and definition by recursive equations,

as we shall do in later chapters. The various rules coexist harmoniously.

2.4.2 Synchrony

We have focused on the asynchronous π-calculus because it is simpler than most

alternatives and has nicer equational properties: in particular, many prima facie

different equivalences coincide, cf. Theorem 2. This is a fragile property. It fails to

hold if the calculus is extended, for example, with a synchronous output operation.

Despite the advantages of asynchrony, the original π-calculus of Milner, Parrow

and Walker was synchronous [78]. Synchrony boils down to allowing sequentialisa-

tion not only with input but also with output. Hence processes in the synchronous

π-calculus are generated by the following grammar.

P ::= x(~y).P input prefix

|| !x(~y).P lazy replication

|| x〈~y〉.P output prefix

|| P |Q parallel composition

|| (νx)P hiding

|| 0 inaction

In the reduction semantics, (Com) and (Rep) need to be modified.

(Com)
x(~v).P | x〈~y〉.Q → P{~y/~v} | Q

(Rep)
!x(~v).P | x〈~y〉.Q → !x(~v).P | P{~y/~v} | Q

2.4. SYNTACTIC VARIANTS 47

The axioms of the structural congruence remain unchanged. The labelled transitions

also only need one modification, here shown for the synchronous variants.

(Out)
x〈~y〉.P x〈~y〉→ P

Now the synchronous barbs, introduced in §2.3.2 make more sense: they correspond

to observing processes being synchronous.

As to expressivity, it is straightforward to embed the asynchronous π-calculus

into the synchronous π-calculus. The reverse direction is more involved: the protocol

to simulate synchrony is simple enough. Each output x〈~y〉.P is replaced by an

asynchronous output with explicit acknowledgement via a private channel.

(νa)(x〈~ya〉 | a.[[P]])

Correspondingly, inputs x(~v).P are replaced by

x(~va).(a | [[P]]).

This transforms the sequentialisation of the output prefix into a scope extending

interaction and input prefix sequentialisation.

As usual, this encoding is sound but not fully abstract. It seems straightforward

to adapt the linear types of [124] to identify an appropriate set of processes in the

synchronous π-calculus to make that makes the encoding fully abstract. Neverthe-

less, at the time of writing, no fully abstract encoding has been published.

What are the advantages of synchrony over asynchrony other than that it allows

to sometimes omit explicit acknowledgements? Probably not many, apart from mak-

ing the calculus more symmetric. On the other hand, implementations of synchrony,

in particular of mixed synchrony on a given channel, for example x(v).P |x〈y〉.Q, is

detrimental to efficiency [69, 113].

2.4.3 Monadicity

The calculi described so far communicate tuples of names:

x〈y1...yn〉 |x(v1...vn).P→P{y1/v1...yn/vn}.

Monadic name-passing is a special case.

x〈y〉 |x(v).P→P{y/v}

Do we loose expressivity when restriction to monadic name passing? Intuitively

no, because instead of sending n names at once, we may just as well send them

in n separate interactions, possibly along a private channel, to avoid interference.

Yoshida [123] as well as Walker and Quaglia [93] have confirmed this hunch with

fully abstract encodings. Interestingly, full abstraction fails for their encodings if the

target calculus is not typed: decomposition of polyadicity into monadicity changes

the granularity of interaction and allows undue interference.

48 CHAPTER 2. BASIC π-CALCULI

2.4.4 Sums

Sums explicitly introduce non-determinism into computations. Of course even with-

out sums, the calculi introduced so far exhibit some form of non-determinism, just

consider the process x |x.P | y | y.Q. But they lack a dedicated operator for non-

determinism. Sums allows processes to choose between different continuations. This

choice can be understood in several ways. A useful classification is that between

internal and external choice.

A process P has internal choice if it has at least two distinct continuations Q and

R such that P→Q and P→R and the environment has no way to influence which

one will be chosen. An example of internal choice is the sum P ⊕ Q, introduced

in Section 2.3.4. A process exhibits external choice if it offers the choice between

several distinct continuations to the environment which will inform P of its choice

by way of an interaction.

The original π-calculus [78] is curious if viewed with the aforementioned distinc-

tion in mind in that it has a sum that combines internal and external choice. This

is most easily elaborated once its syntax and semantics have been presented.

P ::= x(~y).P input prefix

|| !x(~y).P lazy replication

|| x〈~y〉 output

|| P |Q parallel composition

|| P + Q binary sum

|| (νx)P hiding

|| 0 inaction

The structural congruence adds axioms to make + monoidal.

• P + (Q + R) ≡ (P + Q) + R,

• P + Q ≡ Q + P,

• P + 0 ≡ P.

The reduction semantics needs the following modification of its (Com) and (Rep)

rules.

(Com)
(· · · + x〈~y〉) | (x(~v).P + . . .)→P{~y/~v}

(Rep)
(· · · + x〈~y〉) | (!x(~v).P + . . .) → !x(~y).P | P{~y/~v}

The transition semantics require two additional and symmetric rules

(Sum)
P

l→ P′

P + Q
l→ P′

2.4. SYNTACTIC VARIANTS 49

(omitting, as usual, the symmetric counterpart and asynchronous transitions). Ex-

ternal choice between P and Q can now easily be defined.

x.P + y.Q

If a context wants to force this process to become P, it sends an empty message

along x and similarly for Q. Internal choice between P and Q, a la P ⊕ Q, can be

encoded using + by setting

(νx)(x |x.P) + (νx)(x |x.Q).

The only thing this process can do is choose to become P or Q, modulo some

uninteresting garbage collection.

We can also to combine the two:

(νx)(x |x.P) + y.Q + z.R.

With this process, the environment can choose between Q and R, provided the

process itself has not chosen to evolve into P and vice versa. This is mixed choice.

In general, a sum term allows mixed choice if one of the immediate subterms of +

is an input while the other is an output, as for example in x+ y.

Regarding expressivity, +, like synchronous output, is a powerful operation

that distinguishes several of the equivalences that coincide in the asynchronous

π-calculus. Palamidessi [88] has established the impossibility of encoding mixed

choice into π-calculus fragments without mixed choice, provided we’d like the en-

coding to be fully abstract and compositional in addition to some other natural

restrictions. On the other hand, input guarded choice, where all sums are of the

form x(~v).P + y(~w).Q can be eliminated in the asynchronous π-calculus [84, 85].

While unconstrained forms of summation are problematic in several respects,

they are natural for specifications of process behaviour and π-calculi emerged out

of an automata theoretic tradition where specifications were important. We will

not use unrestricted sums further in this text.

The more constrained external choice is useful in many applications, so much so

in fact, that we will augment the calculus with primitives allowing concise expression

the availability of alternatives and their external selection. We shall now describe

these primitives in the context of the asynchronous π-calculus. The augmented

50 CHAPTER 2. BASIC π-CALCULI

syntax is given by the following grammar.

P ::= x(~y).P input

|| !x(~y).P lazy replication

|| x〈~y〉 output

|| x[(~y).P & (~z).Q] branching input

|| !x[(~y).P & (~z).Q] lazy branching replication

|| xleft〈~y〉 left selection

|| xright〈~y〉 right selection

|| P |Q parallel composition

|| (νx)P hiding

|| 0 inaction

A term x[(~y).P & (~z).Q] offers to the environment the choice between acting like

x(~y).P and x(~z).Q except that the selection of the choice and the interaction at x

happen in one interaction. The arity of ~y and ~z need not coincide. The correspond-

ing selecting outputs are xleft〈~y〉 and xright〈~y〉. Their interplay is probably most

easily grasped by considering the corresponding rules that need to be added to the

usual reduction rules.

(Coml)
x[(~v).P & (~w).Q] | xleft〈~y〉→P{~y/~v}

(Repl)
!x[(~v).P & (~w).Q] | xleft〈~y〉→!x[(~v).P & (~w).Q] | P{~y/~v}

(As usual, we omit the symmetric rules.) Free and bound names are computed as

expected, we just present one clause of the definition of fn(·).

fn(x[(~y).P & (~z).Q]) = (fn(P) \ {~y}) ∪ (fn(Q) \ {~z}) ∪ {x}

In order to have labelled transitions we need to extend the set of labels given in

2.3.3 as follows.

l ::= . . . || xleft〈(ν~z)~y〉 || xleft(~v) || xright〈(ν~z)~y〉 || xright(~v)

The asynchronous labelled transition system needs additional rules for branching

output, branching input and additional communication and opening rules. We only

2.5. MATCHING AND MISMATCHING 51

present those for the left branch.

(Outl)
xleft〈~y〉 xleft〈~y〉→a0

(Inl)
x[(~v).P & (~w).Q]

xleft(~y)→aP{~y/~v}

(Repl)
!x[(~v).P & (~w).Q]

xleft(~y)→aP{~y/~v} | !x[(~v).P & (~w).Q]

(Com)
P

xleft〈(ν~y)~z〉→aP
′ Q

xleft(~z)→aQ
′ {~y} ∩ fn(Q) = ∅

P |Q τ→a(ν~y)(P′ |Q′)

(Open)
P

xleft〈(ν~y)~z〉→aQ v 6= x, v ∈ {~z} \ {~y}
(νv)P

xleft〈(ν~y,v)~z〉→aQ

In general, external choice need not be restricted to the provision of binary alterna-

tives. In fact, to model basic data types such as natural numbers, infinite branching

is convenient [16]. For example a process that represents the number 7 located at

x could be implemented as

!x(r).rinj7〈〉
and the corresponding receiver of such natural numbers could be

x[&n∈N().Pn]

Binary branching can easily be reduced to asynchronous name passing.

[[xleft〈~y〉]] = (νz)(x〈z〉 | z(xl, xr).xl〈~y〉)

[[xright〈~y〉]] = (νz)(x〈z〉 | z(xl, xr).xr〈~y〉)

[[x[(~y).P & (~z).Q]]] = x(z).(νxl)(νxr)(z〈xl, xr〉 |xl(~y).[[P]] |xr(~z).[[Q]])

This is just the encoding of booleans in §2.3.4. If the target calculus is the untyped

asynchronous π-calculus, this encoding is sound but not fully abstract. As in the

case of encoding synchrony into asynchrony, no fully abstract encoding of binary

branching has been published at the time of writing. We conjecture that the linear

types of [124] will again easily lead to full abstraction.

Inspired by linear logic [41], Honda [55] and Vasconcelos [114] were the first to

propose and develop external choice as a primitive for name passing interaction.

Lopez [69] considers implementation issues arising from external choice.

2.5 Matching and Mismatching

Two other extension that are often considered are matching and mismatching.

Matching allows to compare two names for equality while mismatching is the nega-

52 CHAPTER 2. BASIC π-CALCULI

tion of matching and allows to test names for being distinct. Both can be useful,

in particular for axiomatisations of equivalences. Syntactically, the asynchronous

π-calculus with matching is given by the following grammar.

P ::= x〈~y〉 output

|| x(~y).P input prefix

|| !x(~y).P lazy replication

|| [x = y]P matching

|| P |Q parallel composition

|| (νx)P hiding

|| 0 inaction

The asynchronous π-calculus with mismatching is obtained by the previous grammar

where [x = y]P is replaced by [x 6= y]P. Of course it is also possible to consider

calculi that combine matching and mismatching.

The reduction semantics of matching is obtained by just adding

[x = x]P ≡ P

to the axioms of the structural congruence. For the labelled transitions we need to

add

(Match)
P

l→ Q

[x = x]P
l→ Q

The modifications for asynchrony and mismatching are similar.

Both operations, like output prefixing and sums are powerful in that they dis-

tinguish various equivalences that coincide in the asynchronous π-calculus.

2.6 HOπ

We have emphasised that π-calculi communicate entities without (significant) in-

ternal structure. This simplifies mathematical development and implementations

but it is in stark contrast with the program passing approach to computation that,

in the guise of functional programming, has dominated mathematical accounts of

computation for two decades. As the name suggests, program passing is charac-

terised by computational agents that exchange programs as their main computa-

tional mechanism. λ-calculi are the most prominent program passing formalisms,

but concurrency theory, too, has some on offer, Boudol’s γ-calculus [23] for example

or CHOCS [112]. Both implement interaction of parallel agents as process passing.

Naturally the question arises as to the relative expressiveness of process pass-

ing and name passing. Clearly the latter is a special case of the former because

names can be seen as certain trivial programs that cannot do anything apart from

communicating their identity. The converse is more involved: can process passing

2.6. HOπ 53

be reduced to name passing? In 1992 Sangiorgi answered the question to the affir-

mative. He showed that a π-calculus with process passing can be fully-abstractly

encoded into a π-calculus without by replacing process passing with passing pointers

(names) to processes [100, 103]. Surprisingly, this encoding is fully abstract without

the target calculus being typed. This suggests that – unlike many other embeddings

into π-calculi– the granularity of the computational mechanism is not changed by

the encoding.

Nevertheless, process passing is often a convenient abstraction and we shall use

it later in this text, albeit in a very constrained from.

There is considerable leeway in how to add process passing to π-calculi, but, as

it does not play a mayor role in our subsequent exposition, we shall present it in

what might be its simplest form. Processes are give by the following grammar.

P ::= x(~y).P input prefix

|| !x(~y).P lazy replication

|| x〈~y〉 output

|| x〈~P〉 output of processes

|| x starting a received process

|| P |Q parallel composition

|| (νx)P hiding

|| 0 inaction

With x〈~P〉 we add the ability to output a vector of processes. The stand-alone

name x launches a received process. It might be confusing to use bound names

to be instantiated with names and processes and we could choose to have different

syntactic categories of bound names instead, to distinguish the two, but for easy of

exposition we have chosen not to and rely on sorting instead for disambiguation:

for example

x〈y〉 |x(v).(v |P)

is ill sorted, while

x〈Q〉 |x(v).(v |P)

is not. The reduction semantics need only two additional rules.

x〈~P〉 |x(~v).Q→Q{~P/~v} x〈~P〉 | !x(~v).Q→Q{~P/~v} | !x(~v).Q

The axioms for the structural congruence remain unchanged. Of course substitution

in the above rule needs to avoid capture of bound names, but the variable convention

applies just as it does in the first-order case. To compute the free and bound names

54 CHAPTER 2. BASIC π-CALCULI

of higher-order processes we need additional clauses.

fn(x) = {x}
bn(x) = ∅

fn(x〈~P〉) = {x} ∪
⋃

fn(Pi)

bn(x〈~P〉) = bn(Pi)

We omit the labelled transitions as they are quite involved. Please consult [100, 103]

for details, including full-abstraction proofs.

2.7 Variants (2): Restrictions

All variants of π-calculi discussed in the previous section have been extensions. It

can also be fruitful to go the other way and restrict π-calculi. This cannot mean

to remove further operators from, for example, the asynchronous π-calculus, for

that would surely damage its expressivity: removal of any operator apart from re-

striction would probably render the resulting calculus less than Turing-Universal,

while getting rid of restriction would destroy compositionality. What is often the

case, though, is that we don’t need the whole set of processes generated by the

grammar of the chosen calculus. Restrictions systematically identify a proper sub-

set of processes without compromising expressivity. This is usually done by typing.

The main advantage of such restrictions is that the subcalculi have nicer theoret-

ical properties, i.e., more equations hold because fewer observers exist that could

distinguish processes. We shall now present the two most well known examples of

such restrictions, locality and internal mobility. They will also play a role later.

In both cases the reduction and transition semantics carry over unchanged, but

work on a smaller set of processes. We will not present typing systems that would

ensure the respective properties because setting up the formalisms to do that would

be too much work for a text not otherwise concerned with types.

2.7.1 Locality

To understand locality, think about your machine. It is probably connected to some

Ethernet based LAN, which is in turn connected to the Internet. This means that

your computer will have one or more IP addresses to identify its points of interaction

with other computers. What is peculiar about IP addresses is that they are fixed.

They cannot be changed (easily). In particular, you cannot make one of your IP

addresses dependent on data that has just come in from the Internet.

Of course things are more complicated than this. One can always change IP

addresses of a machine, but that would in itself not be very useful, unless the entire

Internet was notified about the address change. Otherwise routing tables would

2.7. VARIANTS (2): RESTRICTIONS 55

not contain up-to-date information that would allow to route messages properly.

This is a time consuming process, taking several hours if not longer. As a matter of

fact, things are even more complicated because some address changes can be carried

out locally, for example from 236.72.1.61 to 236.72.1.62, provided both addresses

already live in the same broadcast LAN and 236.72.1.62 is not already used. Since

all messages going to 236.72.1.62 will be broadcast, either by the gateway router or

by some other machine on the LAN, delivery to the new address is no problem. But

what certainly does not work is to assign an arbitrary IP address to a computer and

expect that instantly messages from anywhere on the net are delivered. It is possibly

rather crude, but nevertheless illuminating to model this behaviour as π-calculus-

processes, taking names to stand for IP addresses: this boils down to prohibiting

input subject to be input bound. This means not allowing processes like x(v).v(w),

because the input subject v is bound by x(v). π-calculi where input subjects are

never bound by inputs are called local. It is easy to define typing systems such

that typability guarantees locality. Merro and Sangiorgi [72] investigates locality

and concludes that locality does not significantly restrict the expressive power of

π-calculi. Locality will be crucial in later chapters.

2.7.2 Internal Mobility

Much of the expressivity π-calculi gain over their predecessors derives from the abil-

ity to dynamically create private links between processes by way of scope extending

outputs. What happens if the only kind of interaction permitted is the creation of

private links? What happens, in other words, if we only have bound output? Bound

outputs are outputs where every carried name induces a scope extension, as it does

in

(νyz)(x〈yz〉 |P) |x(vw).Q→ (νyz)(P |Q{yz/vw}).

The next example shows an output that is not bound.

(νy)(x〈yz〉 |P) |x(vw).Q→ (νy)(P |Q{yz/vw})

This is not considered a bound output, despite extending the scope of y, because the

environment may already have z as an interaction point and use it to interfere with

P or Q or their descendants. π-calculi where all outputs are bound are said to exhibit

internal mobility and have been studied in some detail by Sangiorgi [101, 102]. He

shows that almost all of π-calculi expressive power is already contained in their

internally mobile cores, while some of the complications of reasoning about π-calculi

stem from the ability to do free or non-bound outputs.

While enjoying simpler theoretical properties, programming restricted to bound

outputs is cumbersome because passing on information is no longer straightforward:

consider a typical server (for example computing a function)

!x(~yz).P,

56 CHAPTER 2. BASIC π-CALCULI

invoked by clients which supply access points ~y to the arguments of the service in

addition to a return channel z for the delivery of the eventual result. As program

synthesis is often compositional, all P might do is pass on the ~ys and z to some

appropriate sub-servers. Alas, this cannot be expressed directly using just bound

outputs because in P, y and z would be free. We would have to use forwarders or

copycat processes [5, 15, 16, 124] instead which relay information between interaction

points. Such processes are quite simple but their proliferation can make processes

hard to read. Free outputs seem to be a more succinct representation of information

transmission. Consequently, most of our examples will use free outputs to aid

readability. All free outputs we use can be replaced by bound ones with appropriate

forwarding.

2.8 Concluding Remark

Much more could be said about π-calculi, but we do not aim to be comprehensive,

so we stop right here.

Chapter 3

The Two Phase Commit

Protocol

This chapter introduces the Two Phase Commit Protocol, an important distributed

algorithm, and sketches its correctness proof.

3.1 Introduction

The Two Phase Commit Protocol [19, 47] (from now on 2PCP for short) is an

important and ubiquitous distributed algorithm. Its role in this thesis is to act as

a test of the π-calculus extensions to be introduced. If they are to be of any value,

they better be able to express the 2PCP. Of course, the real test is not just its

expression, but also whether it can be implemented in a way that facilitates feasible

correctness proofs. Although the 2PCP is trivial, at least in its algorithmic core,

as we shall see soon, its distribution makes verification a challenge. So much so in

fact, that [13, 14] and their elaboration in the present text seem to have been the

first attempts at doing so in a rigorously formal way.

What is the 2PCP? A short but pretty accurate answer is that it is a distributed

computation of the n-ary logical and: each of the n processes involved votes for

either true or false. The result of this voting process is that all process agree on

true exactly when all processes have voted true. Otherwise they agree on false.

This description is not only fairly accurate but also problematic because of

distribution. What does it mean to vote or to agree? In a distributed setting,

messages carrying votes can be lost or duplicated. They might arrive late. What

happens if a process decides to vote a certain way, but crashes before being able to

send a vote to another process?

As we will see, the possibility of failures makes the 2PCP somewhat more com-

plicated than one would expect from its description as implementing logical conjunc-

tion. Its correctness proof is a bit of a nightmare, due to the veritable error-masking

57

58 CHAPTER 3. THE TWO PHASE COMMIT PROTOCOL

scaffold that ensures consistent agreement despite the possible failure scenarios. To

help the reader understand the 2PCP, this chapter introduces the algorithm in a

drastically simplified form: no failures at all. We sketch the correctness proof for

this simple version, because its macro-structure will be unaffected by embellishing

the core protocol for survival in the distributed world. What changes in the proof

is that the possibility of failures makes the individual steps more complicated.

3.2 The Algorithmic Core of the 2PCP

For our purposes, it might be convenient to think of the 2PCP as being made up

of n+ 1 processes: the coordinator C and n participants Pi who communicate with

each other on the private channels votei and deci.

2PCP = (ν ~vote)(ν ~dec)(C |P1 | ... |Pn)

The participants supply the votes for true or false to the coordinator, with each

process having exactly one vote. The coordinator receives all the votes, adds its

own, decides on the overall vote and notifies all participants of the outcome. Each

participant Pi then relays that choice to the outside world by repeatedly sending

either on the channel abort i or on commit i with the former corresponding to false

and the latter to true. This choice of terminology (abort , commit) betrays the

2PCP’s origins in transaction processing, where participants are transactions, the

coordinator is a database management system and the purpose of the protocol is

to aid enforcing atomicity of the database by allowing transactions to commit only

if all participating transactions do the same. Of course in a real database, the

participants will execute more complex computations upon commitment or abort,

but this is not what we seek to model here and hence omitted.

In the idealised form we present it here, the 2PCP does not use scope extension

and is finite state. Real implementations would usually lift both restrictions: the

2PCP would work for an arbitrary number of participants, not just for some fixed

n. It would feature an initial joining stage where interested processes could register

their participation in the protocol. This would mean we had infinitely many states.

The joining process would also often dynamically create private channels between

the coordinator and participants for communication of votes and the like. In a

π-calculus setting that could be conveniently modelled by bound outputs.

Participants

Participants are straightforward. Their first task is to decide nondeterministically

on their vote.

Pi = Pabort
i ⊕ Pcommit

i

3.2. THE ALGORITHMIC CORE OF THE 2PCP 59

This vote is then communicated to the coordinator on the channel vote i using

branching output. Branching simplifies presentation and reasoning, but could be

removed, as described in §2.4.4. If Pi decides to vote false, here implemented by

branching “to the right”, it has no need to wait for the coordinator’s decision, for

that can only be false. Instead the process aborts straightaway.

Pabort
i = voteiright | !abort i

If a participant decides to vote true, represented by a branch to the left, it has to

wait for the coordinator’s decision, as other votes may cause an overall abort.

Pcommit
i = voteileft |Pwait

i

Pwait
i = deci[!commit i, !abort i]

The coordinator’s decision is received by the participant on deci, using branching.

The Coordinator

In the absence of failures, the coordinator is only a tiny bit more complicated. It

also starts by deciding on its vote.

C = Cabort ⊕ Ccommit
pre

If that decision is towards aborting, the coordinator ignores the participants’ votes

and instructs them to abort straightaway.

Cabort = Πn
i=1C

abort
i

Cabort
i = deciright

Otherwise, it collects all the votes and computes their logical conjunction.

Ccommit
pre = (ν~ca)(Cwait |Cand | Cor)

Cwait = Πn
i=1C

wait
i

Cwait
i = votei[ci, a]

Cand = c1.c2...cn.C
commit
final

Ccommit
final = Πn

i=1C
commit
i

Ccommit
i = decileft

Cor = a.Cabort

60 CHAPTER 3. THE TWO PHASE COMMIT PROTOCOL

Remarks on the Underlying Calculus

The language we have used to express the 2PCP is not the asynchronous π-calculus

of §2.2.1, but a variant with binary branching, cf. §2.4.4 and a form of lazy repli-

cation that allows not only input-guarded replication but also output replication,

as described in §2.4.1. Although this calculus is slightly unconventional, it is also

highly convenient for the task at hand. Moreover, all relevant results discussed in

Chapter 2 also hold for this calculus.

It would not be a problem to remove branching from this description of the

2PCP, at the price of making the implementation harder to understand and its

verification more cumbersome. As branching does not cause significant problems

with the kind of theory we are going to develop in subsequent chapters, is appears

that its advantages outweigh the disadvantages of additional syntax and inference

rules. The same is true of output guarded replication and recursive equations.

3.3 Correctness of the 2PCP

Before we can prove the 2PCP correct, we have to decide on what its correctness

means formally. Fortunately, this is almost easy. In essence, we want to avoid

some participants committing while others don’t. The next theorem expresses this

succinctly, but first a definition.

Commit = Πn
i=1!commit i

Abort = Πn
i=1!abort i

Now a key correctness criterion can be expressed succinctly.

Theorem 12 2PCP ≈a Abort ⊕ Commit

Of course this theorem does not contain all one could reasonably require of a suitable

correctness criterion for the 2PCP, because it does not mandate the protocol to

compute the logical conjunction of all the participants’ votes. An implementation

that would force all participants to agree on the P2’s decision would also meet

Theorem 12. But it is easy to fix this shortcoming.

Theorem 13 1. (ν ~vote)(ν ~dec)(Ccommit
pre |Pcommit

1 | ... |Pcommit
n) ≈a Commit.

2. If P′
i ∈ {Pabort

i ,Pcommit
i }, then (ν ~vote)(ν ~dec)(Cabort |P′

1 | ... |P′
n) ≈a Abort.

3. If P′
i ∈ {Pai ,Pcommit

i } and for at least one i0 ∈ {1, ..., n} P′
i0

= Pabort
i0

, then

(ν ~vote)(ν ~dec)(Ccommit
pre |P′

1 | ... |P′
n) ≈a Abort.

3.3. CORRECTNESS OF THE 2PCP 61

Unfortunately, this is still not enough. To nail down the correctness of the 2PCP,

we’d also have to ensure that nothing goes wrong in the transition from 2PCP to the

processes on the left in the equations of Theorem 13. After all, there is no apriori

reason that all transitions from 2PCP must evolve only via those processes. It is

possible and mathematically trivial to remedy this shortcoming, but formally rather

inconvenient. Since the definition of 2PCP is transparent enough to allow anyone

even mildly conversant with π-calculi to instantly see that our implementation does

not suffer from this shortcoming, we chose to stick with just establishing the simpler

and substantive, yet merely approximative correctness, expressed by Theorems 12

and 13.

The rest of this chapter sketches a proof of both theorems. Most of the reasoning

is standard π-calculus technology, so many details are omitted. The proof itself

involves a classic case of Divide-and-Conquer. First we show that in certain circum-

stances
P |Q ≈a S

P |R ≈a S ⊕ T

}

⇒ P | (Q ⊕ R) ≈a S ⊕ T

and then use this fact to show by partial induction that (roughly)

C |P1 | ... |Pi |Pi+1 ≈a Aborti+1 ⊕ Commiti+1

can be inferred from

C |P1 | ... |Pi |Pci+1 ≈a Aborti+1 ⊕ Commiti+1andC |P1 | ... |Pi |Pai+1 ≈a Aborti+1.

Here (Aborti)
n+1
i=1 and (Commiti)

n+1
i=1 are suitable sequences of processes such that

Abortn+1 = Abort and Commitn+1 = Commit. The limit case i = n is Theorem 12

and some of the intermediate steps in its proof specialise to Theorem 13.

Some Useful Definitions and Lemmas

If key steps of the proof infer properties of the 2PCP with i + 1 participants from

the 2PCP with i participants, doesn’t the protocol’s outermost restrictions, hiding

the channels for voting and communication of the decision, stand in the way of a

straightforward induction? After all, we induce on i with the processes obtained

by taking off these restrictions. Yes, but the next few definitions provide tools for

ignoring outermost restrictions.

Definition 11 Let S be a set of names. We call actions l with fn(l) ∩ S 6= ∅
S-hidden. A process is static if all of its or its descendants outputs are free outputs.

A binary relation R on processes is an asynchronous S-bisimulation if (P,Q) ∈ R
implies that P as well as Q are static and

• whenever P
l→aP

′ and fn(l)∩S = ∅, then Q
l̂
�aQ

′ for some Q′ such that (P′,Q′) ∈
R,

62 CHAPTER 3. THE TWO PHASE COMMIT PROTOCOL

• and vice versa.

By ≈S
a we denote the largest S-bisimulation. The definitions of strong asynchronous

S-bisimulation, S-bisimulation, strong S-bisimulation, ∼S
a , ≈S and ∼S are similar.

The next two theorems summarise some useful properties of the equivalences just

defined and how they relate to the standard equivalences.

Theorem 14 ≈S ⊆ ≈S
a , ∼S ⊆ ≈S and ∼S

a ⊆ ≈S
a .

Proof: Straightforward. ut

Theorem 15 Let RS be one of ≈S ,≈S
a , ∼S ,∼S

a .

1. P RS Q implies (νx)P RS\{x} (νx)Q. In addition: R∅ ⊆ R.

2. If S ⊆ T , then RS ⊆ RT .

3. If P RS Q and fn(R) ∩ S = ∅ then P |R RS Q |R.

Proof: Straightforward. ut

The next theorem formalises the Divide-and-Conquer principle alluded to above.

For simplicity and to facilitate comparison with the use of Divide-And-Conquer in

the versions of the 2PCP correctness proof to come later, we present it in 3 different

forms, although unification isn’t difficult.

Theorem 16 Let S a set of names.

1. Let (Pi)i∈I , (Qj)j∈J , (Rj)j∈J and (Si)i∈I be collections of processes such that

for all i ∈ I and j ∈ J :

• Pi |Qj ≈S Si,

• Pi |Rj ≈S Si,

• If Pi
l→aP is not S-hidden, then P ≡ Pk for some k ∈ I and Si

l→aSk.

Then Pi | (Qj ⊕ Rj) ≈S Si.

2. Let {Pi}i∈I , {Qj}j∈J , {Rk}k∈K , {Ss}s∈S, {Tt}t∈T be processes. Assume f :

I×J → S and g : I×K → T are functions such that for all i ∈ I, j ∈ J, k ∈ K:

• Pi |Qj ≈S Sf(i,j),

• Pi |Rk ≈S Tg(i,k)

• whenever Pi
l→aP for some action l that is not S-hidden, then one of the

following is true.

3.3. CORRECTNESS OF THE 2PCP 63

– Sf(i,j) ⊕ Tg(i,k)
l̂
�aV for some process V with P | (Qj ⊕ Rk) ≈S V.

– P ≡ Pi0 for some i0 ∈ I such that Sf(i,j) ⊕ Tg(i,k)
l̂
�aRf(i0,j).

Then Pi | (Qj ⊕ Rk) ≈S Sf(i,j) ⊕ Tg(i,k) for all i, j, k.

3. Assume that for all i ∈ I, Pi,Qi,Ri,Si and Ti are processes such that

• if x is a free name in any of the processes mentioned about, but x /∈ S,

then x is not the subject of an input.

• Pi |Ri ≈S
a Si ⊕ Ti,

• Qi |Ri ≈S
a Ti and

• whenever l is not S-hidden and Ri
l→aR, then a process U exists such that

Si ⊕ Ti
l
�aU, Pi |U ≈S

a Si and Qi |U ≈S
a Ti.

Then (Pi ⊕ Qi) |Ri ≈S
a Si ⊕ Ti.

Proof: We begin with (2). The proof of (1) is similar but easier. We define R by

Pi | (Qj ⊕ Rk) R Sf(i,j) ⊕ Tg(i,k)

for all i, j, k. Then we have the following relevant transitions.

• Sf(i,j) ⊕Tg(i,k)
τ→ Sf(i,j). It is matched by Pi | (Qj ⊕Rk)

τ→ Pi |Qj . The other

related choice is matched similarly.

• Pi | (Qj ⊕ Rk)
τ→ Pi |Qj is matched by Sf(i,j) ⊕ Tg(i,k)

τ→ Sf(i,j). The choice

towards Rk is again similar.

• If Pi | (Qj ⊕ Rk)
l→ P | (Qj ⊕ Rk) because Pi

l→ P, then we have two cases. If

Sf(i,j)⊕Tg(i,k)
l̂
�aV for some process V with P | (Qj⊕Rk)≈SV, then we already

have the matching transition. Otherwise, by assumptions, P ≡ Pi0 for some

i0 ∈ I such that Sf(i,j) ⊕ Tg(i,k)
l̂
�aRf(i0,j).

Hence R∪≈S is a S-bisimulation.

The proof of 3 is similar to the previous one, except that we have to establish

asynchronous, not synchronous S-bisimilarity. That means, we have to saturate

the candidate relation with appropriate outputs. Because of the restrictions on free

names in the processes under consideration, this does not produce interesting or

problematic new transitions. ut

Lemma 3 1. Assume that x ∈ S \ fn(P).

• P |x[(~v).Q & (~w).R] |xleft〈~y〉 ≈S P |Q{~y/~v}.

64 CHAPTER 3. THE TWO PHASE COMMIT PROTOCOL

• P |x[(~v).Q & (~w).R] |xright〈~y〉 ≈S P |R{~y/~w}.
• P |x(~v).Q |x〈~y〉 ≈S P |Q{~y/~v}.

2. Assume that x ∈ S \ fn(P).

• P |xleft〈~y〉 ∼S P.

• P |xright〈~y〉 ∼S P.

• P |x〈~y〉 ∼S P.

3. Let a, ~x = 〈x0, ..., xn−1〉 and ~y = 〈y0, ..., yn−1〉 be fresh. Let 0 ≤ i0 < n. If

y0, y1, ..., yi0 ∈ S, then

(ν~xa)(x0...xn−1.P |Πn
i=0,i6=i0yi[xi, a] |Q) ≈S

a Q.

Proof: Straightforward. ut

The Core of the Proof

Before delving into the details, let’s illustrate the proof from another angle. Using

an information flow metaphor, the failure-free 2PCP has 3 essential ingredients.

• The n+ 1 internal sums that are the protocol’s only source of uncertainty or

information. This information flows independently from each participant to

the coordinator, via dedicated channels.

• In the coordinator, this information becomes entangled and compressed into

one single bit, the overall decision.

• This decision flows back from the coordinator to all participants, again on

dedicated channels.

The proof can be understood as following this information flow: the non-determinism

is pushed, using the Divide-and-Conquer Theorem 16, to the coordinator and then

back to the participants. The entanglement process in the coordinator is reflected

in the proof by compressing the n+ 1 internal choices into just one.

The present author passionately believes that this correspondence between infor-

mation flow in a process and the structure proofs about its properties is an instance

of a general phenomenon that relates information flow and proofs. Alas, distilling

this intuition into something mathematically communicable has not been successful

so far.

We start with defining abbreviations for some of the processes that are vital to

the correctness proof, but have not been named already.

3.3. CORRECTNESS OF THE 2PCP 65

Definition 12 Let k ∈ {1, ..., n} and S, T ⊆ {1, ..., n}.

Ccommit
pre, k = (ν~ca)(Πn

j=kC
wait
j |Cand

k |Cor)

Cand
k = ck.....cn.C

commit
final

Cand
n+1 = Ccommit

final

Dc
S,T,k = (ν~ca)(Πj∈SCwait

j |Πj∈T cj |Cand
k |Cor) |Πi∈T∪{1,...,k−1}deci[!commit i, !abort i]

Dc
S,T,n+1 = Πn

i=1!commit i

Da
S,T = Πi∈Sdeciright |Πi∈T !abort i

The process Dc
S,T,k consists of a bunch of participants (their indices form the set

T ∪ {1, . . . , k− 1}) waiting for the coordinator’s decision (hence they must all have

voted for commitment) together with the corresponding residual of the coordinator.

The set S contains all the indices of processes whose votes have not yet been re-

ceived. The process Da
S,T can be though of as the remaining decision messages from

the aborting coordinator (indices given by S) together with aborting participants

(indices in T).

To be able to reason without being unduly hindered by the outermost restrictions

of the 2PCP, we use S-bisimulations. The next definition fixes the sets of names

that we will use for this purpose.

Definition 13 Let S ⊆ {1, ..., n}.

HS =
⋃

i∈S
{vote i, deci} Hi = H{1,...,i}

We can now state and verify the first key result about the 2PCP. It essentially says

that if any decision is made towards voting to abort, then all processes will abort.

Lemma 4 Let i ∈ {1, ..., n} and S, T ⊆ {1, ..., n} such that i ∈ S and S ∩ T = ∅.

1. Da
S,T |Pabort

i ≈H{i} Da
S\{i},T∪{i}.

2. Da
S,T |Pcommit

i ≈H{i} Da
S\{i},T∪{i}.

3. Da
S,T |Pi ≈H{i} Da

S\{i},T∪{i}.

Proof: We begin with (1).

Da
S,T |Pabort

i ≡ Πj∈Sdecjright |Πj∈T !abort j | voteiright | !abort i
≡ Πj∈Sdecjright |Πj∈T∪{i}!abort j | vote iright

∼H{i} Πj∈Sdecjright |Πj∈T∪{i}!abort j

∼H{i} Πj∈S\{i}decjright |Πj∈T∪{i}!abort j

≡ Da
S\{i},T∪{i}.

66 CHAPTER 3. THE TWO PHASE COMMIT PROTOCOL

Here we are using Lemma 3.2. For (2) we proceed in a similar fashion.

Da
S,T |Pcommit

i ≡ Πj∈Sdecjright |Πj∈T !abort j | voteileft | deci[!commit i, !abort i]

∼H{i} Πj∈Sdecjright |Πj∈T !abort j | deci[!commit i, !abort i]

≈H{i} Πj∈S\{i}decjright |Πj∈T !abort j | !abort i
≡ Πj∈S\{i}decjright |Πj∈T∪{i}!abort j

≡ Da
S\{i},T∪i

This derivation uses Lemma 3.1 and 3.2. It remains to verify (3). This is easy,

because if Da
S,T

l→ D′ where l is not H{i}-hidden, then either

• l = abort j for some j ∈ T , i.e. j 6= i, and Da
S,T ≡ D′ and hence also

Da
S\{i},T∪{i}

l→ Da
S\{i},T∪{i}; or

• l = decjright for some j ∈ S \ {i} and D′ ≡ Da
S\{j},T . In this case

Da
S\{i},T∪{i}

l→ Da
S\{i,j},T∪{i}.

This means we can apply Theorem 16.1. ut

We must establish a similar result for when one process casts its vote towards com-

mitting. This is more involved since such a decision removes the overall uncertainty

only if all other processes have also already made the same decision. Otherwise the

uncertainty must be preserved. The definition below proposes some technical tools

that will help us with this.

Definition 14 Assume k ∈ {1, ..., n} and S ⊆ {1, ..., n} such that j < k for all

j ∈ S. Then we define

waitk(S) =

∅ S = ∅
waitk+1(S \ min(S)) S 6= ∅,min(S) = k

{min(S)} ∪ waitk(S \ {min(S)}) S 6= ∅,min(S) > k

boundaryk(S) =

k S = ∅
boundaryk+1(S \ {min(S)}) S 6= ∅,min(S) = k

k S 6= ∅,min(S) > k.

Note that we can have boundaryk(S) = n+ 1.

We can now state the second key lemma in the proof. As with Lemma 4, it has

three parts, with the last being derived from the first two by Divide-and-Conquer.

3.3. CORRECTNESS OF THE 2PCP 67

Lemma 5 Let S, T ⊆ {1, ..., n} and i, k ∈ S such that S∩T = ∅, k ≤ j for all j ∈ S

and for all j ∈ T : k < j. Abbreviate HT∪{i,1,...,k−1} to HT,i,k−1.

1. Dc
S,T,k |Pabort

i ≈HT,i,k−1 Da
{k,...,n}\(T∪{i}),T∪{1,...,k−1,i}.

2. Dc
S,T,k |Pcommit

i ≈HT,i,k−1 Dc
S\{i},waitk(T∪{i}),boundaryk(T∪{i}). Here

3. Dc
S,T,k |Pi≈HT,i,k−1Da

{k,...,n}\(T∪{i}),T∪{1,...,k−1,i}⊕Dc
S\{i},waitk(T∪{i}),boundaryk(T∪{i}).

Proof: The proof is rather similar to that of Lemma 4, but the processes involved

are somewhat more complicated.

Dc
S,T,k |Pabort

i ≡ (ν~ca)(vote i[ci, a] |Πj∈S\{i}C
wait
j |Πj∈T cj | ck.....cn.Ccommit

final

|Cor) |Πj∈T∪{1,...,k−1}decj[!commit j , !abort j]

| voteiright | !abort i
≈HT,i,k−1 (ν~ca)(a |Πj∈S\{i}C

wait
j | ck......cn.Ccommit

final |Cor)

|Πj∈T∪{1,...,k−1}decj [!commit j , !abort j] | !abort i
≈HT,i,k−1
a (ν~ca)(a |Πj∈S\{i}C

wait
j |Cor)

|Πj∈T∪{1,...,k−1}decj [!commit j , !abort j] | !abort i (3.1)

≈HT,i,k−1 (ν~ca)(a |Cor)

|Πj∈T∪{1,...,k−1}decj [!commit j , !abort j] | !abort i
≈HT,i,k−1 Πn

j=1decjright |Πj∈T∪{1,...,k−1}decj [!commit j , !abort j]

| !abort i
≈HT,i,k−1 Πn

j=k,j /∈T∪{i}decjright |Πj∈T∪{1,...,k−1,i}!abort i

≡ Πn
j∈S\{i}decjright |Πj∈T∪{1,...,k−1,i}!abort i

≡ Da
{k,...,n}\(T∪{i}),T∪{1,...,k−1,i}

(3.1) is a consequence of Lemma 3.3. All other substantial equations in the last

derivation are obtained by Lemma 3.1. This shows (1). As to the proof for (2), we

reason as follows.

Dc
S,T,k |Pcommit

i ≡ (ν~ca)(vote i[ci, a] |Πj∈S\{i}C
wait
j |Πj∈T cj | ck.....cn.Ccommit

final

|Cor) |Πj∈T∪{1,...,k−1,i}decj [!commit j , !abort j] | vote ileft
≈HT,i,k−1 (ν~ca)(ci |Πj∈S\{i}C

wait
j |Πj∈T cj | ck.....cn.Ccommit

final

|Cor) |Πj∈T∪{1,...,k−1,i}decj [!commit j , !abort j]

Now we have 3 possibilities. The first is that i > k. Then the equation is easily

completed.

... ≡ Dc
S\{i},T∪{i},k

= Dc
S\{i},waitk(T∪{i}),boundaryk(T∪{i})

68 CHAPTER 3. THE TWO PHASE COMMIT PROTOCOL

The second case is that i = k but S \ {i} 6= ∅. Assume the minimal element of

S \{i} is k+ t ≤ n. Then k+1, k+2, ..., k+ t−1 ∈ T , but k+ t /∈ T and we proceed

... ≡ (ν~ca)(Πj∈S\{i}C
wait
j |Πj∈T\{k,...,k+t−1}cj |Πt−1

j=1ck+j | ck.....cn.Ccommit
final

|Cor) |Πj∈T∪{1,...,k−1,i}decj[!commit j, !abort j]

≈HT,i,k−1 (ν~ca)(Πj∈S\{i}C
wait
j | ck+t.....cn.Ccommit

final

|Cor) |Πj∈T∪{1,...,i}decj [!commit j , !abort j]

≡ Dc
S\{i},waitk(T∪{i}),boundaryk(T∪{i}).

The last possibility is that i = k and T = {k + 1, ..., n}. Then

... ≡ (ν~ca)(Πj∈T\{k,...,n}cj |Πn
j=kcj | ck.....cn.Ccommit

final |Cor)

|Πn
j=1decj [!commit j, !abort j]

≡ (ν~ca)(Πn
j=kcj | ck.....cn.Ccommit

final |Cor)

|Πn
j=1decj [!commit j, !abort j]

≈HT,i,k−1 Ccommit
final |Πn

j=1decj[!commit j, !abort j]

≡ Πn
j=1decj left |Πn

j=1decj [!commit j , !abort j]

≈HT,i,k−1 Πn
j=1!commit j

≡ Dc
S\{i},waitk(T∪{i}),boundaryk(T∪{i})

For (3), we note that if Dc
S,T,k

l→ D is a transition that is not HT,i,k−1-hidden,

then one of the following must be true.

1. Either l = votej left for some j ∈ S and D ≡ Dc
S\{j},waitk(T∪{j}),boundaryk(T∪{j}).

With k′ = boundaryk(T ∪ {i}) and T ′ = waitk(T ∪ {i}) we then have

Da
{k,...,n}\(T∪{i}),T∪{1,...,k−1,i} ⊕ Dc

S\{i},T ′,k′

τ→ Dc
S\{i},T ′,k′

l→ Dc
S\{i,j},waitk′(T

′∪{j}),boundaryk′(T
′∪{j}).

2. Alternatively, l = votejright for some j ∈ S (so in particular, j /∈ {1, ..., k −
1, i} ∪ T) and D ≈HT,i,k−1

a Da
{k,...,n}\T,T∪{1,...,k−1}. In this case

Da
{k,...,n}\(T∪{i}),T∪{1,...,k−1,i} ⊕ Dc

S\{i},T ′,k′

τ→ Da
{k,...,n}\(T∪{i}),T∪{1,...,k−1,i}

3.3. CORRECTNESS OF THE 2PCP 69

While (1) is immediate from the syntax, the application of HT,i,k−1-expansion (2)

is verified by the following derivation.

D ≡ (ν~ca)(Πj∈SCwait
j | a |Πj∈T cj |Cand

k |Cor)

|Πi∈T∪{1,...,k−1}deci[!commit i, !abort i]

≈HT,i,k−1 (ν~ca)(Πj∈SCwait
j |Πj∈T cj |Cand

k |Πn
i=1deciright)

|Πi∈T∪{1,...,k−1}deci[!commit i, !abort i]

By Lemma 3.1.

... ≈HT,i,k−1
a Πn

i=1deciright |Πi∈T∪{1,...,k−1}deci[!commit i, !abort i]

Now we apply Lemma 3.3.

... ≈HT,i,k−1 Πn
i=k,i/∈Tdeciright |Πi∈T∪{1,...,k−1}!abort i

Finally Lemma 3.1 comes to our aid.

... ≡ Da
{k,...,n}\T,T∪{1,...,k−1}

Now we apply Theorem 16.1. ut

We can now combine Lemmas 4 and 5.

Proposition 1 C |Πn
i=1Pi ≈Hn Abort ⊕ Commit

Proof: From Lemma 5 we know that

Dc
{1,...,n},∅,1 |P1 ≈H{1} Dc

{2,...,n},∅,2 ⊕ Da
{2,...,n}{1}.

Now

Dc
{2,...,n},∅,2 |P2 ≈H{1,2} Dc

{3,...,n},∅,3 ⊕ Da
{3,...,n}{1,2}

Da
{2,...,n},{1} |P2 ≈H{2} Da

{3,...,n}{1,2}.

This together with Lemmas 4 and 5 means we can apply Theorem 16.3 to obtain

Dc
{1,...,n},∅,1 |P1 |P2 ≈H{1,2} Dc

{3,...,n},∅,3 ⊕ Da
{3,...,n}{1,2}.

Continuing this way, we eventually get

Dc
{1,...,n},∅,1 |P1 | ... |Pn ≈H{1,...,n} Dc

∅,∅,n+1 ⊕ Da
{1,...,n}

≡ Commit ⊕ Abort,

as required. ut

In the light of Theorem 15.1, Theorem 12 is an immediate consequence of Proposi-

tion 1 while Theorem 13 follows from Lemmas 4 and 5.

70 CHAPTER 3. THE TWO PHASE COMMIT PROTOCOL

3.4 What Lies Ahead?

We now abandon the benign world of error free interaction and create several new

and scary ones. We begin by adding time and timers. On its own that is insuffi-

cient for reaching the shores of DS, so we will also add sites and message failures in

Chapter 5. The resulting calculus is expressive enough for a “proper” 2PCP where

things can really go wrong and the recovery mechanisms of the protocol come into

their own. Nevertheless, the correctness proof just outlined remains largely func-

tional in this new setting, except for a proliferation of (unobservable) intermediate

states. Things become more challenging once we add process failure and recovery

in Chapter 7. We can still use Divide-and-Conquer, but less frequently, because the

equational steps will be much coarser.

Chapter 4

Timers

This chapter extends the asynchronous π-calculus with a timer construct and studies

some of the resulting equational properties.

4.1 Introduction

Here comes the first extension: time and their manipulation by way of timers. The

rationale for inclusion of timers is their ubiquity and indispensability in distributed

computation, where they are used mainly for the efficient implementation of pe-

riodic behaviour and error recovery. An instance of the latter is waiting for the

predetermined amount of time for an event to happen, for example waiting for the

arrival of an acknowledge packet in a network flow control algorithm or for commit-

ment of a transaction. An example of periodic behaviour is the time-slicing that

many preemptive operating systems employ to arbitrate between the competing

demands of processes and threads for CPU usage. But why use timers? CPUs have

tightly constrained temporal properties which could be used to implement cyclic

or waiting behaviour, for example by “busy waiting”. This usually means for the

CPU to execute a loop a predetermined number of times. Although clearly possible,

there is a drawback. While looping, the CPU cannot be used for other, more useful

computations, at least not without great effort. This is unacceptable, in particular

for OS schedulers, the quality of which is partly measured by just how much CPU

cycles it manages to assign to processes and threads.

This is where timers help. They are specialised time-keeping hardware (= clocks)

which is optimised for efficiently carrying out three jobs with minimal burden for

the CPU.

• Timers can be set or started. That means that the CPU requests to be notified

as exactly as possible, when a specified number of atomic time steps have

passed, measured from when the timer was started.

71

72 CHAPTER 4. TIMERS

• Timers can be stopped. In other words, the CPU can communicate to the

timer that it is no longer interested in being informed about the passing of

some number of time units.

• Timers can time-out, i.e. the CPU is informed, as requested, that a certain

number of time units have passed. This allows the CPU to execute some

predetermined code fragment to deal with this situation.

The advantage timers have over busy waiting lies in the the fact that these three

tasks are easy to realise physically and without burdening other computations,

in contrast to the implementation of the mechanism allowing busy-waiting, which

essentially hogs the CPU.

There are many ways of incorporating timers into π-calculi and we will survey

some but by no means all design alternatives in §4.8. Our proposal below seeks to

meet the following objectives

• The model should capture as accurately as possible the intuitive behaviour

of timers, as sketched above. Its way of formalising time-passing and how

that relates to computation should reflect the expectations of well-educated

programmers. In particular, paradoxical temporal behaviour, for example the

possibility of executing an infinite number of computational steps in finite

time, should be avoided.

• We would like to be able to express all temporal behaviour that can be algo-

rithmically described using conventional computer systems and languages. In

particular, OS schedulers and the TCP error recovery mechanism should be

easy to model. As we will point out at the end of this chapter, some previous

calculi seem to have problems in this area.

• As much as possible of the existing π-calculus theory should be retained. In

particular, we wish to retain the asynchronous π-calculus as a sub-calculus

and we would like to be able to use name passing synchronisation trees and

the associated notions of equivalence as key semantic tools. This requirement

rules out many previous approaches to timed process calculi that use time-

passing actions to broadcast the flow of time.

• Our calculus is emphatically not intended to just be able to model this or

that finite state protocol. Instead we would ultimately like to precisely and

concisely model realistic programming languages such as Java or C++ which

have timer constructs. It is likely that this would require extensions beyond

adding timers, but starting from non-compositional formalisms such as CCS

or CSP would probably stop our ambition in its tracks.

4.2. THE CALCULUS 73

It seems that many of the details of how timers are formalised do not matter, in the

sense that many but not all alternative formulations can encode each other. The

key problem with adding timers is that the resulting equational theory is drastically

different from its untimed counterpart. Many of the tools of untimed process theory

no longer work as conveniently as in their original setting.

Before presenting our timed extension of the π-calculus, it may be deemed ap-

propriate to clarify what we mean by “time”. Unfortunately, to this day, no truly

convincing account of the nature of time has been given, or if it has, it has not

been communicated to the present author. Instead of philosophical speculation, we

simply pretend we understand the concept well enough to be able to carry out our

programme. In particular, we will boldly assume without presenting any evidence,

that infinite linear orders such as N, Q or R are sufficiently good mathematical

models of time for our purpose.

4.2 The Calculus

We incorporate timers as a simple syntactic extension. Timers are processes of the

form

timert(x(~v).P,Q).

Here t > 0 is an integer determining the number of timesteps before the timer times

out. Q is the time-out continuation. It will be launched when the timer times out

without having been stopped. The time-in continuation is x(~v).P. By interaction

at x it is possible to stop the timer, as long as it has not already timed-out. By

stopping the timer, we force it to become P{~y/~v}, where ~y is the tuple of names

that has been passed by the stopping interaction at x.

In summary, here is the syntax of the resulting timed asynchronous π-calculus

πt.

P ::= x(~y).P input prefix

|| x〈~y〉 output

|| P|Q parallel composition

|| (νx)P hiding

|| timert(x(~v).P,Q) timer

|| !x(~v).P lazy replication

|| 0 inaction

Clearly the original asynchronous π-calculus is a subcalculus of πt. The reason

for choosing lazy replication over the unrestricted replication of Chapter 2 will be

explained in §4.3.1.

We must emphasise that timers like ours are hardly novel. Many other timed

calculi have similar constructs. It is just that the effect of the introduction of timers

74 CHAPTER 4. TIMERS

to π-calculi has not been studied. The main point of the present chapter is to fill

this gap.

4.3 Semantics

Next we describe how computation proceeds in our extended calculus. The key

questions are: what is the atomic unit of time and how is time passing communicated

to the timers?

The answer to the first question is that we count each computational step,

that is each name passing interaction, as taking one atomic step in time. This is

pretty much the only choice in π-calculi, which try to make things as simple as

possible: nothing apart from name-passing takes place, computation is just discrete

sequences of interactions. Of course this design decision prevents having elements of

R as durations. But while reals might be appealing from the point of view of most

physical models of space-time, conventional computers just have not got access to

arbitrarily precise durations, only to integer multiples of the atomic granularity of

time measurement, often milli- or microseconds. Our choice reflects this limitation.

The second question allows for more variation in its answer. Many models of

timed computation use specifically designated time-passing actions to communicate

the flow of time to all time-sensitive processes. Following this tradition would have

prevented recycling name-passing synchronisation trees as a semantic model, in

violation of our design goals. To avoid this sacrifice, our technical development of

timers is instead based on implicitly communicating the passing of time with the

help of the following timestepper function φ, which acts on processes.

φ(P) =

timert−1(Q,R) P = timert(Q,R), t > 1

R P = timert(Q,R), t ≤ 1

φ(Q)|φ(R) P = Q|R
(νx)φ(Q) P = (νx)Q

P otherwise.

Thus φ(P) ticks each timer in P by one discrete unit: this can be thought of as the

passing of, say, one micro-second in a global clock. Note that this function only acts

on non-guarded timers: it does not influence timers under prefixes. This essentially

indicates that a timer starts only after the guarding prefix is taken off, i.e. after the

process is launched into the environment. Timers guarded by prefixes are said to

be inactive, otherwise they are active. A consequence of this choice of timestepper

is that timers under a replication operator are inactive.

4.3. SEMANTICS 75

fn(timert(P,Q)) = fn(P) ∪ fn(Q)

fn(x〈~y〉) = {x, ~y}
fn(x(~y).P) = {x} ∪ (fn(P) \ {~y})

fn(!x(~v).P) = {x} ∪ (fn(P) \ {~y})

fn(P|Q) = fn(P) ∪ fn(Q)

fn((νx)P) = fn(P) \ {x}
fn(0) = ∅

bn(timert(P,Q)) = bn(P) ∪ bn(Q)

bn(x〈~y〉) = ∅
bn(x(~y).P) = bn(P) ∪ {~y}
bn(!x(~v).P) = {x} ∪ (fn(P) \ {~y})

bn(P|Q) = bn(P) ∪ bn(Q)

bn((νx)P) = bn(P) ∪ {x}
bn(0) = ∅

≡ is the least congruence satisfying the following rules.

P ≡α Q ⇒ P ≡ Q (νx)0 ≡ 0

P|Q ≡ Q|P P|0 ≡ P

P|(Q|R) ≡ (P|Q)|R x /∈ fn(P) ⇒ P|(νx)Q ≡ (νx)(P|Q)

(νx)(νy)P ≡ (νy)(νx)P

(Com)
x(~v).P | x〈~y〉 → P{~v/~y}

(Rep)
!x(~v).P | x〈~y〉 → !x(~v).P | P{~v/~y}

(TimeIn)
timert+1(x(~v).P,Q) | x〈~y〉→P{~y/~v}

(Par) P→P′

P|Q→P′|φ(Q)

(Res) P→Q

(νx)P→ (νx)Q

(Idle)
P→φ(P)

(Cong) P ≡ P′ P′→Q′ Q′ ≡ Q

P→Q

Figure 4.1: The inductive definitions of the dynamics of the timed asynchronous

π-calculus.

76 CHAPTER 4. TIMERS

4.3.1 Dynamics and Structural Congruence

The semantics of timers, summarised in Figure 4.1, requires just two new reduction

rules and some modification of one rule of the asynchronous π-calculus. As each

interaction ticks all active timers by one unit, (Par) must now be

(Par)
P→P′

P|Q→P′|φ(Q)

plus a symmetric variant. Clearly, when restricted to timer-free processes, the new

rule works exactly as the original rule in §2.3.1. The first entirely new rule describes

how a timer can be stopped.

(TimeIn)
timert+1(x(~v).P,Q) |x〈~y〉→P{~y/~v}

(Par) and (TimeIn) are probably inevitable, once one accepts our concept of timer

with its associated constraints. The last new rule is more controversial.

(Idle)
P→φ(P)

It allows the computation to pause or idle at arbitrary moments and, through

repeated application, for an unlimited period of time. Of course some idling is

unavoidable for timers to be efficient, for example for allowing the computation to

recover from errors such as deadlocks or lost messages, which would otherwise stall

it forever. Nevertheless, other formalisms are more restrictive and make progress

assumptions: they may for instance require that idling is permitted only if no

interaction is possible at all (this is the maximal progress assumption). We have

decided to leave all progress assumptions out of the basic semantics.

• They would compromise the pleasing simplicity of our extensions.

• They would diminish the flexibility of our approach which allows to model

systems that do not give progress guarantees. For example, many operat-

ing systems might suspend processes at unpredictable moments for arbitrary

amounts of time.

• We are not losing expressive power, as arbitrary progress requirements can be

modelled on top of the unconstrained model, as described briefly in §4.7.2.

• Finally, it is not clear to us that it is always computably feasible to decide, or

at least decide efficiently, whether a process is blocked and must idle or not.

This makes implementing progress assumptions problematic.

4.3. SEMANTICS 77

Lazy Replication

We can now see why lazy replication is a good idea in the presence of timers: if we

allowed unrestricted replication, the process

!timert(P,Q) ≡ timert(P,Q)|!timert(P,Q)

≡ timert(P,Q)|timert(P,Q)|!timert(P,Q)

≡ ...

could be formed and by mere application of the (Cong) rule one could start any

number of timers. This is not clean. We want to start a timer exactly when its

guarding input prefix is removed by interaction and we want to start at most one

timer per interaction. An alternative approach would be to consider timers under a

replication (but no input prefix) active, but that would cause all manner of problems

Free Input and Output Names

For some theorems later, it will be useful to be able to speak of free input names

and free output names. The former are those free names that are used as input

subjects without being bound.

fin(x〈~y〉) = ∅
fin(x(~v).P) = (fin(P) \ {~v}) ∪ {x}
fin(!x(~v).P) = (fin(P) \ {~v}) ∪ {x}

fin(timert(x(~v).P,Q)) = (fin(P) \ {~v}) ∪ {x} ∪ fin(Q)

fin((νx)P) = fin(P) \ {x},
fin(P|Q) = fin(P) ∪ fin(Q)

fin(0) = ∅
Free output names enjoy a symmetric definition.

fon(x〈~y〉) = {x}
fon(x(~v).P) = fon(P) \ {~v}
fon(!x(~v).P) = fon(P) \ {~v}

fon(timert(x(~v).P,Q)) = (fon(P) \ {~v}) ∪ fon(Q)

fon((νx)P) = fon(P) \ {x},
fon(P|Q) = fon(P) ∪ fon(Q)

fon(0) = ∅

Active Names

In addition to free and bound names, our later development also makes use of active

names. They are those names that can be used immediately for interaction.

78 CHAPTER 4. TIMERS

Definition 15 Now an(P), the active names of P are given by induction on the

syntax of P:

an(x〈~y〉) = {x}
an(x(~v).P) = {x}
an(!x(~v).P) = {x}
an(timert(x(~v).P,Q)) = {x}
an((νx)P) = an(P) \ {x},
an(P|Q) = an(P) ∪ an(Q)

an(0) = ∅.

Contexts

Definition 16 The definition of the set of contexts extends that in Chapter 2 with

C[·] ::= ... || timert(x(~v).C[·],P) || timert(x(~v).P, C[·]).

The definition of linear contexts and reduction contexts remain syntactically un-

changed because neither the time-in continuation nor the time-out continuation are

active in a timer.

It is often useful to be able to say that a context makes a reduction step, as for

example C[·] = x|x|y.[·] which can reduce to C ′[·] = y.[·], because no matter what

process P we choose, we can always derive C[P]→C ′[P]. The next definition clarifies

this and related matters.

Definition 17 If C[P]→C ′[P] for all P, then we write C[·]→C ′[·]. This generalises

to C[·]�C ′[·] as expected and we say C[·] generically reduces to C ′[·]. C[·] ↓x is

defined similarly. We define φ(C[·]) inductively, up to ≡.

φ(C[·]) =

[·] C[·] = [·]
φ(C ′)[·] |φ(P) C[·] = C ′[·] |P
(νx)φ(C ′)[·] C[·] = (νx)C ′[·]
C ′[·] C[·] = timer1(P, C ′[·])
timert(P, C ′[·]) C[·] = timert+1(P, C ′[·])
Q C[·] = timer1(x(~v).C ′[·],Q)

timert(x(~v).C ′[·],Q) C[·] = timert+1(x(~v).C ′[·],Q)

C[·] otherwise

Note that linear context, i.e. what we sloppily call contexts, are not closed under

timesteps.

4.3. SEMANTICS 79

Lemma 6 If C[·] is a reduction-context, then φ(C[P]) = φ(C)[φ(P)]. Otherwise

φ(C[P]) = φ(C)[P]. If C[·] → C ′[·] and C[·] is a reduction-context, then C[P] →
C ′[φ(P)]. Otherwise C[P]→C ′[P].

Proof: Straightforward from the definitions. ut

Barbs

As we have pointed out in Chapter 2, barbs are one tool to get equivalences. Un-

fortunately, it is not clear what barbs for timed calculi should look like. Following

the train of though that lead Milner and Sangiorgi [79] towards their now classic

notion of barb, one could argue as follows: timers do not add active names that

can be used for immediate output, hence the definition of strong and weak barbs

remains unchanged from §2.3.2. We reiterate it for convenient reference.

Definition 18 The strong barb ↓x for the timed π-Calculus is defined by the fol-

lowing rules.

x〈~y〉↓x
P↓x

P|Q↓x
P↓x x 6= y

(νy)P↓x
The corresponding (weak) barb ⇓x is also derived as in Chapter 2.

P⇓x iff P�Q↓x

We sometimes write P↓xy to mean P↓x and P↓y.

We state some useful facts about barbs.

Lemma 7 1. If P ≡ Q and P↓x then Q↓x.

2. P↓x if and only if P is of the form (ν~a)(x〈~y〉 |Q) where x /∈ {~a}.

Proof: (1) is by induction on the derivation of barbs and on the derivation of

P ≡ Q, while (2) can be proven by induction on the derivation of barbs. ut

It will turn out that this is exactly the right notion of barb.

Barbed Congruence

We can now define the standard barbed congruences.

Definition 19 A binary relation R on processes is a πt-congruence if it it an

equivalence, if ≡ ⊆ R and if P R Q implies C[P] R C[Q] for all contexts C[·].

Definition 20 A symmetric binary relation R on processes is a strong barbed

bisimulation if it is a πt-congruence and if P R Q implies the following.

80 CHAPTER 4. TIMERS

• For all names x: P↓x implies Q↓x.

• Whenever P→P′ then there is a process Q′ such that Q→Q′ and P′ R Q′.

It is easy to see that strong barbed bisimulations are closed under arbitrary unions.

The largest strong barbed bisimulation is called strong reduction congruence. We

denote it by
rc∼.

The corresponding notions of barbed bisimulation and reduction congruence
rc≈

are derived as explained in Chapter 2, by replacing ↓x with⇓x and → with�.

In contrast with untimed π-calculi, it will turn out that the addition of timers forces
rc≈ and

rc∼ to coincide.

Definition 21 A binary relation R on processes is time-closed if (P,Q) ∈ R im-

plies (φ(P), φ(Q)) ∈ R.

We will later show that
rc≈ and

rc∼ are time-closed.

Before continuing with the transitional semantics, we present one example of a

strong barbed bisimilarity, which will play a role later.

Example 1 For all processes P:

P
rc∼ P | (νx)x.

To see that this is the case, define

R = {(C[P], C[P | (νx)x]) |P is a process, C[·] is a context}∪ ≡

It is easy to see that R preserves strong barbs and is strongly reduction-closed.

4.3.2 Transitional Semantics

Figure 4.2 inductively defines the synchronous labelled transitions for πt, as a first

attempt at providing tools for efficient reasoning about (strong) reduction congru-

ence. Transitions are derived from those for the asynchronous π-calculi in the same

way that we derived reductions for πt from those for πa, by modification of (Par)

and addition of a rule for stopping a timer and one for idling.

Theorem 17 Transition and reduction semantics coincide, that is: → =
τ→ ≡.

Proof: Using an intermediate labelled transition system along the lines of [75]. ut

4.3. SEMANTICS 81

(Out)
x〈~y〉 x〈~y〉→ 0

(In)
x(~v).P

x(~z)→ P{~z/~v}
(Rep)

!x(~v).P
x(~z)→ P{~z/~v} | !x(~v).P

(TimeIn)
timert+1(x(~v).P,Q)

x(~z)→ P{~z/~v}

(Par)
P

l→ P′ bn(l) ∩ fn(Q) = ∅
P|Q l→ P′|φ(Q)

(Com)
P

x〈(ν~y)~z〉→ P′ Q
x(~z)→ Q′ {~y} ∩ fn(Q) = ∅

P | Q
τ→ (ν~y)(P′ | Q′)

(Res)
P

l→ Q x /∈ fn(l) ∪ bn(l)

(νx)P
l→ (νx)Q

(Open)
P

x〈(ν~y)~z〉→ Q v 6= x, v ∈ {~z} \ {~y}
(νv)P

x〈(ν~y,v)~z〉→ Q

(Idle)
P

τ→ φ(P)

(Alpha) P′ l→ Q P ≡α P′

P
l→ Q

Figure 4.2: The standard synchronous transitions for the asynchronous timed π-

calculus.

82 CHAPTER 4. TIMERS

Basic Facts

The next lemma lists various basic facts about πt that will be used later.

Lemma 8 1. P contains active timers if and only if P 6= φ(P).

2. If P�Q then fn(Q) ⊆ fn(P).

3. Assume that P 1 Q and P|Q�n R. Then there must be processes Q′,R′ such

that P ≡ Q′|R′, P�n P′, Q�n Q′ and P′
1 Q′.

4. P↓x iff P ≡ P′ x〈(ν~y)~z〉→ Q for some appropriate ~y, ~z, P′ and Q.

5. Let fn(P) ⊆ {~a} and C[·] = (ν~a)([·] | timer1(x(~v).y, 0)) where b is fresh. Then

C[P]→P↓b iff P↓x.

6. If P
x〈(ν~y)~z〉→ Q then {~y} ⊆ {~z}.

7. φ(P{x/v}) = φ(P){x/v}.

8. If P ≡ Q then φ(P) ≡ φ(Q).

9. Every strong barbed bisimulation is a barbed bisimulation.

Proof: All are straightforward by appropriate inductions, sometimes nested. ut

Examples

Before moving on, let’s consider a few πt processes and their reductions. The

following process implements a delay operator :

delayt(P) = (νx)timert(x.0,P)

where x /∈ fn(P). For t units of time, it cannot interact at all, it behaves like

0, but then it evolves into P. It is comparable to the sleep operator in Java

or POSIX compliant languages. It can be used to implement cyclic behaviour:

(νx)(x | !x.delayt(P |x)) (x /∈ fn(P)) which can spawn P every t + 1 units of time.

The delay operator will be crucial in the proof of Theorem 25. Here is an example

4.3. SEMANTICS 83

reduction sequence that shows how the delay operator works

(νx)(x |x.y) | delay3(y.a) = (νx)(x |x.y) | (νx)timer3(x.0, y.a)

→ y |φ((νx)timer3(x.0, y.a))

= y | (νx)timer2(x.0, y.a)

→ y |φ((νx)timer2(x.0, y.a))

= y | (νx)timer1(x.0, y.a)

→ y |φ((νx)timer1(x.0, y.a))

= y | y.a
→ a

→ a

→ ...

The first timestep is induced by the interaction that launches y. But once that has

happened there are not further interactions, that could tick the clock. Hence we

have to rely on (Idle) for the next two reductions. When the process has reduced

to become a, we can again only use (Idle).

The second example uses delay operators to obtain cyclic behaviour.

(νx)(x | !x.delayt(P |x)) → (νx)(!x.delayt(P |x) | delayt(P |x))

→ (νx)(!x.delayt(P |x) | delayt−1(P |x))

...

→ (νx)(!x.delayt(P |x) | delay1(P |x))

→ P | (νx)(x | !x.delayt(P |x))

...

→ P |φt+1(P) | (νx)(x | !x.delayt(P |x))

...

→ P |φt+1(P) |φ2(t+1)(P) | (νx)(x | !x.delayt(P |x))

...

Here φn(P) abbreviates the n-fold application of φ(·). If P is timer-free, then

P |φt+1(P) |φ2(t+1)(P) is syntactically identical to P |P |P. Of course the processes

φn(P) can start to interact instead of just waiting for time to pass. But that does

not affect the delay operator, because time passes uniformly, regardless of what

caused the time steps.

The next example shows that we only need timer1(x(~v.P),Q) as timing construct.

As all others can be built up by iteration of this basic form. Define

T1 = timer1(x(~v).P,Q) Tt+1 = timer1(x(~v).P,Tt).

84 CHAPTER 4. TIMERS

Then Tt
rc∼ timert(x(~v).P,Q) for all t > 0. In lieu of a proof for this equation, we

show an example of how T3 and timer3(x(~v).P,Q) reduce in the same way.

T3 = timer1(x(~v).P,T2)

→ φ(timer1(x(~v).P,T2))

= T2

= timer1(x(~v).P,T1)
x(~y)→ P{~y/~v}

But timer3(x(~v).P,Q) can match this step by step.

timer3(x(~v).P,Q) → φ(timer3(x(~v).P,Q))

= timer2(x(~v).P,Q)
x(~y)→ P{~y/~v}.

The proof of the equality above essentially uses the idea of step by step simulation.

4.4 Equivalences

We have now assembled the basics of πt. The next step is to investigate its prop-

erties. This is an open-ended endeavour and we can only take a first step here, by

looking at some canonical equivalences. As pointed out in §2.3.2 there are many

candidates, but the maximum sound πt-theory, should it exist, would be one of

the most important. The rest of this chapter is about characterising the maxi-

mum sound πt-theory in various ways, culminating in its presentation as a labelled

bisimilarity for some suitable asynchronous transition system.

4.4.1 The Maximum Sound Theory for πt

We start by defining sound πt-theories as a consistent and reduction-closed binary

congruence on processes that identifies all insensitive processes cf. §2.3.2 and [61].

We want to show that there is a unique maximum such theory which can be ob-

tained by summing all sound πt-theories. The key issue is to show that this sum is

consistent. The overall architecture of the proofs follows [61] but the details differ

significantly due to the existence of timers. The presentation below is close to [61]

to facilitate comparison. For this reason we are modifying the definition of “sound

theory” (cf. 3) slightly. It will be shown later that both definitions induce the same

relation.

Remark 1 All results in this chapter rely only on constructions that just use local

processes. This will allow the transfer of results to other calculi in later chapters. In

4.4. EQUIVALENCES 85

particular, every result also hold for πloc
t , the calculus obtained from πt by restriction

to local processes.

It should be possible to prove a general metalogical result that guarantees the

stability of our results under restrictions to local processes.

Basic Definitions and Facts

Definition 22 A logic is a pair L = (F,`) comprising a set F of formulae and

an entailment relation ` ⊆ P(F) × F 2. In this chapter, F will always be pairs of

processes in πt. Such pairs will be often written P = Q. A set T of formulae is a

πt-theory, or simply a theory and its members are axioms. We write T ` P = Q

whenever (T ,P = Q) ∈ ` and call P = Q a theorem or consequence of T in L. If

T ` P = Q is not derivable, we write T 6` P = Q. The set of all consequences of

T in L is denoted | T |L. A logic is monotonic if T ⊆ T ′ implies | T | ⊆ | T ′ |.
References to the underlying logic L will often be omitted.

We say T is a subtheory of T ′ if |T | ⊆ |T ′ |. T is consistent if |T | does not equate

all processes, otherwise it is inconsistent. T is reduction-closed if T ` P = Q and

P�P′ implies the existence of a reduction sequence Q�Q′ such that T ` P′ = Q′.
T is strongly reduction-closed if T ` P = Q and P→P′ implies the existence of a

reduction Q→Q′ such that T ` P′ = Q′.

Given a collection {Ti}i∈I of sets of axioms, we write Σi∈ITi for the theory

obtained from the union of the axiom sets.

Definition 23 A πt-logic T is a logic where entailment is inductively defined for

arbitrary theories T using the following rules.

1. (P,Q) ∈ T ⇒ T ` P = Q.

2. P ≡ Q ⇒ T ` P = Q.

3. T ` P = Q ⇒ T ` Q = P.

4. T ` P = Q,T ` Q = R ⇒ T ` P = R.

5. If T ` P = Q and C[·] is a context then T ` C[P] = C[Q].

Unlike most of our other definitions towards a notion of reduction congruence,

the account of πt-congruence above is not canonical because it has a non-trivial

variant that is equally appealing. Legitimate variation concerns closure under (non-

injective) renaming. In Definition 23 we stipulated T ` P = Q to imply T ` C[P] =

C[Q] for arbitrary contexts C[·]. This requires not only

T ` P = Q ⇒

T ` x(~v).P = x(~v).Q

T `!x(~v).P =!x(~v).Q

T ` timert(x(~v).P,R) = timert(x(~v).Q,R)

86 CHAPTER 4. TIMERS

to hold but also implies (Proposition 4)

T ` P = Q ⇒ T ` P{~x/~v} = Q{~x/~v}.

We could follow [61] and be less demanding. Instead of requiring πt to be closed

under

T ` P = Q ⇒

T ` x(~v).P = x(~v).Q

T `!x(~v).P =!x(~v).Q

T ` timert(x(~v).P,R) = timert(x(~v).Q,R)

we would simply ask the following to hold.

(∀{~x/~v}.T ` P{~x/~v} = Q{~x/~v}) ⇒

T ` x(~v).P = x(~v).Q

T `!x(~v).P =!x(~v).Q

T ` timert(x(~v).P,R) = timert(x(~v).Q,R)

For various π-calculi this alternative account of congruence yields different equiva-

lence. For asynchronous π-calculi, our Definition 23 is somewhat more convenient,

because it allows a nice characterisation of the largest sound theory as barbed con-

gruence. (Theorem 21), while the “less demanding” definition “scales” more grace-

fully to synchronous calculi or the inclusion of unrestricted sums. The question of

the coincidence of the two induced equivalences in πt-calculus is open.

Lemma 9 1. A binary relation R on processes is a πt-congruence iff R = | R |.

2. Each πt-logic is monotonic.

3. | T | ` P = Q if and only if T ` P = Q; i.e. || T || = | T |.

4. Assume T is a consistent, reduction-closed congruence, containing ≡. Then

T ` P = Q iff (P,Q) ∈ T .

Proof: By induction on the derivation of consequences. ut

Note that in (3) above, || · || means applying | · | twice. The next lemma provides

some useful characterisations of reduction-closure and also paves the way for a better

understanding of an important operation on theories, their sum.

Lemma 10 Let T be a πt theory.

1. T is reduction-closed if and only if, whenever T ` P = Q, then, for all contexts

C[·], C[P]�P′ implies C[Q]�Q′, for some Q′ with T ` P′ = Q′.

2. T is reduction-closed if and only if, whenever T ` P = Q, then, for all contexts

C[·], C[P]→P′ implies C[Q]�Q′, for some Q′ with T ` P′ = Q′.

4.4. EQUIVALENCES 87

3. Let T = Σi∈ITi. T ` P = Q if and only if there are i1, ..., in ∈ I such that

Ti1 ` P0 = P1, ...Tin−1 ` Pn−2 = Pn−1, Tin ` Pn−1 = Pn,

where P = P0 and Pn = Q.

4. If Ti is reduction-closed for all i ∈ I, then so is Σi∈ITi.

5. | Ti | ⊆ |Σi∈I Ti | for all i.

Proof: (1) and (2) can be proven exactly as [61, Proposition 3.2] by nested in-

ductions on the structure of C[·], on the number of reduction steps in C[P]�P′

and on the derivation of these reduction steps. The proof of (3) follows [61, Lemma

3.3]: one direction is by induction on the derivation of Σi∈ITi ` P = Q while the

reverse follows from the monotonicity of πt-logics. In all cases, the adaptation to the

extended syntax is straightforward. (4) is an immediate consequence of (3) while

(5) is immediate, using the monotonicity of πt-logics again. ut

Insensitivity and Sound Theories

As we show later (Theorem 18), there is no maximum consistent, reduction-closed

theory. However, if we are just a tiny bit more demanding and also ask our

reduction-closed theories to identify at least a substantial number of processes that

could not possibly interact with their environment, then the problem disappears.

The beauty of this solution, which was adapted from λ-calculi [11] to processes by

Honda and Yoshida [61], is that it does not require any form of observation predi-

cate (unless you count an(·)). It can be defined solely with reference to equations

that we expect to be contained in any reasonable reference anyway.

Definition 24 A process P is insensitive if P�Q implies an(Q) = ∅.

The next lemma suggests an alternative definition of insensitivity that does not

require reference to free names. We conjecture that it induces the same equivalence

as our definition.

Lemma 11 If P is insensitive then the following holds. For all reduction contexts

C[·], if C[P]�Q then there is a reduction context C ′[·] and an insensitive process

P′ such that P�P′, C[·]�C ′[·] and Q ≡ C[P′]. In particular, if P�Q and P is

insensitive, then so is Q. The converse does not hold.

Proof: By inductions on the number of reduction steps in C[P]�Q, the structure

of C[·] and the derivation of individual reduction steps. For a counterexample,

consider P = fwxx. ut

88 CHAPTER 4. TIMERS

Definition 25 A πt theory is sound if it is consistent, reduction-closed and equates

all insensitive terms.

The following lemma summarises some elementary facts about sound theories that

will be useful later.

Lemma 12 Let T be a sound theory. Assume T ` P1 = P2, T ` Q1 = Q2, Pi 1 Qi

for i = 1, 2 and P1|Q1�n1 R1. By definition, this implies the existence of a reduction

sequence P2|Q2�n2 R2 such that T ` R1 = R2. In addition

1. Ri ≡ P′
i|Q′

i, P′
i 1 Q′

i, Pi�ni P
′
i and Qi�ni Q

′
i for i = 1, 2.

2. If P1 1 Q2 and P2 1 Q1, then T ` P′
1 = P′

2 and T ` Q′
1 = Q′

2.

Proof: (1) is immediate by reduction-closure and Lemma 8.3. For (2), let {~x} =

fn(P′
1) ∪ fn(P′

2). By assumptions, we can derive

T ` P′
1|Q′

1 = P′
2|Q′

2 ⇒ T ` (ν~x)(P′
1|Q′

1) = (ν~x)(P′
2|Q′

2)

⇒ T ` Q′
1|(ν~x)P′

1 = Q′
2|(ν~x)P′

2

⇒ T ` Q′
1|0 = Q′

2|0
⇒ T ` Q′

1 = Q′
2

as (ν~x)P′
i is insensitive. T ` P′

1 = P′
2 can be established mutatis mutandis. ut

Of course we would like to know just what kind of processes are equated by sound

theories. Unfortunately, this question does not have a straightforward answer. In-

stead we begin at the “opposite end” and exhibit some processes that will never be

equated.

Definition 26 Processes P and Q are incompatible, written P # Q if for all sound

theories T : T 6` P = Q.

Lemma 13 1. If P⇓x but Q 6⇓x then P # Q.

2. Let T be sound. If T ` P = Q, then P⇓x if and only if Q⇓x.

3. If C[·] is a context and C[P] # C[Q] then P # Q.

Proof: For (1), choose a sound theory T and assume R is an arbitrary process

with fn(P) ∪ fn(Q) = {~y}. Let z be a fresh name and define

C[·] = (νz)(z.R | (ν~y)([·] |x(~v).z)).

Clearly, C[P]�R | (ν~y)P′ for some appropriate P′. Clearly, (ν~y)P′ is insensitive, so

T ` R | (ν~y)P′ = R. On the other hand C[Q] is insensitive, as one can easily show,

so by reduction-closure and soundness, T ` R = 0 for all R, in contradiction to

the consistency of T . Now (2) is an immediate consequence of (1) and (3) is easy

because T ` P = Q is by definition closed under contexts. ut

4.4. EQUIVALENCES 89

Making Use of Time: Transition- and Reduction Spotters

We have now assembled enough tools to embark on contrasting sound theories with

those that are merely consistent and reduction-closed. We begin by sharpening

Lemma 13.

Proposition 2 1. If P↓x but Q 6↓x then P # Q.

2. Let T be sound. If T ` P = Q, then P↓x if and only if Q↓x.

Proof: Assume T is a sound theory. Choose an arbitrary process R and let a be

a fresh name. Define

C[·] = (νa)(a.R | (ν~y)([·] | timer1(x(~v).a, 0)))

where {~y} = fn(P) ∪ fn(Q). Then

C[P]→ (νa)(a.R | a | (ν~y)P′)→R | (ν~y)P′ where T ` R = R | (ν~y)P′

for some appropriate P′ such that (ν~y)P′ is insensitive. On the other hand, C[Q]

has only one form of reduction step:

C[Q]→ (νa)(a.R | (ν~y)Q′) because Q→Q′.

Hence C[Q] is insensitive, so reduction-closure implies T ` R = 0 for all R, in

violation of T ’s consistency. This establishes (1) with (2) being an immediate

consequence. ut

The kind of reasoning used in the proof of Proposition 2 will be pervasive in the rest

of this chapter. To make life easier we summarise the main tools in the following

definition.

Definition 27 Let t > 0 and x, y, z be names such that a /∈ {x, y, z}.

RStxy = (νa)(a | timert(a.x, y)) RStxyz = (νa)(a | timert(a.x,RS1
yz))

These processes are called reduction spotters.

The content of the next lemma is trivial but almost all subsequent proofs in this

chapter rely on it or could be made to do so. In fact, it is possible to base an

axiomatic treatment of timed process calculi almost exclusively on the properties of

RS1
xyz, as listed below, although we will not do so in this text.

Lemma 14 Let x, y, z be distinct names. If RStxyz �n P then exactly one of the

following is true.

(1) P ≡ x, n ≥ 1. (2) P ≡ y, n > t. (3) P ≡ z, n > t.

(4) P ≡ RS1
yz, n = t. (5) P ≡ RSt−nxyz , 0 ≤ n < t.

90 CHAPTER 4. TIMERS

In addition, the following implications hold.

(6) P↓x ⇒ 0 < n ≤ t. (7) P↓y ⇒ n = t + 1.

(8) P↓z ⇒ n = t+ 1. (9) P⇓x ⇒ 0 ≤ n ≤ t.

(10) (P⇓y or P⇓z) ⇒ 0 ≤ n ≤ t+ 1. (11) (P⇓xy or P⇓xz or P⇓yz)
⇒ 0 ≤ n ≤ t.

Proof: Immediate from the definitions. ut

The next lemma shows how drastically the addition of timers changes the re-

sulting theory: reduction-closure collapses into strong reduction-closure.

Proposition 3 Let T be a consistent theory that identifies all insensitive terms.

Then the following statements are equivalent.

1. T is reduction-closed.

2. T is strongly reduction-closed.

3. Whenever T ` P = Q and P�n P′ then there must be Q′ such that Q�n Q′

and T ` P′ = Q′.

4. For all contexts C[·]: whenever T ` P = Q and C[P]→P′ then some Q′ must

exist such that C[Q]→Q′ and T ` P′ = Q′.

Proof: We only show the non-trivial implication (1 ⇒ 2). From the assumptions,

T ` P = Q and P→P′ we can infer

T ` P|RS1
xyz = Q|RS1

xyz and P|RS1
xyz→P′|RS1

yz

where x, y, z are distinct and fresh names. Then reduction-closure together with

Lemma 12 guarantees a reduction sequence

Q|RS1
xyz�n Q′|R′

where Q�n Q′, RS1
xyz�n R′, T ` P′ = Q′ and T ` RS1

yz = R′. Then R′ ⇓yz, so

R′ ≡ RS1
yz and n = 1 (by Lemmas 13 and 14). ut

Next we establish a crucial property of sound theories that follows from congruency,

even in untimed calculi. However, due to the possibility of idling, we need to engage

timers in the proof.

Proposition 4 (renaming-closure) If T ` P = Q then for all appropriate ~x, ~v:

T ` P{~x/~v} = Q{~x/~v}.

4.4. EQUIVALENCES 91

Proof: From the assumptions we can infer

T ` (νa)(a〈~x〉 | timer1(a(~v).P, b)) = (νa)(a〈~x〉 | timer1(a(~v).Q, b))

where a, b are fresh and distinct. The process on the left of this equation reduces

to P{~x/~v} in one step. In the light of Proposition 2 and strong reduction-closure,

the only way this reduction can be matched is if the process on the right one-step

reduces to Q{~x/~v}, in which case T ` P{~x/~v} = Q{~x/~v}, as required. ut

We can now also strengthen Lemma 12.

Lemma 15 Let T be a sound theory. Assume T ` P1 = P2, T ` Q1 = Q2, Pi 1 Qi

for i = 1, 2 and P1|Q1�n R1. This implies the existence of a reduction sequence

P2|Q2�n R2 such that T ` R1 = R2. In addition

1. Ri ≡ P′
i|Q′

i, P′
i 1 Q′

i, Pi�n P′
i and Qi�n Q′

i for i = 1, 2.

2. If in addition P1 1 Q2 and P2 1 Q1, then T ` P′
1 = P′

2 and T ` Q′
1 = Q′

2.

Proof: By induction on n. For the inductive step assume P1|Q1 →R1�n R′
1. By

Proposition 3 there is R2 with T ` R1 = R2 where P2|Q2 → R2. By Lemma 8.3,

Ri ≡ P′
i|Q′

i, Pi→P′
i, Qi→Q′

i and P′
i 1 Q′

i. Now apply the (IH). The proof of (2) can

be lifted verbatim from the corresponding proof of Lemma 12.2. ut

The following proposition proves that sound theories behave gracefully under time-

passing, in the sense that equations are not invalidated by the application of φ.

Proposition 5 If T is a sound theory, then T is time-closed.

Proof: Assume that T ` P = Q. Define

C[·] = [·] | (νx)(x.a |x)

where a is a fresh name. Then C[P] → φ(P) | a and by strong reduction-closure

C[Q] → Q′ for some appropriate Q′ with Q′ ↓a (Proposition 2.2). It is easy to

see that this is only possible if Q′ ≡ φ(Q) | a. Applying Lemma 15 then yields

T ` φ(P) = φ(Q). ut

Existence of the Maximum Sound Theory

As pointed out before, the key issue in proving that the maximum sound theory

exists is to show that soundness is preserved under the formation of sums. The next

definition and lemma do just that.

Definition 28 Let S be a set of processes. A theory T isolates S if T ` P = Q

and P ∈ S together imply Q ∈ S.

92 CHAPTER 4. TIMERS

Lemma 16 Let T be a theory.

1. If T isolates a set that is neither empty nor universal, then T is consistent.

2. If Ti isolates S for each i ∈ I then Σi∈ITi also isolates S.

3. Let T be sound. Then T isolates the sets {P |P ⇓x} and {P |P ↓x} for each

name x, neither of which is empty or contains all processes.

4. Let Ti be sound for each i ∈ I. Then Σi∈ITi is also sound.

Proof: (1) is immediate from the definitions. (2) is immediate by Lemma 10.3, (3)

is by Lemma 13.2. In the light of 10.4, we need only show that Σi∈ITi is consistent

to establish (4): choose x ∈ N . By (3) we know that Ti isolates {P |P⇓x}, so Σi∈ITi
does the same by (2). Now (1) guarantees soundness. ut

We can now state our first major result in this chapter and prove half of it.

Theorem 18 1. Define Tmax = Σ{T | T is a sound theory}. Then Tmax is the

unique sound theory such that T ⊆ Tmax for all sound theories T . Tmax is

called the maximum sound theory.

2. There is no maximum consistent, reduction-closed theory.

Proof: By construction, Tmax contains every sound theory as a subset, so we need

only establish soundness. But that follows from Lemma 16.4. (2) will be shown in

Section 4.5. ut

Decomposition Theorems

Decomposition Theorems are sometimes convenient for reasoning. They allow to

conclude that processes P and Q are equal, provided C[P] and C[Q] are. Of course

C[·] cannot range over all context, just over some restricted class, for otherwise the

equality holding between !x|!x and x|!x in all reasonable equivalences would force

!x and x to be equated, too. But that would not be good! Another problematic

example is that we have T ` x〈~y〉 |x〈~y〉 = delay1(x〈~y〉) |x〈~y〉 but not T ` x〈~y〉 =

delay1(x〈~y〉) as we shall verify in Example 7 later.

The main problem with Decomposition Theorems is that they are hard to come

by. At the time of writing, they are only known in very restricted forms, such as

Lemmas 12 and 15. Although we believe that a better understanding of just what

kind of decompositions are and are not possible would be desirable, we do not to

lift that stone here. Instead we prove some rather peculiar special cases that will

be vital later on.

How are Decomposition Theorems proven? It seems unreasonable to expect

that T ` P = Q just because T ` C[P] = C[Q] – sound theories are not required

4.4. EQUIVALENCES 93

to be closed under decomposition. We will have to construct an appropriate second

theory from the first for this purpose. The next lemma gives some tools for showing

how to verify that the candidate relations are indeed sound theories.

Definition 29 Let R be a binary relation on processes. Then

C[R] = {(C[P], C[Q]) | (P,Q) ∈ R, C[·] is an arbitrary context}

In addition, please recall (·)∗, the transitive closure operation.

R preserves context-closure if (P,Q) ∈ R implies (C[P], C[Q]) ∈ R for all C[·].
R has strong-barb-preservation if (P,Q) ∈ R implies: P↓x⇔ Q↓x.

A function F on binary relations of processes is expansive if R ⊆ F (R) for all

appropriate R. F preserves # if R ∩ # = ∅ implies F (R) ∩ # = ∅. F preserves

simple inequalities if (x〈~y〉, 0) /∈ T implies (x〈~y〉, 0) /∈ F (T). F preserves context-

closure if the context-closure of F (R) is implied by that of R. F preserves time-

closure if R’s being time-closed, implies time-closure of F (R). F preserves strong

reduction-closure if R’s strong reduction-closure implies that of F (R). F preserves

strong-barb-preservation, if the strong-barb-preservation of R implies that of F (R).

Lemma 17 The functions C[·] and (·)∗ have the following properties.

• C[·] is expansive and preserves symmetry, time-closure, #, strong-barb-preservation,

simple inequalities and context-closure. In addition, if R is strongly reduction-

closed, time-closed, contains ≡ and (P,Q) ∈ R implies (P|R,Q|R) ∈ R for all

R (we call this property |-closure), then C[R] is strongly reduction-closed.

• (·)∗ is expansive and preserves symmetry, transitivity, time-closure, context-

closure, #, strong-barb-preservation and strong reduction-closure. In addi-

tion, when restricted to strong barb preserving relations, (·)∗ preserves simple

inequalities.

Proof: It is immediate that C[·] and (·)∗ are expansive and preserve symmetry.

For C[·]’s preservation of simple inequalities, assume that (x〈~y〉, 0) /∈ R. If we

had (x〈~y〉, 0) ∈ C[R], that mean there was a context C ′[·] and (P,Q) ∈ R such

that C ′[P] = 0 and C ′[Q] = x〈~y〉. A quick induction on the structure of C ′[·] show

that this is impossible without (x〈~y〉, 0) ∈ R, contradicting our assumption. Next,

assume that P#Q, (P,Q) /∈ R but (P,Q) ∈ C[R]. This implies the existence of

(P′,Q′) ∈ R and a context C[·] such that P = C[P′] and Q = C[Q′]. If # ∩ R = ∅
then T ` P′ = Q′ for some sound theory T , hence also T ` P = Q, violating our

assumptions. But then C[·] must preserve #. Finally, assume that (P0,Pn) ∈ R∗∩#

while #∩R = ∅. Then we can find (P0,P1), ..., (Pn−1,Pn) ∈ R with Pi#Pi+1. Hence

there must be sound theories (Ti) such that Ti ` Pi = Pi+1. But ΣiTi is a sound

theory (Lemma 16.4) with ΣTi ` P0 = Pn, which is a contradiction. This means that

94 CHAPTER 4. TIMERS

(·)∗, too, preserves #. To see that (·)∗ preserves simple inequalities, let (0, x〈~y〉) /∈ R
but (0, x〈~y〉) ∈ R∗, in other words there must be (Pi,Qi) ∈ R, (i = 1, ..., n) such

that 0 = P1, Qi = Pi+1 and Qn = x〈~y〉. But then we can find i ∈ {1, ..., n} such

that Pi 6↓x but Qi ↓x, violating R’s preservation of strong barbs.

RegardingC[·]’s preservation of strong-barb-preservation, assume that (C[P], C[Q]) ∈
C[R]. If C[·] is not a reduction context, then clearly C[P]↓x⇔ C[Q]↓x. Otherwise,

if C[·]↓x, then C[P]↓x and C[Q]↓x. Finally, if C[·] 6↓x, then C[P]↓x⇔ P↓x⇔ Q↓x⇔
C[Q]↓x, as a straightforward induction on the derivation of barbs shows. For (·)∗,

if we have (P0,Pn) ∈ R∗ because (P0,P1), ..., (Pn−1,Pn) ∈ R, and P0 ↓x then R’s

strong-barb-preservation allows to infer P1 ↓x, ...,Pn ↓x.

Time-closure of C[·] comes from Lemma 6, while that of (·)∗ is immediate from

the definitions.

Preservation of transitivity by (·)∗ is immediate.

For context-closure of (·)∗, choose a context C[·] and let (P0,Pn+1) ∈ C[R]

because (P0,P1), ..., (Pn,Pn+1) ∈ R. Then (C[P0], C[P1]), ..., (C[Pn], C[Pn+1]) ∈ R
by assumption, so (C[P0], C[Pn+1]) ∈ R∗. Context-closure of C[·] is by definition.

Assume R is strongly reduction-closed and P→P′ in the remainder of this para-

graph. If (P,Q) ∈ R∗ there there must be (P0,P1), ..., (Pn−1,Pn) ∈ R where P0 = P

and Pn = Q. Iterating R’s reduction closure, we get reductions P0→P′
0, ...,Pn−1→P′

n

with (P′
0,P

′
1), ..., (P′

n−1,P
′
n) ∈ R. Thus (P′

0,P
′
n) ∈ (R)∗, as required, showing the

preservation of strong reduction-closure by (·)∗. Finally, we deal with C[·] and its

relation to strong reduction-closure. Let (P,Q) ∈ R and assume that C[P]→P′.

Here C[·] is an arbitrary context, not to be confused with, or dependent on the

function C[·]. We proceed by induction on the structure of C[·]. We repeatedly use

Lemma 6 tacitly.

C[·] = [·]. Immediate by strong reduction closure of R.

C[·] = C ′[·]|R. We use induction on the derivation on C[P]→P′.

R→R′ implies C ′[P]|R→φ(C ′[P])|R′. We have two cases. If C[·] is a reduction-

context, then reduction is C ′[P]|R→φ(C ′)[φ(P)])|R′. This is matched by

C ′[Q]|R → φ(C ′)[φ(Q)])|R′, because by time-closure (φ(P), φ(Q)) ∈ R,

hence (φ(C ′)[φ(P)])|R′, φ(C ′)[φ(Q)])|R′) ∈ C[R]. Otherwise C[·] is not a

reduction-context. This case is similar, except that we do not apply φ

inside φ(C ′[·]).
C ′[·]→C ′′[·] implies C ′[P]|R→P′. There are two subcases. If C ′[·] is a reduc-

tion context, C ′[P]|R→C ′′[φ(P)]|φ(R) is the reduction step. Then also

C ′[Q]|R→C ′′[φ(Q)]|φ(R). By R’s time-closure we have

(C ′′[φ(P)]|φ(R), C ′′[φ(Q)]|φ(R)) ∈ C[R]

4.4. EQUIVALENCES 95

as required. Otherwise C ′[·] is not a reduction context. This case is very

similar, except that we do not apply φ inside φ(C ′[·]).
C ′[·] interacts with R. Again we have two subcases. If C ′[·] is a reduction

context, then our reduction is of the form C ′[P]|R→ (ν~x)(C ′′[φ(P)]|R′)

which is matched by C ′[Q]|R → (ν~x)(C ′′[φ(Q)]|R′), using time-closure.

The other subcase, where C ′[·] is not a reduction-context is similar.

C ′[·] is a reduction-context and P interacts with R. Then the reduction is

C ′[P]|R→ (ν~y)(φ(C ′)[P′]|R′).

We proceed by induction on the number of restrictions guarding the

hole in C ′[·]. In the base case, C ′[·] = S|[·]. Thus the reduction is

(up to ≡): S|P|R → φ(S)|(ν~x)(P′|R′). As R is |-closed, we know that

(P|R,Q|R) ∈ R,. Hence C[P] ≡ C ′[P|R]→P′. Using the outermost (IH)

we can find a reduction C ′[Q]|R→Q′ with T ` φ(S)|(ν~x)(P′|R′) = Q′,

as required. For the inductive step, let C ′[·] = (νx)C ′′[·]. As C ′′[·]
must also be a reduction-context, our reduction is of the form, up to

≡, (νx)(C ′′[P]|R)→ (νx~y)(φ(C ′′)[P′]|R′). It is easy to see that then also

C ′′[P]|R→ (ν~y)(φ(C ′′)[P′]|R′). The innermost (IH) then guarantees the

existence of a process Q′ such that C ′′[Q]|R→Q′ with

((ν~y)(φ(C ′′)[P′]|R′),Q′) ∈ C[R].

Then also C[Q]→ (νx)Q′ and by definition of C[·]:

T ` (νx~y)(φ(C ′′)[P′]|R′) = (νx)Q′.

The reduction was inferred using (Cong) as last rule. This case is immedi-

ate by the middle (IH), because C[R] is closed under ≡.

The reduction was inferred using (Idle) as last rule. The we can also apply

(Idle) to C[Q] and use time-closure, as above.

C[·] = (νx)C ′[·]. This case is easy by the (IH).

C[·] = (!)x(~v).C ′[·]. This case is trivial as the only applicable reduction is that

induced by (Idle), though not necessarily as last rule. Since C[P] has no

active timers we can match C[P]→C[P] by C[Q]→C[Q].

C[·] = timer1(R, C ′[·]). Again, all the process can do is idle, so, up to ≡, the reduc-

tion step must be timer1(R, C ′[P])→C ′[P], clearly matched by timer1(R, C ′[Q])→
C ′[Q], using the (IH).

C[·] = timert+1(R, C ′[·]). This case is similar to the last.

96 CHAPTER 4. TIMERS

C[·] = timer1(C ′[·],R) Up to ≡, all C[P] can do is idle. So timer1(C ′[P],R)→R is

matched by timer1(C ′[Q],R)→R because id ⊆≡ R.

C[·] = timert+1(C ′[·],R). Easy using the (IH).

ut

The question is now, given R when is C∗[R] a sound theory? We would like to

say something like: if R is strongly reduction-closed, then (C[ins(sc(sym(R)))])∗ is

a sound theory. Unfortunately, things do not seem to be that simple. The next

proposition shows what we can easily establish.

Proposition 6 Let R be a binary relation on πt processes. If it contains ≡, identi-

fies all insensitive processes, is symmetric, time-closed, |-closed strongly reduction-

closed and preserves strong barbs then C∗[R] is a sound theory.

Proof: By Lemma 17. ut

We are now ready for the first decomposition theorem. It gives a sufficient

condition for legitimately taking off restrictions.

Theorem 19 Let T be sound and assume x is a name. If T ` (νx)(P|R) =

(νx)(Q|R) for all R, then Tmax ` P = Q.

Rather than prove it directly, we consider a more general second Decomposition

Theorem that implies the first, because the latter is not strong enough for our

purposes: we would like know if scope extending transitions lead out of Tmax . This

will be crucial later for the labelled characterisation of Tmax . Ideally, we would like

to be sure that

T ` (ν~y)(x〈~z〉|P) = (ν~y)(x〈~z〉|Q) implies Tmax ` φ(P) = φ(Q)

where T be sound and x /∈ {~y}, or, slight less conveniently,

∀R.T ` (ν~y)(P|R|S) = (ν~y)(Q|R|S) implies Tmax ` φ(P) = φ(Q).

where S is some replication-free process, fixed for any choice of P and Q. Unfor-

tunately, we have not been able to verify or falsify either. Venturing a guess, the

latter decomposition is probably true, while the former might be false. Anyway,

instead, we have to make do with the following theorem.

Theorem 20 Let T be sound. Let S be a process. Write delayt(S) for the process

(νa)timert(a.0,S) where a /∈ fn(S). Then

∀R. T ` (ν~y)(P | R | delayt(S)) = (ν~y)(Q |R | delayt(S))

implies

Tmax ` P = Q.

4.4. EQUIVALENCES 97

Proof: Define

R = {(P,Q) | T ` (ν~y)(P | R | delayt(S)) = (ν~y)(Q |R | delayt(S))}.

It is clear that R is symmetric and |-closed. Congruency of T implies that R contains

≡ (because ≡ ⊆ T) and identifies all insensitive terms. For strong reduction-closure,

let (P,Q) ∈ R and P→P′. Choose arbitrary R and t > 0. Then

(ν~y)(P | delay1(R) | delayt+1(S))→ (ν~y)(P′ | R | delayt(S))
def
= P′′.

Using T ’s strong reduction-closure, we can find a reduction step

(ν~y)(Q | delay1(R) | delayt+1(S))→Q′′

with T ` P′′ = Q′′. By induction on the derivation of this last reduction it is

straightforward to see that there are exactly the following four possibilities.

• Q→Q′ and Q′′ = (ν~y)(Q′ | R | delayt(S)).

• delay1(R) | delayt+1(S)→R | delayt(S). Then Q′′ = (ν~y)(φ(Q) | R | delayt(S)).

• The reduction was inferred using (Idle) as last step. This means that Q′′ is

exactly as in the last case.

• The reduction was inferred using (Cong) as last step.

In all cases (by (IH) in the last) there is a reduction Q → Q′ such that Q′′ =

(ν~y)(Q′ | R | delayt(S)), hence (P′,Q′) ∈ R. This means that R is strongly reduction-

closed.

For time-closure, choose once again an arbitrary R and t > 0 and set

T = (νa)(a | timer1(a, b)),

where a and b are fresh and distinct. Then

T ` T | (ν~y)(P | delay1(R) | delayt+1(S)) = T | (ν~y)(Q | delay1(R) | delayt+1(S))

But

T | (ν~y)(P | delay1(R) | delayt+1(S))→0 | (ν~y)(φ(P) | R | delayt(S))

By strong reduction closure we can find a matching transition

T | (ν~y)(Q | delay1(R) | delayt+1(S))→U.

Knowing that 0 | (ν~y)(φ(P) | R | delayt(S)) does not have a barb at b, we use Propo-

sition 2 to infer U 6↓b. By an easy induction on the derivation of the last reduction

step we see that this means that

U ≡ 0 | (ν~y)(φ(Q) | R | delayt(S)).

98 CHAPTER 4. TIMERS

Then, as required

T ` (ν~y)(φ(P) | R | delayt(S)) = (ν~y)(φ(Q) | R | delayt(S)),

which implies R’s time-closure. It remains to establish strong-barb-preservation.

Let (P,Q) ∈ R, P↓x but Q 6↓x. Set R = timer1(x(~v).a, 0), where a is fresh. Then

(ν~y)(P |R | delayt+1(S))→P′ ↓a
but whenever

(ν~y)(Q |R | delayt+1(S))→Q′

then Q′ 6↓a. In the light of Proposition 2, this violates T ’s soundness. ut

Looking over the proof one may notice similarities in the verifications of time-closure

and strong reduction-closure. It is in fact possible to show that the latter implies

the former, under suitable side conditions, but we do not pursue this matter here.

It is also easy to prove that Theorem 20 implies Theorem 19, essentially by noting

that we can assume S = 0.

4.5 Reduction-Based Characterisations of Tmax

The existence of the maximum sound theory is a pleasant fact, but not especially

useful on its own. To prove that processes are equated by Tmax , we need more

tractable tools. In the rest of this chapter we will develop some of them. We start

by comparing reduction congruence with barbed equivalences.

4.5.1 Tmax =
rc∼ =

rc≈
We start our investigation of Tmax by showing that it coincides with the two con-

gruences introduced in §4.3.1.

Theorem 21 | Tmax | = Tmax =
rc∼ =

rc≈.

Proof: First we show that
rc∼ and

rc≈ are sound theories. By definition they are

πt-congruences. Reduction-closure of
rc≈, too, is by definition, whereas for

rc∼ we

need the help of Proposition 3. Identification of all insensitive terms is immediate

because

{(P,Q) |P,Q insensitive}
is clearly a strong barbed bisimulation and hence a barbed bisimulation. Consis-

tency follows from 0 6rc≈ x. This gives
rc∼, rc≈ ⊆ | Tmax |. Conversely, by Proposition

3, Tmax is strongly reduction closed and preservation of strong barbs follows form

Proposition 2. Hence | Tmax | ⊆ rc∼ ⊆ rc≈. Finally, Tmax = | Tmax | is immediate from

maximality and Lemma 9.1 ut

Theorem 21 also justifies our choice of barb.

4.5. REDUCTION-BASED CHARACTERISATIONS OF TMAX 99

There is no Maximum Consistent, Reduction-Closed πt-Theory

Now that we have a more concrete handle on what Tmax looks like, we can fill in

the missing part of the proof of Theorem 18.

Lemma 18 Let I be an insensitive term that is not equated with 0 by ≡, for example

(νx)x. Define

T = {(P|I,Q|I) |P,Q are πt processes}.

Then T is consistent and reduction-closed.

Proof: We first show that T ` P = Q iff P ≡ Q or for some context C[·] and some

processes P1, Q1: P = C[P1|I] and Q = C[Q1|I]. (⇒) follows by an easy induction on

the derivation of T ` P = Q. For (⇐) we use an equally straightforward induction

on the structure or C[·]. Consequently we have T 6` a = b whenever a 6= b and T
must be consistent. As to reduction closure, let T ` P = Q and P→P′. If P ≡ Q,

then Q→P′ is a matching transition because T ` P′ = P′. Otherwise P = C[P1|I]
and Q = C[Q1|I]. By induction on the structure of C[·] we construct the matching

transition Q→Q′. If C[·] = [·] then P′ = P′
1|I and Q�Q does the job. If C[·] = R|C ′[·]

where C ′[·] is some reduction-context, we proceed by induction on the derivation of

P→P′. If R→R′ and P→R′|φ(C ′[I]), then Q→R′|φ(C ′[I]) matches. We omit the

remaining cases as they are similarly straightforward. ut

We can now prove Theorem 18.2. Assume there was a maximum consistent and

reduction-closed πt-theory T . By Theorem 21,
rc≈ is also consistent and reduction-

closed, hence
rc≈ ⊆ T . But then T ` P = Q for all P and Q because P|I rc≈P for all P

(Example 1), making T inconsistent, in violation of our assumption.

Alternative Barbs

As often with asynchronous π-calculi, the details of the choice of barbs do not always

affect the resulting congruence and Theorem 21 suggests that the barbs introduced

in Definition 18 are no exception. One feature of that definition that may appear

unnatural in the context of a timed calculus is that they do not consider time a

first-class citizen in the sense that one can only use them to directly specify what

a process can emit on a given name, either immediately or eventually, but not

when that emission ought to take place. The definition below proposes a barb that

specifies a temporal interval in addition to a name.

Definition 30 Assume x is a name and m,n ∈ N. We write

P⇓x[m,n] iff P→· · ·→
︸ ︷︷ ︸

i

Q↓x,m ≤ i ≤ n.

100 CHAPTER 4. TIMERS

Now let
rc≈

′
be the congruence induced, as in Definition 18, by the set of all barbs

⇓x[m,n]. Let
rc≈

′′
be the congruence generated by barbs of the form⇓x[n,n].

Not surprisingly, the characterisation of Tmax as largest barbed congruence remains

unaffected by this change of barb.

Theorem 22 Tmax =
rc≈

′
=

rc≈
′′
.

Proof: Straightforward with judicious use of reduction-spotters, after noting that

P↓x iff P⇓x[0,0]. ut

4.5.2 A Behavioural Characterisation of Tmax

In this section we provide a behavioural characterisation of Tmax , along the lines

of Chapter 10.4 in [74] and Proposition 3.24 of [61]. The required set-theory is

altogether standard and can be found in introductory text books on the subject

such as [63, 66, 80].

Definition 31 Let P be a process. We write P to indicate that P ↓x for some

name x. Let κ be an ordinal. We define 'κ by transfinite induction.

• P '0 Q if for all C[·]: C[P] ⇔ C[Q] .

• P 'κ+1 Q if for all C[·]:

C[P]→P′ ⇒ ∃Q′.C[Q]→Q′,P′ 'κ Q′,

C[Q]→Q′ ⇒ ∃P′.C[P]→P′,P′ 'κ Q′,

• For all limit ordinals λ: P 'λ Q if for all κ < λ : P 'κ Q.

Then we set: ' =
⋂

κ'κ.

The rest of this section will establish that ' = Tmax .

Lemma 19 Let κ > 0 be an ordinal. If P 'κ Q and C[P]↓x then C[Q]↓x.

Proof: By transfinite induction. The only non-trivial case is that of successor

ordinals. Assume P 'κ+1 Q and C[P]↓x. Define

C ′[·] = (ν~y)([·] | timer1(x(~v).a, 0))

where fn(C[P]), fn(C[P]) ⊆ {~y} and a is fresh. Then by Lemma 8.5: C ′[C[P]]→P′ ↓a.
Hence there must be a reduction C ′[C[Q]]→Q′ where P′ 'κ Q′. By (IH): Q′ ↓a.
Using Lemma 8.5 again, we conclude C[Q]↓x. ut

4.5. REDUCTION-BASED CHARACTERISATIONS OF TMAX 101

Lemma 20 Let κ0 be an ordinal. Assume that P '0 Q and for all successor ordinals

κ′ ≤ κ0: P 'κ′ Q. Then P 'κ Q for all ordinals κ ≤ κ0.

Proof: By straightforward transfinite induction on κ0. ut

Lemma 21 [Anti-Monotonicity of 'κ] If α ≤ β then 'β ⊆ 'α.

Proof: By transfinite induction on β. For successor ordinals, assume P 'β+1 Q.

Let C[P] → P′. Then we can find C[Q] → Q′ 'β P′ and we can use the (IH) to

conclude to P′ 'α Q′ and thus also to P 'α+1 Q for all α ≤ β. Now assume C[P]↓x.

Then by Lemma 19: C[Q] ↓x, but then also P '0 Q. Hence P 'α Q for all α ≤ β

such that α is not a limit ordinal. Now apply Lemma 20. ut

Lemma 22 For all ordinals κ > 0: 'κ is a πt-congruence.

Proof: By transfinite induction we show that (1) for all κ ≥ 0: 'κ is transitive as

well as symmetric; and (2) for all ordinals κ > 0: 'κ is a congruence.

Clearly '0 is a transitive and symmetric relation containing ≡. Now assume

P 'κ+1 Q. Clearly 'κ+1 contains ≡ and is symmetric. By (IH) it is also transitive.

For congruency, we use contexts’ being closed under composition. Limit ordinals

are immediate. ut

Lemma 23 ' is reduction-closed.

Proof: Assume P ' Q and P→P′. Using anti-monotonicity we know that

∀κ.∃Q′.∀κ′ ≤ κ.Q→Q′,P′ 'κ Q′. (4.1)

Assume that

∀Q′.∃κQ′ .(Q→Q′ ⇒ P′ 6'κQ′ Q′).

Then we can construct a map f from appropriate processes to ordinals by setting

Q′ 7→ κQ′

whenever Q→Q′. As there are at most countably many such processes Q′ we can

construct an ordinal κ+ such that f(Q′) < κ+ for all appropriate Q′, in contradiction

to (4.1). Hence

∃Q′.∀κ.(Q→Q′ ⇒ P′ 'κ Q′).

This means P′ ' Q′. Hence ' must be reduction-closed (using Proposition 3). ut

Theorem 23 (Behavioural Characterisation of Tmax)

' = Tmax.

102 CHAPTER 4. TIMERS

Proof: First we show that Tmax ⊆ 'κ by transfinite induction. The base case is

immediate from Proposition 2. The inductive steps are straightforward from the

(IH) and the definitions. Hence Tmax ⊆ '.

For the reverse inclusion we establish ' to be a sound theory. Consistency is

immediate because 0 6'0 x, hence 0 6' x. Congruency is by Lemma 22. Reduction-

closure is guaranteed by Lemma 23 and the identification of all insensitive terms

follows from Tmax ⊆ '. ut

A Variant

The base case in Definition 31 requires '0 to be a congruence. For our later devel-

opment it will be convenient to be more liberal and let congruency emerge in the

course of the transfinite induction rather than requiring it from the start. We show

now that this results in the same fixpoint, Tmax .

Definition 32 Let κ be an ordinal. We define '′
κ by transfinite induction.

• P '′
0 Q if P ⇔ Q .

• P '′
κ+1 Q if for all C[·]:

C[P]→P′ ⇒ ∃Q′.C[Q]→Q′,P′ '′
κ Q′,

C[Q]→Q′ ⇒ ∃P′.C[P]→P′,P′ '′
κ Q′,

• For all limit ordinals λ: P '′
λ Q if for all κ < λ : P '′

κ Q.

Then we set: '′ =
⋂

κ'′
κ.

Lemma 24 1. (Cf. Lemma 19) Let κ > 0 be an ordinal. If P '′
κ Q and C[P]↓x

then C[Q]↓x.

2. (Cf. Lemma 20) Let κ0 be an ordinal. Assume that P '′
0 Q and for all

successor ordinals κ′ ≤ κ0: P '′
κ′ Q. Then P '′

κ Q for all ordinals κ ≤ κ0.

3. (Cf. Lemma 21) If α ≤ β then 'β ⊆ 'α.

4. 'κ ⊆ '′
κ.

5. '′
κ+2 ⊆ 'κ.

6. For all limit ordinals λ: '′
λ = 'λ.

Proof: Items (1), (2) and (3) are proved exactly as their counterparts in Section

4.5.2. For (4) and (5) we proceed by transfinite induction on κ. The former is

straightforward, for the latter, if κ = 0, then '′
2 ⊆ '′

1 ⊆ '0 by anti-monotonicity

4.5. REDUCTION-BASED CHARACTERISATIONS OF TMAX 103

and (4). Next, assume κ = α + 1. If C[P] → P′ then there is a reduction step

C[Q]→Q′ with P′ '′
α+2 Q′. By (IH) then P′ '′

α Q′, hence P 'α+1 i.e. P 'κ Q. For

limit ordinals λ: P '′
λ Q implies for all κ < λ: P '′

κ Q, so for all κ < λ: P '′
κ+2 Q.

But then by (IH) for all κ < λ: P 'κ Q, which means P 'λ Q. Finally, (6) is easy

from the definition and (4) and (5) ut

Proposition 7 '′ = '.

Proof: Immediate from Lemma 24. ut

4.5.3 A Modal Characterisation of Tmax

In [50] Hennessy and Milner propose an infinitary modal logic that allows to specify

properties of processes logically rather than by (co-)algebraic means. Honouring

the originators, such logics are called Hennessy-Milner logics. One of their salient

features is that they pin down process properties by reference to the observations

each possible environment may or must be able to make. This works fine as long

as we have a convenient mathematical handle on those observations. In practise

that means having labelled transitions. Unfortunately those are not always easily

available. For advanced calculi it is often more convenient to specify reductions

rather than transitions. Thus it may be a good idea to have a logic that allows to

specify process properties with reference to reductions only. This section propos-

es Context Logic, an infinitary modal logic where elementary equivalence (in the

standard model) coincides with Tmax . Unlike Hennessy-Milner logic, which employs

observations as modalities, we choose contexts: if P is a process, C[·] a context and

ψ a formula, then P � 〈C〉ψ if and only if there is a reduction C[P]→Q such that

Q � ψ. One could say that process properties are specified by letting contexts do

the observation and talking about what context together with the process under

observation may or must do. This internalises observations and obviates the need

for labelled transitions. Well, almost: we need an atomic formula which can be

seen as an observation that is not internalised, but can be defined solely in terms

of reductions.

We do not claim that Context Logic is a particularly convenient tool. At this

stage, its purpose is to inspire further development.

Infinitary Modal Logics

We begin by presenting the basic definition of modal logic, following [21].

Definition 33 A modal similarity type is a pair τ = (O,#) where O is a non-

empty set of modal operators and # is a function from modal operators to N. We

let 4 range over elements of O and #4 denotes the arity of 4.

104 CHAPTER 4. TIMERS

Definition 34 Let κ be a cardinal and assume that A is a set of atomic formulae,

ranged over by p. Then the set of κ-infinitary modal formulae over τ and A is

inductively generated by the following grammar.

φ ::= p | ¬φ |
∧

Φ |4(φ1, ..., φ#4)

Here Φ is a set of κ-infinitary modal formulae over τ and A such that |Φ| <
κ. For each n-ary modal operator 4 we define its dual ∇ as ∇(φ1, . . . , φn) =

¬4(¬φ1, . . . ,¬φn). We also frequently use these additional abbreviations.

∨

Φ = ¬
∧

¬Φ φ→ ψ = ¬φ ∨ ψ ⊥ =
∧

∅ > = ¬⊥

The modal depth md(φ) of a formula φ is inductively defined by the following clauses.

md(4(φ1, . . . , φ#4)) = 1 + max(md(φ1), ...,md(φn))

md(¬φ) = md(φ)

md(
∧

Φ) = sup({md(φ) |φ ∈ Φ})

The sup(·) operation returns an ordinal.

Models of Infinitary Modal Logics

Definition 35 Given a modal similarity type τ , a τ -frame is a tuple F containing

a non-empty set W and for each modal operator 4 a relation R4 ⊆ W n+1 where

n is the arity of 4. The elements of W are called states, points or processes. A

(τ,A)-model is a pair M = (F, V) where F is a τ -frame and V : A → P(W) is a

valuation. The satisfaction relation M �w φ is defined inductively by the following

rules.

M �w 4(φ1, . . . , φn) iff for some w1, . . . , wn ∈W with R4(w,w1, . . . , wn)

we have, for each i : M �wi φi

M �w
∧

Φ iff M �w φ for all φ ∈ Φ

M �w ¬φ iff M 6�w φ
M �w ⊥ iff false

M �w p iff w ∈ V (p)

We will usually write w � φ for M �w φ, hoping that no ambiguities arise. The

set of all formulae φ such that w � φ is denoted thm(w), and by thmκ(w) we mean

thm(w) restricted to formulae of modal depth not exceeding κ. A formula φ is

globally or universally true in a model M, written M � φ if it is satisfied at all

points in M; φ is satisfiable in M if there is some state in M at which φ is true. A

formula is falsifiable or refutable in M if its negation is satisfiable in M. A set Σ of

formulae is globally true (satisfiable) in M if each of its members is.

4.5. REDUCTION-BASED CHARACTERISATIONS OF TMAX 105

A formula φ is valid at a state w is a frame F, notation F �w φ, or just w � φ,

if φ is true at w in every model (F, V) based on F; φ is valid in a frame F, written

F � φ if it is valid at every state in F. A formula φ is valid on a class F , written

F � φ if it is valid on every frame F in F . It is valid, written � φ, if it is valid on

the class of all frames.

Definition 36 Two processes P and Q inside a model M are elementarily equiva-

lent, written P =ee Q, if for all formulae φ : P � φ ⇐⇒ Q � φ. We say P and Q

are κ-elementarily equivalent, written P =κ
ee Q, if for all formulae φ with md(φ) ≤

κ : P � φ ⇐⇒ Q � φ.

Context Logic

Now that we have assembled the basic tools of modal logics, we can start our

programme of characterising Tmax as elementary equivalence.

Definition 37 Context-Logic is an ω1-infinitary modal modal logic where the modal

operators are built from π-calculus terms. More precisely, modal operators are of

the form 〈C〉 where C[·] is a πt-calculus context. Hence Context Logic has the

following formulae.

φ ::= 〈C〉φ | ¬φ |
∧

Φ |
Here is the only propositional constant.

Deviating somewhat for the sake of simplicity from the definitions in the previous

section, a model for a Context Logic is a tuple M = (M,�M, {CM}C[·], M) where

�
M is a binary relation on M , called reduction, each CM

i is a unary function on M ,

collectively called contexts and M
i is a unary predicate on M , called may-barb.

Furthermore, the satisfaction relation P � φ is given inductively by the following

clauses.
P � 〈C〉φ iff Q � φ for some Q such that CM[P] �

M Q

P � ¬φ iff P 6� φ
P �

∧
Φ iff P � φ for all φ ∈ Φ

P � iff P M

P � [C]φ iff Q � φ whenever CM[P] �
M Q

P � ⊥ iff false

P � > iff true

Reduction Congruence as Elementary Equivalence in πt

We now show that Tmax coincides with =ee in the intended model of Context Logic.

This model has πt processes as points, uses the one-step reduction relation → as

�
M, interprets the 〈C〉 modality by C[·] and P M iff for some name x: P↓x.

106 CHAPTER 4. TIMERS

Lemma 25 For all ordinals κ: P =κ
ee Q iff P '′

κ Q.

Proof: By transfinite induction on κ. Assume P 6'′
κ Q. We construct a formula φ

with md(φ) ≤ κ such that P � φ but Q 6� φ.

If κ = 0, then P but Q 6 , or vice versa. Hence is an appropriate formula of

modal depth 0.

If κ = α+ 1, then some reduction C[P]→P′ must exist such that whenever C[Q]→
Q′: P′ 6'α Q′. By (IH) some formula φQ′ with a modal depth not exceeding

α can be found such that w.l.o.g. P′ � φQ′ but Q′ 6� φQ′ . As there can be

at most countably infinitely many reductions C[Q] → Q′, the formula φ =

〈C〉∧{φQ′ |C[Q]→Q′} is valid with md(φ) ≤ α + 1. As clearly P � φ but

Q 6� φ, φ works as required.

If κ is a limit, P 6=κ
ee Q is immediate from the (IH).

Conversely, let P '′
κ Q and assume that P � φ.

If κ = 0, we proceed by straightforward induction on the structure of φ, noting

that φ cannot have subformulae of the form 〈C〉φ′.

For κ = α+ 1 we again employ induction on the structure of φ.

φ = , then by anti-monotonicity (24.2): P '′
0 Q, hence Q � φ.

φ =
∧

Φ. This is immediate by (IH).

φ = 〈C〉φ′. Then there is a process P′ with C[P] → P′ and P′ � φ′. This

implies a reduction C[Q]→Q′ and P′ '′
α Q′, so by (IH): Q′ � φ′, which

in turn means Q � φ.

κ is a limit. This is again immediate by (IH).

ut

Theorem 24 [74] P =ee Q iff Tmax ` P = Q.

Proof: Immediate from Lemma 25 and the coincidence of ' with '′ (Proposition

7). ut

In [110], Shelah characterised the elementary equivalence relation of first-order logic

purely algebraically via ultraproducts. It would be interesting to see if the same

can be done for =ee.

4.6. TRANSITION-BASED CHARACTERISATIONS OF TMAX 107

A Simple Example of Using Context Logic

For a simple example of using Context Logic, define

CaS [·] = (νS)([·] | timer1(x(~v).a, 0))

φ0 =
∧

a/∈S⊆finN
[CaS]

φn+1 = [[·]]φn.

Then P � φn iff P can emit on x after n reductions and P � φ7 ∧ ∧n 6=7 ¬φn iff P

can emit on x after 7 reductions and only then. Specifications in this bare form of

Context Logic usually require infinite conjunctions even for simple properties and

are hence of limited utility.

4.6 Transition-Based Characterisations of Tmax

All characterisations of Tmax have so far been based on reductions. As repeat-

edly pointed out already, experience suggests that most substantial reasoning is

easier with equalities based on labelled transitions. Much of process theory has

consequently been a quest for suitable, that is sound, labelled approximations to

prominent equivalences. In this section we present a labelled characterisation of

Tmax . We begin by considering standard synchronous and asynchronous transitions

systems and the associated (weak or strong) bisimilarities. It turns out that they

are unsuitable since they fail to be congruences. To overcome these problems we

then propose yet another transition system, which integrates asynchrony and time

passing better than the previous candidates. With additional, but easily verified

closure conditions, the associated strong bisimilarity turns out to be exactly Tmax ,

but proving this fact is not straightforward.

4.6.1 Synchronous and Asynchronous Bisimulations

Strong Synchronous Bisimulations

In Section 4.3.2 we defined a synchronous labelled transition relation
l→ and we

will now investigate how the induced (strong) bisimilarity relates to Tmax . The

definitions of (strong) bisimulations and (strong) bisimilarity remain unchanged

from Chapter 2. For convenience we use the synchronous transition system in Figure

4.3, which has exactly the same transitions, up to ≡ as is readily established.

Example 2 Consider the following two processes

P(R) = (νa)(a | timer1(a,R)) Q(R) = (νa)(a | timer1(a.R, 0)).

Here a is fresh.

108 CHAPTER 4. TIMERS

(Out)
x〈~y〉 x〈~y〉→s0

(In)
x(~v).P

x(~z)→sP{~z/~v}
(Rep)

!x(~v).P
x(~z)→s!x(~v).P | P{~z/~v}

(TimeIn)
timert+1(x(~v).P, Q)

x(~z)→sP{~z/~v}

(Par)
P

l→sP
′ bn(l) ∩ fn(Q) = ∅
P |Q l→sP

′ |φ(Q)

(Com)
x〈~y〉 |x(~v).P

τ→sP{~y/~v}
(Rep)

x〈~y〉 | !x(~v).P
τ→sP{~y/~v} | !x(~v).P

(TimeIn′)
x〈~y〉 | timert(x(~v).P,Q)

τ→sP{~y/~v}

(Res)
P

l→sQ x /∈ fn(l) ∪ bn(l)

(νx)P
l→s(νx)Q

(Open)
P

x〈(ν~y)~z〉→sQ v 6= x, v ∈ {~z} \ {~y}
(νv)P

x〈(ν~y,v)~z〉→sQ

(Cong) P ≡ P′ P′ l→sQ
′ Q′ ≡ Q

P
l→sQ

(Idle)
P

τ→sφ(P)

Figure 4.3: An alternative account of synchronous transitions for the asynchronous

timed π-calculus.

4.6. TRANSITION-BASED CHARACTERISATIONS OF TMAX 109

It is easy to see that P(x) ∼ Q(x). But φ(P(x)) ≡ x | (νa)a while φ(Q(x)) ≡ (νa)a.

Hence φ(P(x)) 6∼ φ(Q(x)).1 This means that

y |P(x)
y→ x | (νa)a but y |Q(x)

y→ (νa)a.

So ∼ cannot be closed under parallel composition. Consequently, ∼ cannot coincide

with Tmax . This is not the only shortcoming of ∼: we will later show (Example

3) that the identity forwarder fwxx and 0 are equated by the largest sound theory,

but they are clearly not related by synchronous bisimilarity, strong or otherwise,

because fwxx has a transition fwxx
x(~y)→sfwxx|x〈~y〉 that 0 lacks.

Before moving to other equivalences, we summarise a few facts about ∼.

Lemma 26 1. If P ∼ Q then (νx)P ∼ (νx)Q.

2. If P ∼ Q then timert(x(~v).R,P) ∼ timert(x(~v).R,Q).

3. ∼ is not closed under parallel composition, renaming or timestepping.

Proof: For (1) the proof is completely standard, see [54]. For (2), let R be given

by

timert(x(~v).R,P) R timert(x(~v).R,Q)

whenever P ∼ Q. Clearly every transition by timert(x(~v).R,P) is matched by one

of timert(x(~v).R,Q), so R ∪∼ is is a strong bisimulation. For (3), we have already

presented a counterexample that shows the failure of congruency for parallel com-

position and application of φ. Lemma 34 presents two processes P ∼ Q such that

P{x/y} 6∼ Q{x/y}. We omit the detailed verification of this fact for synchronous

transitions as it can easily be obtained from the proof of Lemma 34. ut

Synchronous Bisimulations

What about synchronous bisimilarity? It cannot coincide with Tmax , because as

strong synchronous bisimilarity, it cannot identify 0 with fwxx. But would it at

least be preserved under parallel composition or renaming? Alas, not.

Lemma 27 Let P1 ≈P2 and Q1 ≈Q2. Then timert1(P1,Q1)≈ timert2(P2,Q2) for all

t1, t2 > 0.

1This means that the timestepper φ can distinguish these two processes, despite the induced

processes having essentially equivalent (name-passing) synchronisation trees [53, 120]. This suggests

that once we allow time-passing to be observed, processes contain vital intensional information

that is lost with the passage to conventional synchronisation trees. It appears straightforward to

ameliorate this mismatch between the discriminating power of processes and synchronisation trees,

for example by enriching the semantic trees with appropriate annotations that allow to identify

“time-passing” τ -transitions. We do not pursue this matter further here.

110 CHAPTER 4. TIMERS

Proof: Consider the relation R given by

timert1−i1(P1,Q1) R timert2−i2(P2,Q2))

where 0 ≤ i1 < t1 and 0 ≤ i2 < t2. We show that R ∪ ≈ is a bisimulation. To this

end let

timert1−i1(P1,Q1)
l→ R. (4.2)

By a trivial induction on the derivation of (4.2) there are only two cases: l = τ and

l = x(~z). If the former, R = φ(timert1−i1(P1,Q1)). We must now distinguish two

subcases. The first is i1 = t1 − 1. Then R = Q1 and

timert2−i2(P2,Q2)
τ→ · · · τ→ φt2−i2(timert2−i2(P2,Q2)) = Q2 ≈ Q1

is a matching transition sequence. On the other hand, if the second subcase, 0 ≤
i < t1 − 1 obtains, then the empty transition sequence, starting and ending with

timert2−i2(P2,Q2), matches (4.2). If l = x(~z) then P1 = x(~v).P′
1, R = P′

1{~v/~z} and

easily P1
x(~z)→ P′

1{~v/~z}. Using P1 ≈ P2, we know a sequence

P2
τ→ · · · τ→ P′′

2
x(~z)→ P′′′

2
τ→ · · · τ→ P′′′′

2 ≈ P′
1{~v/~z}.

must exist. But, as P2 = x(~w).P′
2, P2 does not have active timers, hence P2 = P′′

2 .

Clearly, then

timert2−i2(P2,Q2)
x(~z)→ P′′′

2
τ→ · · · τ→ P′′′′

2 ≈ P′
1{~v/~z},

matching (4.2), as required. ut

Now we can state two crucial facts.

Lemma 28 1. φ does not preserve bisimilarity.

2. ∼ ⊂ ≈.

Proof: Consider Pt = timert(x.y, 0). Then, by Lemma 27, P3 ≈ P1, but: φ(P3) =

P2 6≈ φ(P1) = 0. This establishes (1). For (2), clearly ∼ is a bisimulation. In

addition, timer1(x.y, z) 6∼ timer2(x.y, z), but the two terms are equated by ≈, as

shown in Lemma 27. ut

Lemma 29 1. If P ≈ Q then (νx)P ≈ (νx)Q.

2. ≈ is not closed under renaming or timestepping. Consequently, it is also not

closed under parallel composition or input.

Proof: Similar to the proof of Lemma 26, noting that Example 2 demonstrates

failure of congruence under parallel composition for ≈, too. ut

4.6. TRANSITION-BASED CHARACTERISATIONS OF TMAX 111

A Weak Expressivity Result

One key question that we would like to have a good answer to is whether πt can be

encoded into πa in a convincing way. Unfortunately, we are only able to give a very

partial answer.

Definition 38 A function [[]] from πt into π is complete, if [[P]]≈ [[Q]] implies P≈Q.

Conversely, if P≈Q implies [[P]]≈ [[Q]], then [[]] is sound. If P≈Q implies [[P]] ≈ [[Q]]

for all those P and Q in πt that are also processes in π, then [[]] is sound on π.

Clearly, the former form of soundness implies the latter. [[]] is compositional if

[[P|Q]] ≈ [[P]]|[[Q]].

Proposition 8 There is no compositional encoding of the π-calculus with timers

into the π-calculus without timers that is also sound on π and complete.

Proof: Define Pt = timert(y.z, 0) and Q = x. Then clearly, P1|Q 6≈ P2|Q and

P1 ≈ P2 (see the Example 2). But

P1 ≈ P2 ⇒ [[P1]] ≈ [[P2]] by soundness on π

⇒ [[P1]] | [[Q]] ≈ [[P2]] | [[Q]] as ≈ is a congruence

⇒ [[P1 |Q]] ≈ [[P2 |Q]] by compositionality

⇒ P1 |Q ≈ P2 |Q by completeness

But in the proof of Lemma 29 we showed that P1 |Q 6≈ P2 |Q. ut

We believe that Proposition 8 is not a mere curiosity. On the contrary: we believe

that there cannot be a reasonable encoding of πt into untimed π-calculi, as long as

one assumes reasonable equivalences on source and target calculi. Unfortunately,

the state of the art in expressiveness theory does not provide tools to even state, let

alone prove or disprove, such a conjecture with precision, because the various uses

of “reasonable” have yet to solidify.

Asynchronous Transitions and Bisimulations

The failure of the various synchronous bisimilarities to equate fwxx with 0 lead Hon-

da and Tokoro to propose asynchronous transitions [57] which model asynchronous

observers. Since Tmax does equate fwxx and 0, asynchronous bisimilarity may be a

suitable candidate for our purposes. Unfortunately, the straightforward adaptation

of Honda’s and Tokoro’s techniques to our setting does not work either, because the

(Par) rule

(Par)
P

l→aP
′ bn(l) ∩ fn(Q) = ∅
P |Q l→aP

′ |φ(Q)

does not connect asynchrony well with time passing. To see what goes wrong

consider what it means to asynchronously observe a process. Observing a process

112 CHAPTER 4. TIMERS

(Out)
x〈~y〉 x〈~y〉→a0

(Ina)
0
x(~z)→ax〈~z〉

(Par)
P

l→aP
′ l 6= x(~z) bn(l) ∩ fn(Q) = ∅

P |Q l→aP
′ |φ(Q)

(Para)
P

x(~z)→aP
′

P |Q x(~z)→aP
′ |Q

(Com)
x〈~y〉 |x(~v).Q

τ→aQ{~y/~v}
(Rep)

x〈~y〉 | !x(~v).Q
τ→aQ{~y/~v} | !x(~v).Q

(TimeIn)
x〈~y〉 | timert(x(~v).Q,R)

τ→aQ{~y/~v}

(Res)
P

l→aQ x /∈ fn(l) ∪ bn(l)

(νx)P
l→a(νx)Q

(Open)
P

x〈(ν~y)~z〉→aQ v 6= x, v ∈ {~z} \ {~y}
(νv)P

x〈(ν~y,v)~z〉→aQ

(Idle)
P

τ→aφ(P)

(Cong) P ≡ P P′ l→aQ
′ Q′ ≡ Q

P
l→aQ

Figure 4.4: An alternative account of asynchronous transitions for the asynchronous

timed π-calculus.

sending a message, means interacting with it, consuming one unit of time. The

(Par) rule ensures that this timestep permeates throughout all active processes.

On the other hand, if we emit an output to the process under observation, so as

to be able to infer that it may be inputting, we cannot, in our model, know when

this output particle migrates. Hence the observation
x(~v)→a should not be associated

with a time step. So (Par) above works incorrectly. We propose to split (Par) in

two:

(Par)
P

l→aP
′ l 6= x(~v) bn(l) ∩ fn(Q) = ∅

P |Q l→aP
′ |φ(Q)

(Para)
P

x(~y)→aP
′

P |Q x(~y)→aP
′ |Q

Figure 4.4 presents the full inductive definition of →a. We continue with some

basic facts about asynchronous transitions.

Lemma 30 1. P
x(~y)→aQ if and only if Q ≡ x〈~y〉 |P.

4.6. TRANSITION-BASED CHARACTERISATIONS OF TMAX 113

2. P
τ→aQ iff P→Q iff P

τ→sQ.

Proof: By straightforward inductions. ut

Alas ∼a is not perfect either, as the next lemma shows.

Lemma 31 1. If P ∼a Q then (νx)P ∼a (νx)Q.

2. If P ∼a Q then timert(x(~v).R,P) ∼a timert(x(~v).R,Q).

3. ∼a is not closed under renaming or timestepping. Consequently, it is also not

closed under parallel composition or input.

Proof: Similar to the proof of Lemma 26, using Lemma 29.1 to demonstrate failure

of congruence under parallel composition. ut

The Largest Strong (A)Synchronous Bisimulation Congruences Contained

in Strong (A)Synchronous Bisimilarity

Although ∼a is not yet the right equivalence to characterise Tmax , it is a good place

to start from. We must ensure two things: ensure closure under timestepping and

under renaming. We begin with the former.

Definition 39 A strong φ-bisimulation is a strong asynchronous bisimulation that

is also time-closed. We denote the largest strong φ-bisimulation by ∼′
a.

The existence of ∼′
a is justified by the following simple lemma.

Lemma 32 Strong φ-bisimulations are closed under arbitrary unions. ≡ and id are

examples of strong φ-bisimulations.

The next lemma shows that ∼′
a is closer to being a congruence than the previous

candidates.

Lemma 33 1. If P ∼′
a Q then (νx)P ∼′

a (νx)Q.

2. If P ∼′
a Q then timert(x(~v).R,P) ∼′

a timert(x(~v).R,Q).

3. If P ∼′
a Q then P|R ∼′

a Q|R.

Proof: (1) and (2) are standard and (3) follows from time-closure. ut

Unfortunately, we are not quite there yet, as the following lemma shows.

Lemma 34 Assume x, y, a, b are fresh and distinct names. Define

P = (νa)(x〈a〉 | !y(v).v)

Q = (νa)(x〈a〉 | !y(v).v | timer1(y(v).(v | timer1(a.b, 0)), 0)).

Then P ∼′
a Q but not P{x/y} ∼′

a Q{x/y}.

114 CHAPTER 4. TIMERS

Proof: We define R (up to ≡) by

P |Πci〈~di〉 R

Q |Πci〈~di〉
P |Πci〈~di〉
(νa)(x〈a〉 | !y(v).v | timer1(a.b, 0)) |Πci〈~di〉

where ci is a name and ~di is a tuple of names. By (VC) we can assume all these

names to be distinct from a. Then R ∪ id is a strong φ-bisimulation. As

P |Πci〈~di〉 = φ(P |Πci〈~di〉)
≡ φ(Q |Πci〈~di〉)
= φ((νa)(x〈a〉 | !y(v).v | timer1(a.b, 0)) |Πci〈~di〉),

R is time-closed. To see that R is a strong asynchronous bisimulation, note that

P |Πci〈~di〉 has the following transitions.

• P |Πci〈~di〉
τ→aP |Πci〈~di〉. It is matched by

– Q |Πci〈~di〉
τ→aφ(Q |Πci〈~di〉) = Q |Πci〈~di〉,

– P |Πci〈~di〉
τ→aP |Πci〈~di〉 and

– (νa)(x〈a〉 | !y(v).v | timer1(a.b, 0)) |Πci〈~di〉
τ→aQ |Πci〈~di〉

• P |Πci〈~di〉
x〈(νa)a〉→a!y(v).v |Πci〈~di〉, matched as follows.

– Q |Πci〈~di〉
x〈(νa)a〉→a!y(v).v |Πci〈~di〉,

– P |Πci〈~di〉
x〈(νa)a〉→a!y(v).v |Πci〈~di〉, and

– (νa)(x〈a〉 | !y(v).v | timer1(a.b, 0)) |Πci〈~di〉
x〈(νa)a〉→a!y(v).v |Πci〈~di〉.

• If ci0 = y then ~di0 = (e) for some name e 6= a and P |Πci〈~di〉
τ→aP | e |Πi6=i0ci〈~di〉

The matching transitions are

– Q |Πci〈~di〉
τ→aP | e |Πi6=i0ci〈~di〉,

– P |Πci〈~di〉
τ→aP | e |Πi6=i0ci〈~di〉, and

– (νa)(x〈a〉 | !y(v).v | timer1(a.b, 0)) |Πci〈~di〉
τ→aP | e |Πi6=i0ci〈~di〉.

• P |Πci〈~di〉
c(~d)→aP |Πci〈~di〉 | c〈~d〉, where a /∈ {c, ~d}. This is matched by

– Q |Πci〈~di〉
c(~d)→aQ |Πci〈~di〉 | c〈~d〉

– P |Πci〈~di〉
c(~d)→aP |Πci〈~di〉 | c〈~d〉

– (νa)(x〈a〉 | !y(v).v | timer1(a.b, 0)) |Πci〈~di〉
c(~d)→a (νa)(x〈a〉 | !y(v).v | timer1(a.b, 0)) |Πci〈~di〉 | c〈~d〉

4.6. TRANSITION-BASED CHARACTERISATIONS OF TMAX 115

In all cases, the transition pairs do not leave R ∪ id (up to ≡), as required. The

transitions of the “other side” of R are similar. We just present two. The transitions

Q |Πci〈~di〉
τ→a (νa)(x〈a〉 | d | !y(v).y | timer1(a.b, 0)) |Πi6=i0ci〈~di〉

Q |Πci〈~di〉
τ→a (νa)(x〈a〉 | d | !y(v).y) |Πi6=i0ci〈~di〉 |Πi6=i0ci〈~di〉

are both matched by

P |Πci〈~di〉
τ→aP | e |Πi6=i0ci〈~di〉

for some appropriate i0.

Now consider P{x/y} and Q{x/y}. Clearly

Q{x/y} τ→a (νa)(!x(v).v | a | timer1(a.b, 0))
τ→a !x(v).v | b
b→a !x(v).v.

But b /∈ fn(P{x/y}), so there cannot be a transition sequence

P{x/y} τ→a . . .
τ→a

︸ ︷︷ ︸

≥0

b→aP
′.

This prevents ∼′
a from being closed under renaming. ut

Of course failure of renaming-closure has ramifications for congruency.

Lemma 35 ∼′
a is not closed under any of the three forms of input prefixing, i.e. P∼′

a

Q does not imply x(~v).P ∼′
a x(~v).Q or !x(~v).P!x(~v). ∼′

a Q or timert(x(~v).P,R) ∼′
a

timert(x(~v).Q,R).

Proof: Assume P ∼′
a Q and choose a fresh name x. Towards a contradiction,

let x(~v).P ∼′
a x(~v).Q. By Lemma 33.3 then x(~v).P |x〈a〉 ∼′

a x(~v).Q |x〈a〉. Now

x(~v).P |x〈a〉 τ→aP{a/v}. Clearly, x(~v).Q|x〈~a〉 has only two transitions. The target

of of first, x(~v).Q |x〈a〉 τ→ax(~v).Q |x〈a〉, has a barb at x that P{a/v} lacks, so the

only way x(~v).P |x〈a〉 τ→aP{a/v} can be matched is by x(~v).Q |x〈a〉 τ→aQ{a/v} with

P{a/v} R Q{a/v}. This violates Lemma 34. The other two forms of input are

similar. ut

On closer inspection it becomes clear that this failure of closure under substitu-

tion is robust in the sense that it is not a mere curiosity of ∼′
a: we could replace

asynchronous transitions with synchronous ones, we might use (weak) bisimilarities

instead of strong ones or drop the time-closure requirement. In all cases our coun-

terexample remains valid. This justifies our related claims in Lemmas 29 and 33.

In summary, we have the following results.

116 CHAPTER 4. TIMERS

Proposition 9 None of ≈,≈′,∼,∼′ is closed under name substitution and hence

under the three forms of input prefixing (here ∼′ is obtained from ≈ and ≈′ from ≈
in the same way as ∼′

a from ∼a, by requiring time-closure).

Proof: Similar to Lemmas 34 and 35. ut

Another peculiarity of the example demonstrating the failure of closure under re-

naming is that it uses nested timers. While it would be premature to venture a

conjecture, it appears difficult to come up with counterexamples that do not nest

timers.

Timer-Bisimulation

We are almost there! All that remains for congruency is closure under renaming.

The next definition enforces just that.

Definition 40 A timer-bisimulation is a strong φ-bisimulation R such that PRQ

implies P{x/y}RQ{x/y} for all x, y ∈ N . Clearly ≡ and id are timer-bisimulations.

By ∼c
a we denote the largest timer-bisimulation, which is easily seen to exist.

Proposition 10 ∼c
a is the largest strong asynchronous bisimulation contained in

∼a that is also a congruence.

Proof: Closure under restriction and timert(R, ·) is straightforward. Verifying

closure under parallel composition is immediate by time-closure. Closure under

inputs is similarly easy using renaming-closure. Since congruency straightforwardly

implies time-closure and renaming closure, the maximality is a consequence of ∼c
a’s

coinductive definition. ut

Most of the remainder of this chapter establishes that Tmax and ∼c
a are identical.

4.6.2 ∼c
a = Tmax

In the untimed asynchronous π-calculus, asynchronous bisimilarity soundly approx-

imates the corresponding maximum theory, but does not characterise it. This sec-

tion shows that having timers available simplifies things: timer bisimilarity coincides

with Tmax . The main technical challenge is to show that for every sound theory T :

whenever T ` P = Q and P
x〈(ν~y)~z〉→aQ then there must be a transition Q

x〈(ν~y)~z〉→aQ
′,

such that Tmax ` P′ = Q′. Our actual argument will be relatively simple, but as

it requires a veritable amount of syntactic manipulation, we sketch it first before

delving into the details.

First a syntactic convention: we will often have to deal with transitions
x〈(ν~y)~z〉→a

where the detailed nature (beyond sorting) of ~y or ~z does not matter. By that we

mean that we might use processes like x〈yz〉, but could have used x〈zy〉 x〈xw〉

4.6. TRANSITION-BASED CHARACTERISATIONS OF TMAX 117

or (νa)x〈ba〉 (a 6= x) without affecting the results that interest us. For brevity we

write
x〈...〉→a to indicate this situation and hope not to confuse the reader. Similarly,

abbreviating, say,
x〈(ν~y)~z〉→a

x〈(ν~a)~b〉→a to
x〈...〉→a

x〈...〉→a is not intended to imply that

~y = ~a or ~z = ~b. Conversely, if we write an output in full, then that indicates that

the details of bound names and objects may matter.

Key Steps in the Proof

We establish Tmax = ∼c
a by showing that Tmax is a timer-bisimulation and that ∼c

a is

a sound theory. The latter is straightforward. As mentioned, the difficult bit of the

former is to show that whenever T ` P = Q and P
x〈(ν~y)~z〉→aP

′ then some Q′ exists

such that Q
x〈(ν~a)~b〉→aQ

′ with T ` P′ = Q′. We know from Proposition 2 and Lemma

7 that P
x〈(ν~y)~z〉→aP

′, T ` P = Q implies the existence of a transition Q
x〈(ν~a)~b〉→aQ

′

with T ` P′ = Q′. Well-sortedness of all processes under consideration guarantees

that the vectors ~z and ~b are of equal length, say ~z = (z0...zn−1) and ~b = (b0...bn−1).

What we want to show is that x〈(ν~y)~z〉 = x〈(ν~a)~b〉. We do this in three steps.

• First we verify that the locations of free and bound names coincide. This

means that zi ∈ {~y} if and only if yi ∈ {~a} and we can speak of free and

bound indices.

• Next we establish that free names coincide at free indices. This means: zi /∈
{~y} implies zi = bi and vice versa, whenever i is a free index.

• Finally we prove bound names to coincide: whenever zi ∈ {~y} then zi = ci

and vice versa.

In the light of the previous proofs in this chapter, it would be tempting to consider

a context

C[·] = [·] | timer1(x(~v).(r|Πvi∈~vvi〈...〉), ...)

and use Proposition 2 and Lemma 7 together with reduction-closure. Unfortunately

this is too simplistic because such a context cannot distinguish an output of, say, 〈st〉
from 〈ts〉. The problem is that we map a non-commutative operation (observation

of tuples of names) to a commutative one (observation of the parallel composition of

outputs on names). The key idea to overcome this problem is to indicate a name’s

position in a tuple by the number of times it is being output. This works because

sound theories cannot equate processes like x|x with x|x|x|x. More generally, we

use a rudimentary form of traces and show that whenever two processes are related

by a sound πt-theory then one of them can output on a channel n times in a row

but not n+ 1 times if and only if the other can. This suggests to use a context like.

C[·] = [·] | timer1(x(~v).(r | Πvi∈~vΠ
f(i)
j=1vi〈...〉), ...).

118 CHAPTER 4. TIMERS

The question is now: what is an appropriate choice of f? It cannot be the identity

or other slow-growing functions. The problem is that after we infer a reduction step

C[P]→ (ν~y)(P′ | r | Πzi∈~zΠ
i
j=1zi〈...〉)

the residual P′ might also output additional zi’s as long as i is a free index, because

the interaction might have caused time-outs which in turn may have launched new

active output particles.

To tackle this issue, we prove that every process has an apriori upper bound on

how many consecutive outputs it can send on a fixed channel. Just counting the

appropriate activated outputs in a process in not enough, as parallel composition

with other processes can increase the length of traces. For example, timer1(y, x|x)

has only one trace of outputs on x: the empty one. Similarly, the maximal trace

of consecutive outputs on x of x|timer2(y, x|x) is of length 1. As soon as we run

both processes in parallel we get a trace of length 5. But if we count all outputs not

under a replication, we do get a suitable bound. Replication needs not be considered

because any output under a replication is preceded by a τ -action, preventing it from

counting as a uniform trace.

We must construct the function f such that no matter how much P′ contributes

to any trace we are interested in, as long as it is below a certain threshold, we can

still compute indices from trace lengths. It is easy to construct such functions as

we will demonstrate.

This allows to show that x〈(ν~y)~z〉 and x〈(ν~c)~d〉 coincide on free names. Looking

at traces of bound names in the same way does not make sense because these names

are restricted. So we observe them from the inside: we position a process under the

restriction which will signal successful observation to the outside, if and only if the

received bound names exhibit the pattern we seek to match. This is possible using a

long sequential composition of inputs that essentially inverts the process described

above by mapping commutatively composed numbers back to tuples.

But is a context like

C[·] = [·] | timer1(x(~v).(r |Πvi∈~vΠ
f(i)
j=1vi〈...〉) |OMd

~z , ...)

enough? (OMd
~z, called output-muncher tests for the appropriateness of the received

bound names.) It seems not, because it only allows to conclude that Q
x〈(ν~y)~z〉→aQ

′

and Tmax ` C ′[P′] = C ′[Q′] for some non-trivial context C ′[·], but not Tmax ` P′ =

Q′. Unfortunately, we could not establish a Decomposition Theorem that would

allow to remove C ′[·] from Tmax ` C ′[P′] = C ′[Q′]. The problem is that x〈(ν~y)~z〉 is

a scope-opening operation and removing (ν~y) from a process potentially allows new

forms of interference, that might not have been taken into account in T ` P = Q.

On close inspection, it becomes apparent that the whole construction works

because C[·] contains certain carefully chosen processes; the presence or absence

4.6. TRANSITION-BASED CHARACTERISATIONS OF TMAX 119

of other agents is irrelevant. That means we can change C[·] such that (roughly)

C ′[·] = (ν~y)[·] |R |S) for some fixed process S and arbitrary R. Since we have no

constraints on R, any test that might distinguish P′ from Q′ can be made guarded

under (ν~y). Hence taking off the restriction (and removing S) cannot produce

fundamentally new testing contexts and we can justifiably conclude to Tmax ` P′ =

Q′, cf. Decomposition Theorem 20.

Uniform Traces and πt-Theories

We begin with a notion of trace and relate it to sound theories.

Definition 41 The predicate ↓nx is defined as follows: P↓nx if and only if

• P
x〈...〉→a · · ·

x〈...〉→a
︸ ︷︷ ︸

n

Q, but Q has no transition Q
x〈...〉→aR.

• Whenever P
x〈...〉→a · · ·

x〈...〉→a
︸ ︷︷ ︸

m

Q, and Q has no transition Q
x〈...〉→aR then m ≤ n.

We call↓nx a uniform trace-barb and sequences such as P
x〈...〉→a · · ·

x〈...〉→a
︸ ︷︷ ︸

n

Q uniform

traces.

Of course not all processes have interesting uniform traces. The next definition

allows a rough but useful classification according to what kind of traces a process

may exhibit.

Definition 42 Let x be a name. A process P is x-irrelevant if for all n ≥ 0:

φn(P) 6 x〈...〉→a. If P is not x-irrelevant, it is x-relevant.

The function to be defined next maps processes to natural numbers in a way that

will later allow to use induction when proving facts about uniform trace-barbs.

Definition 43 The function tl(P) maps processes to the number of ticks left in all

of P’s timers, active in φn(P) for at least one n.

tl(P) =

t+ tl(R) P = timert(Q,R)

tl(Q) + tl(R) P = Q|R
tl(Q) P = (νx)Q

0 otherwise

The next lemma provides a rudimentary normal form for processes, used for rea-

soning about uniform traces.

120 CHAPTER 4. TIMERS

Lemma 36 For all processes P and all names x there are index sets I and It such

that

P ≡ (ν~a)(Πi∈Ix〈...〉 |Πi∈It timerti(Qi,Ri) |S)

where each Ri is x-relevant and S is x-irrelevant.

Proof: By straightforward induction on the structure of P. ut

Proposition 11 For all processes P and all names x there is a unique n ≥ 0 such

that P↓nx.

Proof: If there is no transition P
x〈...〉→a then clearly P↓0

x does the job. So assuming

P
x〈...〉→a we proceed by induction on tl(P). For the base case tl(P) = 0 we know from

Lemma 36 that

P ≡ (ν~a)(Πk
i=1x〈...〉 |R)

where x /∈ {~a}, R is x-irrelevant and does not contain active timers. Then clearly

P↓kx is the unique appropriate trace-barb. For the inductive step, assume tl(P) > 0.

By Lemma 36 again

P ≡ (ν~a)(Πk
i=1x〈...〉 |Πm

i=1timerti(Qi,Ri) |S)

where x /∈ {~a}, k,m ≥ 1, S is x-irrelevant and each Ri is x-relevant. Now P
x〈...〉→aP

′

means

P′ ≡ (ν~b)(Πk−1
i=1 x〈...〉 |Πm

i=1φ(timerti(Qi,Ri)) |φ(S))

where {~b} ⊆ {~a}. As m ≥ 1, tl(P′) < tl(P), so by (IH) there is a unique n′ with

P′ ↓n′

x . Hence P↓n′+1
x . For uniqueness, assume P↓m+1

x (by our assumptions, P↓0
x is

impossible). Then

P
x〈...〉→aP

′′ x〈...〉→a · · ·
x〈...〉→a

︸ ︷︷ ︸

m

P′′′ 6 x〈...〉→a,

i.e. P′′′ ↓m+1
x . But clearly P′ ≡ P′′, hence P′ and P′′ have exactly the same transitions,

which means m = n′. ut

Definition 44 The maximal output, mo(P) of a process P gives an upper bound

on the number of consecutive outputs a process can do.

mo(0) = 0

mo(x〈~y〉) = 1

mo(P|Q) = mo(P) + mo(Q)

mo(timert(P,Q)) = mo(Q)

mo(x(~v).P) = 0

mo(!x(~v).P) = 0

4.6. TRANSITION-BASED CHARACTERISATIONS OF TMAX 121

The no-timer-point of P, written ntp(P), is defined below.

ntp(P) =

0 φ(P) = P

1 + ntp(φ(P)) φ(P) 6= P

Then satx(P), the x-saturation of P is given

satx(P) = n if and only if φntp(P)(P)↓nx .

The following lemma connects uniform traces with satx(·) and mo(·).

Lemma 37 1. Assume that P
x1〈...〉→a · · ·

xn〈...〉→aQ and R is a subterm of Q. Then

satx(R) ≤ mo(P) for all names x.

2. Assume satx(P) = 0 then satx(P |Πn
i=1x〈...〉) = n

3. If P|Q↓nx and satx(P) < n then Q↓mx implies m > 0.

Proof: Immediate from the definitions. ut

Constructing the Location Indicator

As alluded to, we will have to construct a function f : {0, . . . , n − 1} → N that is

not only invertible but stably so. This means that we can obtain i not only from

f(i) but even from f(i) + n0 provided n0 stays within reasonable bounds. There

are many suitable functions but we will only construct one.

Definition 45 Let f : A→ N and g : N → A be partial functions and n0 ∈ N. We

call g a n0-inverse to f if for all k with 0 ≤ k < n0:

g(k + f(a)) = a for all a ∈ A.

If such a g exists, f is an n0-location indicator.

The next lemma shows that n0-location indicators exist.

Lemma 38 Let f : A→ N be an injective function and n0 ∈ N. Define the function

F : Pfin(A) → N by

S 7→ (n0 + 1)Σs∈S22f(s)+1

and the partial function G : N → Pfin(A) by

n 7→

S if |n− F (S)| < n0

undefined otherwise

Then the following hold.

122 CHAPTER 4. TIMERS

1. F (S) > n0 for all appropriate S.

2. (a) S 6= T implies |F (S) − F (T)| ≥ 2(n0 + 1).

(b) G is a partial function.

(c) G is an n0-inverse to F .

3. Let S, T ⊆ N be finite. F (S) = F (T) iff S = T .

4. Let S, T ⊆ N be finite and a, b < n0.Then a+ F (S) ≤ b+ F (T) if and only if

F (S) ≤ F (T).

5. Let S ⊆ N be finite. Assume that ~T = {T1, ..., Tm} and ~U = {U1, ..., Un}
(m ≤ n) are two partitions of S such that Ti, Ui 6= ∅ for all appropriate

i. Assume that ψ : {1, ...,m} → {1, ..., n} is an injective function and that

a1, ..., am, b1, ..., bm ∈ N such that

• ai + F (Ti) ≤ bi + F (Uψ(i)) for all i ∈ {1, ...,m}.
• Σiai < n0 and Σibi < n0.

Then ~T = ~U .

Proof: First, (1) is immediate from the definition of F . For (2), please recall that

Σn
i=0x

i = 1−xn+1

1−x for all real numbers x 6= 0 [46]. Clearly, f induces a strict order on

A: a @ b if and only if f(a) < f(b). Naturally, f is strictly monotonically increasing

with respect to this ordering. Now let S, T ∈ Pfin(A) and w.l.o.g. F (S) > F (T).

This means that some s+ ∈ S must exist such that t @ s+ for all t ∈ T . If T = ∅
then easily

|F (S) − F (T)| ≥ (n0 + 1)22f(s+)+1 ≥ 2(n0 + 1).

Otherwise, there must be tmax = max(T \S) (where max(T \S) is taken with respect

to @). Then

|F (S) − F (T)| = (n0 + 1)(Σa∈S\T 22f(a)+1 − Σa∈T\S22f(a)+1)

≥ (n0 + 1)(22f(s+)+1 − Σ
2f(tmax)+1
i=0 2i)

= (n0 + 1)(22f(s+)+1 − 22f(tmax)+2 + 1)

≥ (n0 + 1)(22f(tmax)+3 − 22f(tmax)+2 + 1)

= (n0 + 1)22f(tmax)+3

≥ 8(n0 + 1)

This establishes (2a). Next, assume that |n − F (S)| < n0 and |n − F (T)| < n0.

Then by the triangle-inequality:

|F (S) − F (T)| ≤ |n− F (S)| + |n− F (T)| < 2n0.

4.6. TRANSITION-BASED CHARACTERISATIONS OF TMAX 123

By (2a) above, that means that S = T . Hence G is indeed a partial function.

Finally, for (2c), choose an appropriate S and k with 0 ≤ k < n0. Then

|(k + F (S)) − F (S)| = k < n0

hence G(k + F (S)) = S.

(3) is immediate from (2c) while (4) follows from (1). For (5), assume that x0 =

max(Uψ(i) \ Ti) existed. Then for some unique i0: x0 ∈ Ti0 \ Uψ(i) By construction

this means that
y ∈ Uψ(i0)

y > x0

}

⇒ y ∈ Ti0

But then

(ai + F (Ti0)) − (bi + F (Uψ(i0)))

= ai − bi + (n0 + 1)

∑

x∈Ti0
x<x0

22x+1 + 22x0+1 +
∑

x∈Ti0
x>x0

22x+1 −
∑

x∈Uψ(i0)
x<x0

22x+1 −
∑

x∈Uψ(i0)
x>x0

22x+1

= ai − bi + (n0 + 1)

∑

x∈Ti0
\Uψ(i0)

x<x0

22x+1 + 22x0+1 −
∑

x∈Ti0
\Uψ(i0)

x<x0

22x+1

≥ ai − bi + (n0 + 1)

(

22x0+1 −
2x0−1∑

x=0

2x

)

= ai − bi + (n0 + 1)(22x0 + 1)

≥ ai − bi + 2n0 + 2

≥ −n0 + 2n0 + 2

> 0

Hence ai + F (Ti0) > bi + F (Uψ(i0)), in contradiction to one of the assumptions.

Consequently Uψ(i) ⊆ Ti for all i. This allows to obtain F (Uψ(i)) ≤ F (Ti) for all i.

By (4) then also bi +F (Uψ(i)) ≤ ai +F (Ti), hence bi +F (Uψ(i)) = ai +F (Ti). By 4

F (Uψ(i)) = F (Ti). Applying 3 gives Uψ(i) = Ti for all i. As ~T and ~U both partition

S, and ~U does not contain ∅ as a partition, it must be the case that ~T = ~U . ut

The role of n0 in our definition of n0-location indicators is to give an upper bound

on the amount of noise the n0-location indicator can tolerate without loosing the

ability to be inverted.

Output Munching

The next step towards our characterisation theorem is to define OMb
m, the output

muncher. Given a string m = 〈x0...xn−1〉 of names, what P|OMb
m does is indicate,

via b, if P is capable of outputting on the names in m and in that order.

124 CHAPTER 4. TIMERS

Definition 46 Let m = 〈x0...xn−1〉 be an n-tuple of names. Define

OMb
m = (νa)(x0(~v0).....xn−1(~vn−1).a | timern+1(a.b, 0))

where a is fresh and xi /∈ {~vj} for all i, j. We call OMb
m and output muncher with

munch m and signal a. We write P↓m if P
x0〈...〉→a · · ·

xn−1〈...〉→aQ for some Q.

The following lemma states two essential facts about output munching.

Lemma 39 1. P↓s iff P|OMa
s ⇓a, where a is fresh.

2. Let T be a sound theory and T ` P = Q. Then P↓nx iff Q↓nx.

Proof: (1) is by definition and for (2) let s = 〈x...x
︸︷︷︸

n

〉. Then

P↓nx ⇒ P↓s
⇒ ∃P′.P|OMa

s�P′ ↓a
⇒ ∃Q′.Q|OMa

s�Q′ ↓a
⇒ Q↓s
⇒ Q↓mx for some m ≥ n.

Similarly we establish:

P↓mx ⇒ Q↓kx for some k ≥ m.

Then Proposition 11 guarantees that k = n, hence m = n. ut

The Main Lemma

We have now assembled all the tools to prove the main lemma that carries most of

the workload for our characterisation theorem.

Lemma 40 Let T ` P = Q and P
x〈(ν~y)~z〉→aP

′. Then there is a transition Q
x〈(ν~y)~z〉→aQ

′

such that Tmax ` P′ = Q′.

Proof: Choose an arbitrary process R and an integer t > 0. Define number

n0 = 1 + mo(P) + mo(Q) + mo(R). It is an upper bound on the length of certain

output traces that P|R and Q|R or their descendants can do. Define the function f on

natural numbers by i 7→ (n0+1)22i+1. For finite subsets S of N set F (S) = Σi∈Sf(i).

For every name x and every tuple of names ~y let indices~y(x) = {i | yi = x}. Assume

that ~y = 〈y0...ym−1〉 and ~z = 〈z0...zn−1〉 for some m,n ≥ 0. Define

s = 〈 y0, . . . , y0
︸ ︷︷ ︸

F (indices~z(y0))

, y1, . . . , y1
︸ ︷︷ ︸

F (indices~z(y1))

, . . . , ym−1, . . . , ym−1
︸ ︷︷ ︸

F (indices~z(ym−1))

〉.

4.6. TRANSITION-BASED CHARACTERISATIONS OF TMAX 125

Now we are ready to construct the context C[·] that will allow to use reduction-

closure to force the existence of the transition mentioned in the statement of the

lemma. Choose two fresh and distinct names a, b. Recalling from Theorem 20 that

delayt(S) stands for processes of the form (νa)timert(a.0,S) (a /∈ fn(S)), we define

C[·] = [·] | timer1(x(~v).(R | delayt(a |Πn−1
i=0 Π

f(i)
j=1vi〈...〉 |OMb

s)), 0)

where ~v is chosen such that fn(OMb
s) ∩ {~v} = ∅. By our convention about the

presentation of tuples and by well-sortedness of all extant processes, we can assume

~v = 〈v0...vn−1〉. Then:

C[P] → (ν~y)(P′ |R | delayt(a |Πn−1
i=0 Π

f(i)
j=1zi〈...〉 |OMb

s))

≡ (ν~y)(P′ |R | delayt(a |Pfree |Pbound |OMb
s))

def
= P′′

where – under the assumption that Sfree is the set of all appropriate indices of free

names in ~z and Sbound is its complement: Sfree = {i | zi /∈ {~y}} and Sbound = {i | zi ∈
{~y}} – we abbreviate:

Pfree = Πi∈Sfree
Π
f(i)
j=1zi〈...〉 Pbound = Πi∈Sbound

Π
f(i)
j=1zi〈...〉

By strong reduction-closure and Proposition 3 we can find a reduction step C[Q]→Q′′

such that T ` P′′ = Q′′. As P′′⇓a, by Lemma 13.2 also Q′′⇓a. But there is only one

way that is possible. Applying Lemma 8.5 again allows to infer the existence of a

transition

Q
x〈(ν~c)~d〉→aQ

′

such that

Q′′ = (ν~c)(Q′ |R | delayt(a |Πn−1
i=0 Π

f(i)
j=1di〈...〉 |OMb

s))

≡ (ν~c)(Q′ |R | delayt(a |Qfree |Qbound |OMb
s))

where Tfree = {i|zi /∈ {~y}}, Tbound = {i|zi ∈ {~y}}, Qfree = Πi∈Tfree
Π
f(i)
j=1di〈...〉 and

Qbound = Πi∈Tbound
Π
f(i)
j=1di〈...〉. Now clearly

P′′ →. . .→
︸ ︷︷ ︸

t

P′′′ def
= φt(P′) |φt(R) | a |Pfree |Pbound |OMb

s

By induction on t we prove the existence of a process Q′′′ such that T ` P′′′ = Q′′′,

Q′′ →. . .→
︸ ︷︷ ︸

t

Q′′′ def
= Q′′′′ | a |Qfree |Qbound |OMb

s and Q′ |R→. . .→
︸ ︷︷ ︸

t

Q′′′′.

The base case, t = 1 uses the fact that P′′′ ↓a, so also Q′′′ ↓a (Proposition 2.2 again).

But this is only possible if Q′|R→Q′′′′ and

Q′′′ ≡ Q′′′′ | a |Qfree |Qbound |OMb
s

126 CHAPTER 4. TIMERS

Reasoning for inductive step step is very similar, starting from the (IH).

The next step is to demonstrate that x〈(ν~y)~z〉 = x〈(ν~c)~d〉. This means we need

to show for all i = 0...n − 1:

• zi ∈ {~y} if and only if di ∈ {~c},

• zi /∈ {~y} implies zi = di and

• zi ∈ {~y} implies zi = di.

Now choose zi ∈ {~z} \ {~y}. First we establish the existence of an index j such that

zi = dj and dj ∈ {~d} \ {~c}. Assume P′′′ ↓kizi . Then by construction

2(n0 + 1) ≤ F (indices~z(zi)) ≤ ki < F (indices~z(zi)) + n0. (4.3)

By Proposition 11 and Lemma 39.2: Q′′′ ↓kizi . Also, by construction of n0, Lemma

37.2 and the definition of satzi(·): satzi(Q
′) < n0, satzi(Qbound) = 0, satzi(OMb

s) = 0

and satzi(a) = 0. Consequently,

satzi(a | (ν~c)(Q′′′′ |Qbound |OMb
s)) < n0 (4.4)

by Lemma 37.1. But then Q′′ ↓kizi , Lemma 7 and (4.4) imply

Qfree ↓lizi ⇒ li > 0.

Thus zi = dj for some dj ∈ {~d} \ {~c}. Next we show that

indices~z(zi) = indices~d(dj).

Since Q′′′ ↓kizi , it must also be the case that Q′′′ ↓kidj , where

2(n0 + 1) ≤ F (indices~d(dj)) ≤ ki < F (indices~d(dj)) + n0 (4.5)

Now (4.3), (4.5) and the Triangle-Inequality together yield:

|F (indices~d(dj)) − F (indices~z(zi))|
≤ |F (indices~d(dj)) − ki| + |F (indices~z(zi)) − ki|
< 2n0

But by Lemma 38 this guarantees indices~z(zi) = indices~d(dj), as required.

Since P′′′⇓b, also Q′′′⇓b (Lemma 13.2). By Lemma 39.1 then Q′′′′|Qfree|Qbound ↓s.
By construction, name in s is also in {~y}. But we have just established that di ∈ {~c}
iff zi ∈ {~y}, so Qfree cannot contribute to ↓s. Hence

Q′′′′|Qbound ↓s .

4.6. TRANSITION-BASED CHARACTERISATIONS OF TMAX 127

By definition of ↓s this means that we can find processes

(Qi,Qi
bound)i∈{0,...,m} such that Q′′′′ = Q0 Qbound = Q0

bound

and

Qi |Qi
bound

yi〈...〉→a · · ·
yi〈...〉→a

︸ ︷︷ ︸

F (indices~z(yi))

Qi+1 |Qi+1
bound

for each appropriate i. By partial induction on i ∈ {0, ...,m − 1} we now construct

a function

ψi : {0, ..., i} → {0, ...,m − 1}

such that

• ψi is injective, and

• for all j ∈ {0, ..., i}: cψi(j) = yj and F (indices~z(yi)) ≤ F (indices~d(cψi(j))) + n0.

For the base case i = 0 we know that

Q0|Q0
bound ↓l0y0 implies F (indices~z(y0)) ≤ l0.

Since n0 < l0 by definition, the relevant uniform trace cannot come from just Q0,

Q0
bound must also contribute (Lemma 39.2). This means that some cj ∈ {~c} must

exists with cj = y0. Set

ψ0 = {(0, j)}.

By Lemma 37.3

l0 ≤ F (indices~d(cψ0(0))) + n0,

as required.

For the inductive step, assume i ∈ {1, ...,m − 2}. We know that

Qi+1 |Qi+1
bound

yi+1〈...〉→a · · ·
yi+1〈...〉→a

︸ ︷︷ ︸

F (indices~z(yi+1))

Qi+2 |Qi+2
bound

Hence Qi+1 |Qi+1
bound ↓

li+1
yi+1 . But, as above, that means

F (indices~z(yi+1)) ≤ li+1.

As with the base case that means Qi+1
bound, too, must contribute. Hence we can find

cj0 ∈ {~c} with cj0 = yi+1. But yi+1 /∈ {ψi(0), ..., ψi(i)}, for otherwise we could find

k < i + 1 with ψi(k) = yi+1 = yk, which is impossible by definition of ~y. Hence

ψi+1, given by

j 7→

ψi(j) j ∈ {0, ..., i}
cj0 j = i+ 1

128 CHAPTER 4. TIMERS

is injective, hence bijective, as {~c} and {~y} have the same cardinality. Using Lemma

37.3 once again, we obtain

li+1 ≤ F (indices~d(cψi+1(i+1))) + n0.

This concludes the induction.

The fact that ψm−1 is bijective and that Cψm−1(i)=yi together imply {~y} = {~c}.

We now show that ~y = ~c. Recall Sbound : it is partitioned by

• (indices~z(yi))yi∈{~y} and by

• (indices~z(cψm−1(i)))yi∈{~y}.

The first partition is by definition and the second because ψm−1 permutes {~y}.

Clearly each partition consists only of non-empty sets. This means we can apply

Lemma 38.5 and conclude that both partitions coincide. But then di ∈ {~c} implies

di = zi, as required.

We have now established that Q
x〈(ν~y)~z〉→aQ

′. All that is left to do is to verify

Tmax ` P′ = Q′.

We know that T ` P′′ = Q′′. Recalling that

P′′ = (ν~y)(P′ |R | delayt(a |Πn−1
i=0 Π

f(i)
j=1zi〈...〉 |OMb

s))

Q′′ = (ν~c)(Q′ |R | delayt(a |Πn−1
i=0 Π

f(i)
j=1di〈...〉 |OMb

s))

and that t and R were arbitrary, we can apply the Decomposition Theorem 19 to

conclude that Tmax ` P′ = Q′. ut

The following immediate consequence will be useful later.

Corollary 1 If T ` (ν~y)(P′|x〈~z〉) = Q, then Q ≡ (ν~y)(Q′|x〈~z〉) and Tmax `
φ(P′) = φ(Q′).

Proof: Easy from Lemma 40. ut

Having done all the hard work, we can now reap the payoff.

Theorem 25 (Labelled Characterisation of Tmax) Tmax = ∼c
a.

Proof: We start by showing that Tmax is a strong asynchronous bisimulation.

For this purpose, assume that Tmax ` P = Q. If P
x(~y)→aP

′, then by Lemma 30.1

P′ ≡ x〈~y〉 |P and Q
x(~y)→ax〈~y〉 |Q. By congruency: Tmax ` x〈~y〉 |P = x〈~y〉 |Q.

If P
x〈(ν~y)~z〉→aP

′, then Lemma 40 guarantee an appropriate transition Q
x〈(ν~y)~z〉→aQ

′

with Tmax ` P′ = Q′. If P
τ→aP

′ we use strong reduction-closure to construct an

appropriate matching transition. Hence Tmax ⊆ ∼c
a. By Proposition 5, Tmax is time-

closed and Proposition 4 ensures renaming-closure, so Tmax is a timer-bisimulation

and Tmax ⊆ ∼c
a.

4.6. TRANSITION-BASED CHARACTERISATIONS OF TMAX 129

For the reverse implication, we show that ∼c
a is a sound theory. Clearly 0 6 ∼c

a x,

so ∼c
a is consistent. The coincidence of → and

τ→a (Lemma 30) together with ∼c
a

being a strong asynchronous bisimulation and a πt-congruence (Proposition 10)

guarantee strong reduction-closure. As to the identification of all insensitive terms,

clearly {(P,Q) |P,Q insensitive} is a strong asynchronous timer bisimulation, hence

∼c
a ⊆ Tmax , as required. ut

Before using the characterisation to derive some equalities, it might be instructive

to reflect on the proof of the Main Lemma. Why can’t it be adapted to show

that reduction congruence coincides with asynchronous bisimilarity in the untimed

asynchronous π-calculus? After all, the key trick in the proof, mapping tuples of

names to multisets, but such that the number of a name’s occurrences allows to

determine its positions in the tuple, does not rely on timers. If we had T ` P = Q

and P
x〈(ν~y)~z〉→aP

′ we could define

C[·] = [·] |x(~v).(ΠiΠ
f(i)
j=1vi〈...〉 | ...).

Then

C[P]→ (ν~y)(ΠiΠ
f(i)
j=1zi〈...〉 | ...)

def
= P′′

and reduction-closure would ensure a reduction sequence

C[P]�Q′′ and T ` P′′ = Q′′.

We could show that P′′ and Q′′ had the same weak uniform trace barbs. But unlike

in πt, this does not imply Q
x〈(ν~y)~z〉→aQ

′, because Q could contain forwarders, which

add weak barbs: if R ↓x then R | fwxy ⇓y. This means that we cannot determine

the identity of names exported by Q, only their pattern of coincidence. In πt the

situation is different: timers can ensure that no forwarding takes place. This is

possible because forwarding takes time.

Another issue is that the asynchronous transition system
l→a, used for the Char-

acterisation Theorem, splits (Par) to ensure broadcasting the flow of time only

for τ -transitions and output actions. This makes sense for asynchronous calculi.

Nevertheless, nothing in our development compellingly suggests that one cannot

characterise Tmax using an alternative asynchronous transition system not splitting

(Par) but rather broadcasting time-passing for every action including inputs. We

confess to having no idea if that is possible or not.

Some Examples

We now look at a few examples of using the Characterisation Theorem. Because

Tmax is such a fine equivalence, our examples will not be very complicated.

130 CHAPTER 4. TIMERS

Example 3 The identity forwarder fwaa and 0 are strongly reduction congruent.

To see this, define R up to ≡ by

fwxx |Πiyi〈~zi〉 R Πiyi〈~zi〉 whenever {yi, ~zi} ⊆ N .

Obviously R is time- and renaming closed. Since all occurring processes are timer-

free, idle transitions can trivially be matched. The only vaguely interesting transi-

tion

fwxx |x〈~a〉 |Πiyi〈~zi〉
τ→afwxx |x〈~a〉 |Πiyi〈~zi〉

is clearly matched by the idle transition

x〈~a〉 |Πiyi〈~zi〉
τ→ax〈~a〉 |Πiyi〈~zi〉.

The next example shows that we only really need timers of the form timer1(x(~v).P,Q).

All other timers can be constructed from this basic form.

Example 4 Define

T1 = timer1(x(~v).P,Q) Tt+1 = timert+1(x(~v).P,Tt)

Then

Tmax ` Tt = timert(x(~v).P,Q)

for all t > 0. A relation that witnesses this equation given by

Tt |Πn
i=1xi〈~yi〉 R timert(x(~v).P,Q) |Πn

i=1xi〈~yi〉.

It is easy to see that R is a timer-bisimulation, closed under renaming, as required.

Example 5 In the asynchronous π-calculus, the asynchronous bisimilarity soundly

approximates the maximum sound theory but does not characterise it: for example

x〈z〉 and x〈z〉|fwyz are equated by the latter relation but not by the former [61]. In

πt, these processes are of course also not related by ∼c
a, because x〈z〉|fwyz can never

match the transition x〈y〉 x〈y〉→a0, but the Characterisation Theorem guarantees that

Tmax 6` x〈y〉 = x〈z〉|fwyz.

Example 6 Parallel composition commutes with delay operators.

Tmax ` delayt(P|Q) = delayt(P)|delayt(Q)

It is straightforward to see that R∪ id is a timer bisimulation, where R is given by

delayt(P|Q) R delayt(P) | delayt(Q).

Example 7 T ` x〈~y〉 |x〈~y〉 = delay1(x〈~y〉) |x〈~y〉 but not T ` x〈~y〉 = delay1(x〈~y〉).
We omit the easy proof of these statements.

This final example shows another way of how decompositions may not be possible.

4.7. ALTERNATIVE EQUIVALENCES? 131

A Remark on Locality

In §2.7.1, we have discussed locality, a restriction that prevents processes to bind

input names. This also makes sense for πt: we obtain πloc
t by restricting πt to local

processes only. In the next chapters, πloc
t will be important and questions about

its properties become unavoidable. Fortunately, all results established so far for πt

also hold for πloc
t . It is easy to see by looking over all our proofs that none used any

input binding in a way that was inconsistent with locality.

4.7 Alternative Equivalences?

The various characterisations of the largest sound πt-theory are pleasant because

they illuminate this fundamental equivalence from several angles and testify to its

canonicity. Nevertheless, the situation is not satisfactory: Tmax is too discriminat-

ing. In some sense this is unavoidable: time passing cannot be hidden and timers

are a sensitive tool for measuring it. So we are really paying the price for congru-

ency. Often, however, we want or even need to be less demanding. In this section

we sketch three techniques that might prove useful as starting points for further

inquiries towards coarser equivalences.

4.7.1 Timer Coarsening

Our timers are very fine-grained in that they can detect the presence or absence of

strong barbs. If you look at the proofs in Sections 4.4, 4.5 and 4.6, we often use

contexts like

(ν~a)([·] | timer1(x(~v).P,Q))

to spot if a process has a strong barb at x. Although we do not do this here (but

see Example 4), it can be shown that just adding a capability for the detection

of strong barbs to the asynchronous π-calculus suffices for encoding πt. One key

feature of strong-barb detecting contexts such as the above is that they only use

timers that time-out in one reduction step. This suggests that we might get coarser

equivalences if we restrict processes such that all timers are of the form

timernt(x(~v).P,Q))

where n > 0 is some fixed integer. We obtain the original πt as one limit case and

the theory of untimed observation of πt as the other. This restriction accords well

with contemporary computers where the granularity of time-measurement is several

order of magnitude above that of the duration of atomic computational steps of the

CPU.

132 CHAPTER 4. TIMERS

Unfortunately, this form of timer coarsening does not seam to lead to coarser

equivalences. Consider the case n = 5: the context

C[·] = (ν~a)(τ.τ.τ.τ.[·] | timer5(x(~v).P,Q))

also allows to test processes for the existence of a strong barb at x. We could modify

the definition of sound theories to require only closure under reduction contexts, to

prohibit contexts such as C[·], or something even more involved. But is it a good

idea to give up on congruency? Maybe it isn’t, maybe it is in the presence of timers,

at least partially. It would appear that solid answers can only be given after a more

thorough exploration of the design space.

4.7.2 Clock-Drift

Our timers are precise, they do not exhibit clock-drift. This is why the process

(νxy)(timer7(x.a, 0) | timer7(y.0, x))

will be equated with 0 by all reasonable equivalences. In many implementations of

timers, the absence of clock-drift cannot be guaranteed, due often to imperfections of

the underlying physical clocks or because of the way timer interrupts are handled. In

the interest of realistic models it may then be good to admit a degree of clock-drift.

This can easily be done in our model. Essentially all we need to do is generalise the

timestepper function φ to binary timestepper relations and modify two reduction

rules.

(Par)
P→P′ Q′ ∈ φ(Q)

P|Q→P′|Q′
(Idle)

Q ∈ φ(P)

P→Q

The labelled semantics is obtained accordingly.

This definition works in the sense that it can express arbitrary discrete clock-

drift. But it is too liberal as some valid choices of φ permit reductions such as

x〈~y〉→0.

One can require timestepper relations to meet all manner of constraints to root out

such pathological behaviour. We continue by listing some of them.

Definition 47 A binary relation φ on πt-processes is a simple timestepper if it

meets the following requirements.

• If P does not contain active timers, then φ(P) = {P}.

• If R ∈ φ(P|Q) then R = P′|Q′ where P′ ∈ φ(P) and Q′ ∈ φ(Q).

• If Q ∈ φ((νx)P) then Q = (νx)P′ for some P′ ∈ φ(P).

4.7. ALTERNATIVE EQUIVALENCES? 133

• If R ∈ φ(timert(P,Q)) then R = timert
′
(P,Q) or R = Q.

Clearly, if we restrict φ-relations to simple timesteppers, reductions such as x〈~y〉→0

are no longer possible. It is worthwhile to note that taking the identity relation

as the timestepper yields a version of the asynchronous π-calculus, where we have

two syntactically different, yet behaviourally indistinguishable input-prefixes, x(~v).P

and timert(x(~v).P,Q). To exclude this limit case we can impose

timert(P,Q) ∈ φ(timert+1(P,Q)) and Q ∈ φ(timer1(P,Q)).

In addition, we might want clock-drift to be uniform in the sense of context inde-

pendence: if

timer7(P,Q)|R′ ∈ φ(timer9(P,Q)|R)

then also

timer7(P,Q)|S′ ∈ φ(timer9(P,Q)|S).

It seems reasonable to require clock-drift to be independent of the choice of contin-

uations of the relevant timers. The following two statements show how to formalise

this. For all reduction contexts C1[·], C2[·], t, t′,Pi,Qi,

C ′
1[timert

′
(P1,Q1)] ∈ φ(C1[timert(P1,Q1)]

iff

C ′
2[timert

′
(P2,Q2)] ∈ φ(C2[timert(P2,Q2)].

Similarly, for all reduction contexts C1[·], C2[·], t,Pi,Qi,

Q1 ∈ φ(C1[timert(P1,Q1)] iff Q2 ∈ φ(C2[timert(P2,Q2)].

Interestingly, uniformity of clock-drift might not always be desirable in models.

Since timers are often implemented via interrupts which can be disabled by other

programs, the execution context of a program can influence clock-drift. A typical

example would be when the OS temporarily blocks timer interrupts to ensure swift

completion of some higher priority task.

Another type of uniformity one might require is independence of clock-drift from

the timers’ time-out time:

timert−∆(P,Q) ∈ φ(timert(P,Q)) iff timert
′−∆(P,Q) ∈ φ(timert

′
(P,Q))

for all t, t′ > 0, ∆ ∈ Z, and all t− ∆, t′ − ∆ > 0.

It is not clear that we have exhausted the uniformity conditions one might

reasonably stipulate, or even that they are appropriately approximated by our sug-

gestions above. As much in this text, we have intended to provide some reasonable

starting points for further investigations.

134 CHAPTER 4. TIMERS

Legitimisation

Being a simple timestepper is often not enough, even with the additional uniformity

requirements sketched in the last section, because of lacking constraints on the

evolution of clock-drift in the course of a computation. For example we have not

prohibited

timer37482(P,Q) ∈ φ(timer1(P,Q)) and timer1(P,Q) ∈ φ(timer12346(P,Q)).

Given the discrepancy between clock speeds of modern CPUs and the granularity

of timers, a sloppy implementation of the OS’s interrupt mechanisms may lead to

such clock-drift. Nevertheless, sometimes such behaviour may be unacceptable. For

precise models, we need to be able to finely control the permitted clock-drift. This

touches on two issues: how to measure clock-drift and how to exclude computations

with inappropriately drifting clocks? The latter problem is easily solved with the

following informally presented construction.

Definition 48 Given a graph G = (V,→), a legitimiser is a unary predicate 2 on

finite paths in G such that 2 is prefix closed, contains the empty string and is closed

under concatenation of finite reduction paths. Legitimisers for labelled graphs are

defined similarly. We will usually write 2(P�Q) for (P = P0,P1, . . . ,Pn = Q) ∈ 2,

hoping that this will not confuse the reader.

For the graphs we are interested in, those induced by the reduction relation

of process calculi, we will in general impose additional closure requirements, for

example under ≡ or injective renaming.

Given a process calculus and a legitimiser 2, we obtain a 2-equivalent of every

construction in the original calculus by simply replacing references to traces P�Q

with references to 2-legitimised traces 2(P�Q).

Example 8 Let 2 be a legitimiser for the πt-calculus. A πt-theory T is 2-reduction-

closed if T ` P = Q and 2(P�P′) implies the existence of a process Q′ such that

2(Q� Q′) and T ` P′ = Q′. A process P is 2-insensitive if 2(P� Q) implies

an(Q) = ∅.

If C[·] and C ′[·] are reduction contexts, then C[·] 2-generically reduces to C ′[·],
denoted 2(C[·]�C ′[·]) if some legitimised reduction sequence 2(C[P]�C ′[P]) exists

for all P.

A πt-theory is 2-sound if it is consistent, 2-reduction-closed and equates any

two 2-insensitive processes.

All equivalences we have touched upon in this text can be 2-ified in this way. What

kind of theorems hold for for 2-equivalences depends on 2 of course, but some

general structure seems to be available: we conjecture that for many choices of 2

4.7. ALTERNATIVE EQUIVALENCES? 135

and 2
′
2 ⊆ 2

′ implies R2′ ⊆ R2, where R is one of the standard equivalences for

π-calculi and R2 its 2-ified version, ditto for R2′ .

How does that relate to clock-drift? Clock-drift is usually specified relative to

duration: “this clock does not drift more then 3 seconds per year!” As we measure

time through the number of reduction steps in πt, it appears natural to specify

clock-drift along the lines of: “in traces of length n we allow at most 3 ticks clock-

drift!” Assuming we know how to measure the clock-drift of reduction sequence we

can then use appropriate legitimisers:

2 3
100

= {P�Q | cd(P�Q)

length(P�Q)
≤ 3

100
}

All that remains is to explain how to define cd(P�Q), the clock-drift of P�Q.

Unfortunately, we know of no canonical way of doing this. Consider the trace

timer3(P,Q)→ timer2(P,Q)→ timer1(P,Q)→Q.

We want cd(timer3(P,Q)�Q) = 0, but what about

timer3(P,Q)→ timer1(P,Q)→ timer1(P,Q)→Q?

It is reasonable to say that cd(timer3(P,Q)→ timer1(P,Q)) = 1 because the clock

makes one tick too many. Conversely, cd(timer1(P,Q)→ timer1(P,Q)) = −1. But

does that mean that

cd(timer3(P,Q)→ timer1(P,Q)→ timer1(P,Q)) = 0

because the clock’s two missteps cancel each other out? Or is it better to add:

cd(timer3(P,Q)→ timer1(P,Q)→ timer1(P,Q)) = 2?

And what about active timers running in parallel? Do we add clock-drift, as in

cd(timer4(P,Q)|timer8(P′,Q′)→ timer2(P,Q)|timer1(P′,Q′)) = 1 + 6?

Or should we take the maximum

cd(timer4(P,Q)|timer8(P′,Q′)→ timer2(P,Q)|timer1(P′,Q′)) = max(1, 6)?

The right choice may depend on the application, but once it is made, it induces a

legitimiser which in turn determines equivalences.

136 CHAPTER 4. TIMERS

4.7.3 Idling

As discussed in §4.3.1, our semantics is temporally asynchronous as we can always

derive P→φ(P). Other models of timed computation make different choices with

the opposite extreme being the requirement of maximal progress which allows idling

only when no non-idling reduction steps are derivable. Using legitimisers we can

easily describe such behaviour without having to modify our calculus.

Definition 49 A reduction step P→Q is idling if each of its derivations contains

an application of (Idle). If, in addition, every reduction P→R is idling, we say

P→Q is an essential idling. An idling that is not essential is inessential.

Definition 50 Call a reduction sequence P0 →· · ·→Pn maximally progressing if

each constituent Pi → Pi+1 is either not idling or an essential idling. With the

πt-legitimiser

2mp = {P�Q |P�Q is maximally progressing}

we obtain the maximally progressing, timed, asynchronous π-calculus.

Analogously to what we did with clock-drift, we can also deal with degrees of idling.

Definition 51 Let 0 ≤ p ≤ q. Define 2p as the largest πt-legitimiser such that

2p(P0→P1→ . . .→Pn) (n > 0) implies

number of inessential idles in P0→ . . .→Pn→Pn+1

n
≥ p,

Clearly, 2mp = 20. A shortcoming of this definition is that for 0 ≤ p < 1, inessential

idles cannot be initial steps in reduction sequences legitimised by 2p.

Removing (Idle) Altogether

The (Idle) rule was introduced to prevent the flow of time from ever stopping, as

would otherwise be possible, through deadlocked processes. But if we could ensure

that no valid process could ever deadlock, then (Idle) would be superfluous.

Definition 52 Denote by π−t the calculus obtained from πt by removing the (Idle)

rule in the reduction and the transition semantics. The following function embeds

4.8. ALTERNATIVE APPROACHES 137

π−t into πt.

[[x(~y).P]] = Ω|x(~y).[[P]]

[[!x(~y).P]] = Ω|!x(~y).[[P]]

[[x〈~y〉]] = Ω|x〈~y〉
[[P|Q]] = [[P]]|[[Q]]

[[(νx)P]] = (νx)[[P]]

[[0]] = Ω

[[timert(x(~v).P,Q)]] = Ω|timert(x(~v).[[P]], [[Q]])

Here Ω is a divergent process that does not admit observations of names: fn(Ω) = ∅,

φ(Ω) = Ω, Ω
π→ P implies P ≡ Ω, π = τ . For example, (νx)(x|!x.x) would be

suitable.

We conjecture that this embedding is fully abstract with respect to most reasonable

choices of equivalence.

4.8 Alternative Approaches

There are a large number of proposals in the literature for adding time to

process calculi; to such an extent that it is very difficult to compare and

contrast the often competing schemes. Matthew Hennessy [49].

Having explored the timed π-calculus in some detail, we briefly summarise alterna-

tive approaches. But first a word of warning: the proliferation of formal approaches

to timed computation has not diminished since the introductory quote was writ-

ten. A comprehensive unification is also still lacking. Consequently, the following

overview of alternatives to πt is not aiming at completeness. We merely wish to

sketch some eclectically chosen alternatives, so as to allow the reader to better un-

derstand and position πt. It is loosely structured by six questions that all relevant

formalisms will have to address. The questions are of varying importance and hard-

ly orthogonal, but seem well suited to bring out πt’s key features in comparison

with its alternatives and predecessors. Here they are.

• What is the time domain?

• What is the underlying untimed computational formalism?

• What kind of semantics is used?

• How is the flow of time propagated?

• What constructs, if any, are used to be able to explicitly make the computation

contingent upon temporal properties.

138 CHAPTER 4. TIMERS

• What are the progress assumptions?

Time Domain?

There are really only three popular time domains: discrete time, dense time and

continuous time, i.e. N, Q and R. Of course one can envision other choices, for

example partial orders that are not total. But that is likely to result in calculi

with weird temporal properties, far removed from current intuitions about the re-

lationship between time-passing and computation. Discrete time has been used for

πt because it is simple and models most faithfully what is going on in the kind of

systems that are prevalent as computers today. These systems are all driven by a

clocking mechanism and its periodicity is a lower bound on the duration of temporal

events that are of relevance. But for hybrid systems, where discrete, digital systems

interact with continuous, analog ones, having R as time domains seems to have ad-

vantages. With dense and continuous time, pathological behaviour is possible that

does not affect discrete time models. One example are Xeno computations that

make infinitely many steps in finite time, although it is generally possible to avoid

such paradoxes with a careful setup of what counts as a computation.

Axiomatic treatments of timed computation are usually parametrised by a time

domain. For example [64, 65] use a commutative monoid (T,+, 0) such that the

induced canonical preorder (s ≤ t iff for some u: s+u = t) is linear and s+t = s+u

implies t = u. It would have been possible to have parametrised our presentation

of πt in a similar fashion, but for simplicity we have chosen not to.

Underlying Untimed Computational Formalism?

There are many models of untimed computations. Decades of research have shown

that despite the Church-Turing Thesis, they differ in their properties and expres-

siveness. All of them can be turned into models of timed computation, along the

lines of our transformation of the asynchronous π-calculus into πt, but not much

is know about how this metamorphosis affects these expressivity differences. One

of the triggers for the development of πt was the assumption that these differences

will be preserved by addition of timers. More concretely: we have assumed that the

ability to create private channels dynamically was orthogonal to time passing and

its manipulation by timers. If that was true, a timed π-calculus would most likely

be more expressive than timed CCS. It seems reasonable to expect that many other

properties of the various untimed models of computation are similarly reflected by

their timed counterparts.

To see just how easy it is to take a model of untimed computation and turn it

into a timed model, we give an example. Consider λt, a timed λ-calculus. Its terms

4.8. ALTERNATIVE APPROACHES 139

are

M ::= x || (λx.M) || (MN) || timert(λx.M,N).

Its β-reduction has now got two defining rules

(λx.M)N → M{N/x}
timert(λx.L,M)N → L{N/x}

while the key contextual rules are

M→M ′ ⇒ (MN)→ (M ′φ(N))

N→N ′ ⇒ (MN)→ (φ(M)N ′).

Here φ(timert+1(λx.M,N)) = timert(λx.M,N) and φ(timer1(λx.M,N)) = N . Please

note that this is just a sketch, not a well-thought out proposal about timed λ-calculi,

because we have not addressed crucial questions like the effect of φ on (λx.M), re-

duction strategies or the closure of → under λ-abstraction or timer formation. One

would also have to address idling. Do we want M→φ(M) or progress assumptions?

How do reduction strategies live with progress assumptions? Etc ...

The point of this excursion was to illustrate just how easy it is to add (discrete)

timing. All one needs is a (small-step) reduction relation (which immediately raises

the question of discrete timing vs. large step operational semantics).

Semantics?

The semantics of computational formalisms can be specified in many ways, but with

respect to timing, much existing work seems to have been done in an operational

setting, where the bifurcation between probabilistic and non-probabilistic semantics

is pertinent.

One way of thinking about the transformation from the asynchronous π-calculus

to πt is that it involves two things.

• The addition of a timer.

• Assignment of durations to the computational process, by adjoining a duration

map from → or� into the time domain.

In this chapter, we have used what must be the simplest duration map by making

every reduction step consume one unit of time. Alternatively, one could use a less

trivial map. The time domain need not be N and durations could vary. For example,

remote communications could take longer than local ones. A more radical change

would be to have a duration relation rather than a function. The resulting non-

determinism can be helpful for obtaining upper or lower bounds for durations of

computations. Assigning probabilities to the durations proscribed by the duration

140 CHAPTER 4. TIMERS

relation would be a further generalisation. This makes more sense if the rest of the

semantics is also probabilistic. Our reason for not using probabilistic semantics is

simplicity. An overview of probabilistic timed process calculi can be found in [18].

Time Flow?

Another crucial issue is how to model the flow of time, or more precisely, how to

distribute information about the flow of time throughout the process. Our approach

is to use implicit broadcasting, implemented with timesteppers. There are three main

reasons for our choice. Firstly, it is different from existing approaches: the more,

the merrier. Secondly, it seems closest to “reality”: existing parallel computers just

don’t need communication or synchronisation to pass time (although this conviction

may just be the result of the present author’s misunderstanding of physical time).

Finally, implicit broadcasting works just as well with reduction semantics as it does

with labelled transitions. This is an advantage because it is often harder to come up

with the latter than the former. A case in point is the Ambient Calculus [25] which,

in 2002, is still lacking a comprehensive labelled semantics. The reasons why other

models of timed computation use labelled semantics are probably largely historic:

reduction semantics for concurrency emerged much later than labelled transitions,

and when they did, a veritable amount of technical development of labelled models

of timed computation had already been accumulated and exerted gravitational pull.

To understand the differences and similarities between the two approaches, let

us consider an example of timed labelled transitions. Typically, such a model would

feature time passing transitions in addition to the usual communications. The

former would be P
r→ Q where r is an element of the time domain, for example a

real number above zero. The transition should be read as saying that while r units

of time pass, the process evolves from P to Q. An important special case is idling

of processes without active timers: P
r→ P. The flow of time is synchronised by

broadcasting.

P
r→ P′ Q

r→ Q′

P |Q r→ P′ |Q′

A source of variation is the integration of time passing with interaction. If P
x〈y〉→ P′

and Q
3.21388642→ Q′, for what l can do we have P |Q l→ P′ |Q′? A common approach

for answering such questions is to assign durations (possibly being 0) to all actions

and display them in transitions:
x〈y〉,2.7→ instead of

x〈y〉→ . The (Par) then become

something like

P
l,t→ P′ Q

l′,t→ Q′ ...

P |Q l′′,t→ P′ |Q′,

where where we have omitted the details of when and how to get l′′ from l and l′

(for simplicity, we identify the idling transition
r→ with

r,r→).

4.8. ALTERNATIVE APPROACHES 141

Integration of Time and Computation?

It is possible to add durations (or durations plus probabilities) to a model of compu-

tation but nothing else. Degano, Lobbo and Priami have done this for the π-calculus

[32]. The resulting formalisms are useful for reasoning about execution times of the

algorithms in the underlying untimed calculi. This can be very fruitful and all of

complexity theory [89], at least where it studies time-complexity, is a special case

where the underlying untimed formalism is Turing Machines and every step in the

computation takes one unit of time.

Just adding durations lacks the ability to make time a first class citizen of the

computational process. The limits of what that may mean have probably not been

explored so far, but we surely would like to be able to make computation contingent

upon the flow of time. This can be achieved in various ways and timers appear to be

the most versatile tool to do so, but there are alternatives. One is delay operators

which wait for a predetermined period of time before they launch a chosen process.

Watchdogs are also popular: they launch a process every n units of time. In §4.3.2

we have shown how our timer can implement delay operators and watchdogs.

But what about our timer? Is there much scope for variations in its definition?

Two things come to mind. Firstly, one could stop requiring that the time-in contin-

uation was input guarded and allow timert(P,Q) instead of just timert(x(~v).P,Q).

The (TimeIn) rule would have to be modified accordingly (here in its labelled vari-

ant).

P
l→ P′

timert(P,Q)
l→ P′.

We advise against this change, despite its syntactic simplicity. Just like unrestricted

sums, having unguarded timers would be hard to implement on existing computers

and would lead to counterintuitive behaviour without contributing anything useful.

Secondly, one feature of our timer is that time-out times are determined statically,

where dynamic generation would be desirable. It may sometimes be useful to have

processes like x(t).timert(y(~v).P,Q). In a pure π-calculus, this can be simulated by

branching: x[&t>0 ().timert(y(~v).P,Q)]. Alternatively, we would have to use what

may be called an “applied π-calculus” such as Pict [91] that has integers as a basic

data structure. Neither approach is problematic.

Progress Assumptions?

As already discussed in §4.3.1 and §4.7.3, progress assumptions constrain idling.

The two limit cases are the popular options: not restrict idling at all, or requiring

maximal progress, where idling is only allowed when no other type of transition can

be inferred. We do not wish to adjudicate further on progress assumptions, they all

have their traditions of justification.

142 CHAPTER 4. TIMERS

4.8.1 Three Examples

We conclude this – so far – somewhat theoretical account of some of the main

design choices for timed calculi by presenting three exemplary timed calculi, that

have been discussed in the literature. The first two, Real-Time CCS and RtCCS,

are rather similar to πt, in particular, they are based on CCS, π’s predecessor. Both

use dedicated time passing action, but RtCCS has a discrete time domain without

progress assumptions, while Real-Time CCS is parameterised by a time domain.

We finish this overview with explaining the main ideas behind Timed Automata, a

very general and popular formalism build on top of finite state automata.

RtCCS

RtCCS [105] was proposed by Satoh and Tokoro, with the aim of working towards

better models for DS. The presentation of RtCCS is essentially the same as that

of CCS, except for the tick action
√

and the timer timert(., .). Processes are then

given by the following grammar.

P ::= 0 || X || α.P || P + Q || P |Q || P[f] || P \ L || recX : P || timert(P,Q)

This definition uses the usual notions of names, co-names, τ -action etc. Actions

are names, co-names or τ . In recX : P, X is guarded. You’ll find the operational

semantics in Figure 4.5. We can see that RtCCS sets up its discrete time domain

in the context of a conventional, not probabilistic labelled semantics, much like πt.

However, and here the differences start, time flow is propagated with an explicit time

passing action
√

that requires not only labelled transitions but also a large number

of additional transition rules. RtCCS also enforces maximal progress because it

permits to infer P

√
→ Q only if P cannot engage in τ -transitions. Of course it would

be easy to remove this progress assumption. The most interesting feature of Satoh’s

and Tokoro’s calculus is its timer. On the surface is seems quite like πt’s, but the

details differ subtly, with significant semantic effects. Firstly, input-guards are not

required. This permits all manner of pathologies such as the process timert(τ.P,Q)

which can stop itself: timert(τ.P,Q)
τ→ P. It is also possible to simultaneously stop

several nested timers at once:

timert(timert(timert(x.P,Q),R),S)
x→ P

Another interesting design choice is to allow time to pass in a timer’s time-in con-

tinuation. This means timers in the time-in continuation are activated as soon as

the enclosing timer is. This can block timers that have not timed-out yet: as τ.P

cannot perform a
√

action, because that would violate maximal progress, neither

4.8. ALTERNATIVE APPROACHES 143

α.P
α→ P

P
α→ P′

P + Q
α→ P′

P
α→ P′

P |Q α→ P′ |Q

P
α→ P′ Q

α→ Q′

P |Q τ→ P′ |Q′
P

α→ P′ α /∈ L ∪ L
P \ L α→ Q \ L

P
α→ Q

P[f]
f(α)→ Q[f]

P{recX : P/X} α→ Q

recX : P
α→ Q

P
α→ P′

timert+1(P,Q)
α→ P′

α 6= τ

α.P
√
→ α.P

P

√
→ P′ Q

√
→ Q′

P + Q

√
→ P′ + Q′

P

√
→ P′ Q

√
→ Q′ P |Q α→ R ⇒ α 6= τ

P |Q
√
→ P′ |Q′

P

√
→ P′

P \ L
√
→ Q \ L

P

√
→ P′

P[f]
√
→ Q[f] 0

√
→ 0

P{recX : P/X}
√
→ Q

recX : P

√
→ Q

P

√
→ P′

timert+1(P,Q)
√
→ timert(P′,Q)

Q
α→ Q′

timer1(P,Q)
α→ Q′

Q

√
→ Q′

timer1(P,Q)
√
→ Q′

Figure 4.5: Transitions for RtCCS. Here α ranges over all actions apart from
√

and

t ∈ N is greater than 0.

144 CHAPTER 4. TIMERS

can timer1(..., τ.P). Hence for no R

timer2(timer1(..., τ.P),Q)
√
→ R.

This is odd because the outermost timer has clearly not timed-out yet. Even worse,

the time-out continuation of the inner timer can spontaneously stop the outer timer:

timer2(timer1(..., τ.P),Q)
τ→ P

The benefits of such behaviour, other than syntactic simplicity, are not entirely

obvious.

One crucial difference between RtCCS and πt is that computations in the former

have no duration: the execution of a non
√

-action does not affect timers in any

way. This allows to derive transitions like

recX : x.X | timer7(P,Q)
x→ recX : x.X | timer7(P,Q).

Hence, we can output an arbitrary number of x’s without timer7(P,Q) timing out.

Moreover, if recX : x.X | timer7(P,Q) runs in parallel with some consumer of all the

outputs on x, the timer cannot time-out at all because maximal progress prevents

idling. This is problematic. This combination of maximal progress and timers

being unaffected by computation (as opposed to idling) makes it hard to see how

RtCCS could be used to model error recovery in distributed systems where timers

get started to allow a process to wait for a while for some remote message to come

in, but if it doesn’t, the timer times out and triggers error recovery. But if, while

waiting for the remote message to come in, the process can do other computations,

as it would in many DS, time-out could not happen, subverting the purpose of

timer-based error detection and recovery.

Despite these differences, the similarities between RtCCS and πt indicate that it

would be easy to use dedicated time-passing actions like
√

to give labelled seman-

tics to πt without using timesteppers. It would be just as straightforward to give

timestepper based semantics, labelled or otherwise, to RtCCS. It appears not to

matter much whether one chooses to implement the flow of time by dedicated time-

passing actions or with timesteppers. These are just two ways of doing the same

thing. In the absence of a convincing axiomatisation of discretely timed π-calculi,

we cannot establish this formally, but it seems that there should be a straightfor-

ward translation between these two ways of implementing time flow. Whether this

‘presentation independence’ also holds for non-discrete time domains is less clear.

Real-Time CCS

Real-Time CCS, introduced by Yi in [122], also takes CCS as its launch pad, but,

unlike the previous calculus, is parameterised by a time domain and hence not

4.8. ALTERNATIVE APPROACHES 145

0
εt→ 0 α.P

α→ P

α 6= τ

α.P
εt→ P τ.P

τ→ P

εs+t.P
εs→ εt.P εt.P

εt→ P

P
εs→ Q

εt.P
εs+t→ Q

P
α→ P′ α 6= εt

P + Q
α→ P′

P
εt→ P′ Q

εt→ Q′

P + Q
εt→ P′ + Q′

Figure 4.6: Transitions for regular agents in Timed CCS

restricted to discrete time steps. Its semantics, too, is given in form of a non prob-

abilistic, maximally progressing extension with time-passing actions of the original

CCS labelled transitions. Unlike in RtCCS, delay operators, not timers are used for

making computation contingent on time-flow, but the combination of timers and

unrestricted sums allows to implement a form of timers, as we describe below. But

first a presentation of the relevant syntactic and semantic basics.

By a time domain T , we mean an arbitrary well-ordered set. Its least element

is denoted 0. The set {εt | t ∈ T } contains all empty actions, where t is the duration

of εt. Again, we have the usual notions of names, action etc, but since we have

introduced many new actions, rather than just one, we shall be a less brief with the

details than we were for RtCCS. Let N be a countably infinite set of names with

τ /∈ N . Then L = N ∪N is the set of labels where N is the set of co-names, i.e. if

x ∈ N then x ∈ N . τ and empty actions are their own complements: τ = τ and

εt = εt. An action is any member of L, any empty action and τ . The regular agents

are given by the grammar

P ::= 0 || α.P || P + Q || X

where X is an agent variable and α ranges over actions. Regular agents are defined

by equations (Pi = Xi)i∈I . We omit further details. The labelled operational

semantics of regular agents are given in Figure 4.6.

Regular agents have the following two properties.

Theorem 26 • (temporal determinacy) If P
εt→ Q and P

εt→ R, then Q ≡ R

(we omit to define the structural congruence ≡, as it is standard).

• (maximal progress) If P
τ→ Q then no R, t exist such that P

εt→ R.

• (temporal continuity) P
εs+t→ Q if and only if for some R: P

εs→ R
εt→ Q.

• (temporal persistence) Whenever P
εt→ Q and P

α→ R, then Q
α→ S for some

regular agent S.

146 CHAPTER 4. TIMERS

But what about parallel composition? One of the principles guiding the design

was to have maximal progress. Unfortunately, the obvious rule

P
εs→ P′ Q

εs→ Q′

P |Q εs→ P′ |Q′

would destroy maximal progress as one can easily verify. But how to prevent agents

running in parallel from idling when together, they can perform τ actions? In §4.7.3,

we have discussed how to do that in πt, but [122] goes a rather different path and

uses timed sorts. Their definition proceeds in several steps. Let α 6= εs. Then

• P
α→ 0 Q iff P

α→ Q.

• P
α→ t Q iff P

εt→ R
α→ Q.

Let L ⊆ L. A regular agent P has sort L within t if for all t′ < t and all α ∈ L:

whenever there is Q with P
α→ t′ Q, then α ∈ L.

Let s, t > 0 and P be a regular agent. Then sortt(P) is inductively given by the

following clauses.

• sortt(0) = ∅.

• sortt(α.P) = ∅, where α 6= εs.

• sortt(εt.P) = ∅.

• sortt(εs+t.P) = ∅.

• sorts+t(εt.P) = sorts(P).

• sortt(P + Q) = sortt(P) ∪ sortt(Q).

• sortt(X) = sortt(P), assuming X = P is the defining equation for X.

It is easy to show that for each regular agent P and t > 0, sortt(P) is a timed sort for

P within t. If we abbreviate {α |α ∈ L} to L then we can show that for all regular

agents P and Q: if sortt(P) ∩ sortt(Q) = ∅, then for all t′ < t: ¬∃P′,Q′.P
α→ t′ P′,

Q
α→ t′ Q′. This fact justifies the rule for parallel composition in Real-Time CCS.

P→ P′ α ∈ L ∪ {τ}
P |Q→ P′ |Q

P
α→ P′ Q

α→ Q′ α ∈ L
P |Q τ→ P′ |Q′

P
εt→ P′ Q

εt→ Q′ sortt(P) ∩ sortt(Q) = ∅
P |Q εt→ P′ |Q′

4.8. ALTERNATIVE APPROACHES 147

It can be shown that P |Q satisfies all four properties in Theorem 26 for all regular

agents P and Q. (Real-Time CCS has two more constructors familiar from CCS: re-

naming and restriction. We omit their details.) Next we show how [122] implement

proposes to implement timers in Real-Tim CCS. Here is the definition.

timert(x.P,Q) = x.P + εt.Q

Now clearly

timert(x.P,Q)
εt→ Q timert(x.P,Q)

x→ P,

so timer-like behaviour is definitely possible. Unfortunately this timer may also not

time-out in time. Here’s how. Define Qt = εt.R. Then

Q3
ε2→ Q1

ε4.Q3
ε6→ Q1 x.P

ε6→ x.P

timer4(x.P,Q3)
ε6→ x.P + Q1 = timer1(x.P, R)

While it is probably possible to concoct a justification for such behaviour, we prefer

to consider it an anomaly. The problem is caused by the temporal semantics of the

unrestricted sum, or, more specifically, by allowing time to pass in the summands.

Whether it is possible to encode a timer exactly like πt’s is unclear.

4.8.2 Timed Automata

Timed Automata [6] are currently the most widely used formalism for modelling

timed computation. They take conventional deterministic or non-deterministic fi-

nite automata as underlying computational mechanism and extend them with clocks

and clock-constraints that range over R+, but that does not mean they have a con-

tinuous time domain. As they are quite different from process theoretic models, we

state their definition first.

Definition 53 [27] Let C be a set of clock variables, each ranging over R+. The

induced clock constraints over C, denoted CC(C), are given inductively by the

following rules.

• If c ∈ Q+ and cv ∈ C, then cv < c, cv ≤ c, cv > c, cv ≥ c are all clock

constraints.

• If cc1, cc2 are clock constraints, then cc1 ∧ cc2 is a clock constraint.

A timed automaton consists of

• a finite alphabet Σ.

• A finite set S of states.

148 CHAPTER 4. TIMERS

• A set S0 ⊆ S of start states.

• A set C of clock variables.

• A map i from S to CC(C). We call i the invariants.

• The transition relation → which is a subset of S × Σ × CC(C) × P(C) × S.

A transition s
l,c,R→ t means that in state s, the automaton can accept the label l

to evolve to state t, provided that the constraint c is met. When the transition is

executed, after it has left s, but before it reaches t, all clocks in R are reset to 0.

Interestingly, bare timed automata do not on their own have a notion of time.

That is separated from the model and hidden in the structures they accept. But

what do they accept? Conventional automata accept words, but a timed automaton

(Σ, S, S0, C,→)? They accept certain infinite transition systems, (Σ, S′, S′
0,→

′
)

that can be seen as generalisations of words to timed words. Here S′ is a set of states,

each of which is a pair (s, ca), where s ∈ S and ca : C → R+ is a clock assignment

which assigns to each clock its current time. S′
0 = {(s, ca) | s ∈ S0,∀c ∈ C.ca(c) = 0}

are the start states of the transition system, where all clocks read 0. Transitions

→
′

are either

(s, ca)
d→

′
(s, λc.ca(c) + d) or (s, ca)

l→ a (s′, ca′).

We call (s, ca)
d→ d (s, λc.ca(c) + d) a delay transitions and require that for all

0 ≤ d′ ≤ d the invariant i holds for λc.ca(c) + d′ d ∈ R+. For action transitions

(s, ca)
l→ a (s′, ca′), we it must be the case that l ∈ Σ and the timed automaton has a

transition s
l,c,R→ t such that ca satisfies c and ca′ = λc′.if c′ ∈ R then 0 else ca(c′)

Usually one imposes additional conditions, for example that the automaton must

be non-xeno. That means, it is not permitted to have an infinite number of transi-

tions in finite time. In addition, we require that it must be possible for automata

to progress to infinity. That means, for each state the constraints must either allow

the computation to stay at the state forever or the constraints on transitions from

that state must permit the computation to execute at least one of them.

It is clear from this definition that timed automata do not enforce progress

assumptions and don’t feature probabilistic semantics. Since timed automata do

not have structured states, unlike process calculi, the question of time flow from

one part of the computation to another does not really make sense. In summary,

timed automata are very different kinds of models compared to process calculi,

because the latter contain an algebra of programs which is simply abstracted away

in timed automata. The well-known limited expressivity of the underlying untimed

formalism prevents Timed Automata from being a serious contender for DS. It would

nevertheless be possible to implant their approach to timing (clock constraints,

timed words, etc.) in other models, in particular the asynchronous π-calculus.

4.9. CONCLUDING REMARKS 149

4.9 Concluding Remarks

This chapter has introduced πt, the asynchronous π-calculus with timers and ex-

plored some of its basic properties. Extensions are possible in many directions. We

have already devoted §4.7 to what may be the most important next step, finding

coarser equivalences. Another area deserving further investigations is expressivity.

There is good reason to believe that πt cannot have a good encoding into untimed

calculi, although a definite result has proven elusive. What about the other way

round? Can the asynchronous π-calculus be coded up convincingly in πt? Chapter

2 spoke about the many existing encoding into π-calculi. Do they also hold in πt?

It would also be nice to see how πt could deal with dense or continuous time do-

mains, or assignments of probabilities to durations. This could lead to a connection

between π-calculi and hybrid systems. And what about separation results, such as

Palamidessi’s about the non-encodability of mixed choice into the asynchronous π-

calculus [88]? Clearly, the timer is a form of mixed sum, but is it expressive enough

to code up the unrestricted choice? The encodability of sums by timers, but also the

very possibility of λt touches on an interesting issue: does the existence of a timer

construct alone make a calculus concurrent? If timers can encode non-determinism

without reservation, then the answer must be to the affirmative because parallel

composition can be expanded into summation [74]. But it seems that even in the

more likely case where sums cannot be encoded, some concurrency-like phenomena

would be present. We feel that there is a deep connection between time-flow, the

spatial extension of the computational process and concurrency, that may not have

been fully understood as yet.

We conclude this chapter with some philosophical speculations about the Church-

Turing Thesis and its relation to timed computation. Is is independent from – al-

though deeply influenced by and influencing of – the rest of this text and either can

be read without the other.

4.10 The Church-Turing Thesis and Timed Computa-

tions

Consider the following program.

every 31 seconds

{

print "looking at my Gucci, it’s about that time!"

}

Our contentions are simple.

150 CHAPTER 4. TIMERS

1. This program is mechanically computable, hence it must be expressible in

every model of mechanical computability.

2. One cannot verify that a given model of computation allows to express pro-

grams such as the above unless elementary steps of computations are assigned

durations in the model. In particular, formalisms such as π-calculi, Turing

Machines or µ-recursive functions do not allow this verification and can thus

not express the program above.

3. Assigning durations to computations strictly extends conventional models of

computation.

But let’s begin at the beginning ...

The Church-Turing Thesis [28, 51] is one of the most famous and fundamental

conjectures of the whole of computing theory. Its precise meaning and epistemolog-

ical status are controversial but its validity is rarely doubted. To simplify matters,

we shall avoid the problem of Church’s and Turing’s original intentions. We are

interested in computation, or rather the limits of computation, not history. In

our reading, the Church-Turing Thesis asserts that computation is a phenomenon

with sharp conceptual boundaries, sharp enough in fact, to allow convincing math-

ematisation, for example by way of Turing Machines or π-calculi. Our contention

above, then, may be summarised as claiming that the conventional demarcation of

computation given by the Church-Turing Thesis, is too restrictive and ought to be

liberalised.

When we speak of the Church-Turing Thesis, we have statements like the fol-

lowing in mind.

The process of interaction with an environment, exchanging finite data

in each interaction, by a mechanical process with a finite program of

instructions, in accord with the laws of physics, apart from resource

constraints, can be precisely simulated by a π-calculus process.

Several issues are worth noting. Firstly, the relation “simulating computation” is

one between a mathematical formalism and something informal, intangible, such

as physical processes. Hence it seems in principle impossible to mathematically

decide if a given formalism models computation. Secondly, although there are good

reasons to prefer interaction-based formalisms, the reference to the π-calculus could

be replaced by other models such as Turing Machines or µ-recursive functions.

Finally, it is left open what it means for a formalism to be “precisely simulated”.

The first two points, while raising interesting issues, do not concern us here.

It is the last point that is found wanting once one thinks seriously about timed

computation. The problem is not that incorporating some notion of time into a

model of computation would allow to solve the halting problem, although we have

4.10. THE CHURCH-TURING THESIS AND TIMED COMPUTATIONS 151

not seen a proof that such a drastic extension of computational power is impossible.

The problem is that the received form of the Church-Turing Thesis excludes timed

algorithms, such as our example above, tout-court from the realm of mechanical

computability. Conventional models of computation simply do not have temporal

properties. We propose to ameliorate this shortcoming by integrating the passing

of physical time into models of computation. Extending the work of this thesis, a

real-timed π-calculus would be the result, where each reduction step is assigned its

duration, a real number greater than 0. The Church-Turing Thesis could then be

rephrased.

The process of interaction with an environment, exchanging finite data

in each interaction, by a mechanical process with a finite program of

instructions, in accord with the laws of physics, apart from resource

constraints, can be precisely simulated by a real-timed π-calculus process.

Before delving into the details of our criticism, we would like to emphasise the spec-

ulative nature of this undertaking: we are neither fully convinced of its correctness

nor can we provide the details of how an appropriate real-timed π-calculus would

look like. In addition, one must distinguish two things:

• The problem under discussion here, whether models of computation ought to

be augmented so as to enable them to deal with timed computation.

• The question of the truth or falsehood of the temporally extended Church-

Turing Thesis. After all, the existence of universal models of computation may

be peculiar to the world of untimed computation. Maybe timed computation

is a fundamentally more vague concept.

The following points are also worthwhile to be borne in mind.

• We do not address the issue of just what kinds of duration assignments are

legitimate. Would it be a good idea to allow the assignment of 7 seconds to

every computational step in a terminating computation and 10 for all others?

Wouldn’t that allow a timed observer to solve the halting problem? It may be

necessary to permit only computable (in the conventional sense) assignments.

Another problematic duration assignment was proposed in the context of Ac-

celerating Turing Machines [29]: the nth step in the computation takes 1
2n

seconds. Accelerating Turing Machines can decide the halting problem in fi-

nite time, although taking an infinite number of steps in the process. Since all

the available evidence suggests that Accelerating Turing Machines are not in

accordance with the laws of physics, such Xeno-assignments should probably

also not be admissible.

152 CHAPTER 4. TIMERS

• Is it sufficient to extend conventional models of computation with a notion of

duration to capture all of timed computation? This might not be the case.

It could be necessary to integrate the passing of time more tightly with the

computational process, for example by adding timers. We will discuss this

problem only very briefly.

After this little excursion we will now defend and discuss the three claims above.

Regarding (1), the strongest argument in favour of our little program’s being me-

chanically computable is that it can easily be written with any modern programming

environment on run-of-the-mill hardware. All that’s required is a conventional com-

puter and (maybe) a clock. Both are prototypical mechanical devices [68] and there

does not seem to be a reason to believe that this is no longer true for their combi-

nation. If the Church-Turing Thesis wants to be taken seriously, it better allowed

to express trivial and ubiquitous programs such as the initial example.

Our argument for (2) has two parts. First, if we assign durations to all com-

putational steps, we can clearly decide (ignoring for simplicity the problem of the

decidability of the assignment) if the model generates what we interpret to be ap-

propriate temporal behaviour. Secondly, we could not think of a way of doing this

verification without an assignment of durations.

In defence of (3), it is clear that there is no such assignment in conventional

models of computations. Hence assignments do extend these models, at least set-

theoretically.

We expect the following types of (related) reactions from defenders of the Church-

Turing Thesis.

The “Old-School Recursion Theorist’s”Reply: Of course Turing Machines

can simulate this algorithm. Its timing is an inessential detail that can and should

be ignored. All that matters is the function being computed, not the timing of the

computational process. After all, even normal untimed computation proceeds in

physical time and space but we don’t care about this when pondering the essence of

computation.

This objection may be the easiest to deal with. Timed algorithms abound in

the very fabric of computation: for example network flow-control algorithms such

as TCP [111] or various operating systems’ schedulers [10] are implemented using

timers and their temporal properties are vital to these algorithms. Of course the

Old-School Recursion Theorist could object that such claims misunderstand what

it means for an algorithm to function: the point of models of computation is to

abstract away from pesky little details like actual execution time. Well, maybe,

and in case of the computation of, say, the factorial function it might be reasonable

to ignore how long its computation takes. Why? Because we get something else:

a number as a hard and fast result. We can “measure” the correctness of the

algorithm by looking at this result. In the case of network flow-control algorithms

4.10. THE CHURCH-TURING THESIS AND TIMED COMPUTATIONS 153

or OS schedulers, this is very different. The correctness of any implementation

seems directly and indissolubly connected with temporal properties. Crudely put,

a scheduler is something that guarantees my processes access to the CPU at least

every 250 milliseconds. TCP ensures certain rather involved ratios between network

capacity and transmission speed. It makes little sense to talk about the correctness

of a scheduler or TCP without mentioning time. To appreciate the significance of

the temporal aspects involved, consider the following transformation of sequential

composition.

[[P ; Q]] = [[P]] ; sleep(1 year) ; [[Q]]

If timing was an inessential detail to TCP or OS schedulers, we could apply this

transformation without changing their semantic essence. Unfortunately, applying

[[·]] to all the world’s C programs would render the entire planet’s computational

infrastructure humanly unusable. While that is an irrelevant detail sub speciae

aeternis, it appears flippant to say that the intended semantics of such programs

remains unaffected, at least for humans with an average lifetime of 54 years.

The Old-School Recursion Theorist might now reply that one can say the same

thing about factorial functions: we could not humanly evaluate !n for most n, if

we’d apply the transform. But does that not suggest that timing is relevant even

for factorials?

The “Separate Physics and Computation!” Reply: It does not matter if

Turing Machines can simulate timed computation or not because timed computation

is not about pure algorithms. They are interactions of pure algorithms with physical

devices, in this case clocks. The Church-Turing Thesis is only concerned with pure

computation. The addition of clocks is no more relevant than the possibility of

having computers extended with loudspeakers to produce sound or with wheels to

allow physical movement.

We could just say: “fair enough, but if timed computation is not computation,

it is nevertheless something closely related and at least as interesting. It is also

worth of mathematisation and hence of a timed equivalent of the Church-Turing

Thesis.”

But this is too conciliatory. Let’s look at the defender’s argument in more detail.

It is a variant of the first objection and based on a distinction between (models) of

pure algorithms and physical devices, the implication being that the latter have no

role to play in the description of the former. This is problematic for two reasons.

Firstly, ultimately every actual computation is a physical process and many models

of computation idealise these physical processes and devices to some degree. An

example would be the tape and head of a Turing Machine. So it cannot be the

inclusion of models of physical entities in formalisms for computing that is deemed

problematic, it is the inclusion of a specific kind of physical entity: the clock. But,

and secondly, every model of computation (that we can think of) uses some form

154 CHAPTER 4. TIMERS

of sequentialisation: “this must happen, then that”, clearly a temporal property.

Even domain-theoretic models use fixpoint iteration [48] that is usually imagined

as a discrete, temporal process. It seems fair to say that time-stepping or discrete

sequencing is intrinsic in all models of computation already. What is missing in

most models is an explicit duration of the computational step. Once durations are

specified, questions such as: “does this program implement that algorithm which

has these temporal properties?” seem natural. If these temporal properties never

mattered, we would be justified to just have a generic notion of discrete sequencing

in the models, as, for example, given by the reduction steps in λ-calculi or Turing

Machines. But, as we have argued above, the temporal properties do matter a lot in

many situations, so it seems appropriate to model them explicitly because they are

not induced by interaction with some arbitrary physical device, they come from the

physical behaviour of something essential to computation itself: the flow of time.

Another problem with “Separate Physics from Computation!” is that our ini-

tial example does not actually require interaction with a clock, although in practise,

implementations will. Conventional CPUs are constructed such that their computa-

tional steps are executed within tight time bounds. It may be possible to use these

bounds to achieve the required temporal behaviour by judicious choice of translation

into machine code alone. Of course these time bounds are almost always achieved

with a clocking mechanism that “drives” the CPU. But this mechanism is not ex-

plicit in the code being executed. It is also possible, although currently unusual, for

CPUs to lack an explicit clocking mechanism. That does not mean however, that

computations executed on such devices have no temporal properties. It is just that

these properties emerge from the physical properties of the executing hardware in a

way that observers describe as clockless. Whether this is useful terminology touches

on interesting problems (summarised by the question “what is a clock?”), that we

do not wish to discuss further here.

The “That’s what I’m Saying!” Reply: Of course Turing Machines can

simulate these algorithms. Just assume one step of a Turing Machines corresponds

to one unit of time of the algorithm. In other words, conventional models of com-

putation implicitly assign unit time, normalised to 1, to each computational step.

Yes, but this assignment needs to be done. Why pretend it is not part of the

computational model? This answer assumes an assignment, it is just not honest

about it.

It also suffers from a more serious defect. It is not enough to simply fix an assign-

ment once and for all, because every such assignment induces a minimal granularity

of time and hence excludes certain more finely timed algorithms. If, for example,

we’d assign 47 seconds as the duration of every computational step, our initial ex-

ample would not be computable. Unless there is convincing empirical evidence of a

physical limits to time-divisibility relevant to computation, none should be enforced

4.10. THE CHURCH-TURING THESIS AND TIMED COMPUTATIONS 155

by our models of computation.

OK, Now We Have Durations, Are We Done Yet?

The arguments adumbrated above compellingly suggest to include a notion of du-

ration into models of computation. But is that all we need to capture timed com-

putation? Consider the following variant of our initial example.

on 14:Jan:1986 at 14:01:0221 GMT

{

print "looking at my Gucci, it’s about that time!"

}

Some, but not all of our arguments can be adapted to support the additional inclu-

sion of an absolute notion of time into models of computation to accommodate this

example.

Even ignoring the problem of absolute time and its relation to computation,

is our augmented Church-Turing Thesis expressive enough? As already alluded

to, many timed algorithms implement their temporal behaviour with the help of

timers. Is it always possible, just armed with conventional models of computation

augmented with durations, to simulate behaviour induced by the presence of timers?

We are not sure. It might be possible to use busy-waiting to simulate timer driven

interrupts, especially when there are no lower limits on the granularity of time steps

and if the criteria that would warrant speaking of busy-waiting allowing to simulate

timers, allow for some imprecision ...

This raises another issue: what does it mean to observe a timed computation?

Should there be limits to observer’s time-measuring abilities? Relatedly, is it ap-

propriate to assign exact durations to computational steps? Wouldn’t intervals or

probabilities be better? Questions, questions ...

A Modest Proposal for a Research Programme

As pointed out, the Church-Turing Thesis is an empirico-philosophical assertion,

not a mathematical one and cannot be verified or contradicted by purely formal

means. Nevertheless, mathematical theorems can serve as evidence for or against

its acceptance, the various mutual embeddability results of classical recursion theory

being a prime example.

What kind of theorem could be significant evidence for or against the temporally

extended Church-Turing Thesis? How about the following conjecture?

Conjecture 1 Let πa be the asynchronous π-calculus and ≈a one of its reasonable

equivalences, such as reduction-congruence or weak trace-equivalence. Let πda be the

asynchronous π-calculus extended with a reasonable notion of duration and ≈d
a one

156 CHAPTER 4. TIMERS

of its reasonable equivalences. Then, in general, there is no mapping [[·]] from πda to

πa such that

[[P]] ≈d
a [[Q]] iff P ≈a Q.

This conjecture is attractive not only because despite its simplicity, establishing its

truth value appears difficult, but also because it assumes little apart from duration

assignment, essentially only the availability of appropriate notions of equivalence.

This should not be a surprise given, on one hand, our preceding discussion of the

Church-Turing Thesis with its subtext “what does it mean to observe a timed

computation?”, and the tight connection between notions of observation and equiv-

alence on the other. Indeed, it does not appear to be an exaggeration to say that

our a solution of our problem of timed computation would be but a special case

towards answers for the following two questions. What does it mean to observe

computation? When are two computations equal?

Chapter 5

Message Loss

This chapter adds a notion of location and two forms of simple message failure,

message loss and message duplication, to the timed, asynchronous π-calculus and

studies some of the basic equational properties of the resulting calculus.

5.1 Introduction

One of the main uses of timers is to unblock computations after they became stuck

due to some fault such as a lost message or a deadlock. This is inconvenient to

model in πt because it lacks message failures and a proper notion of resource that

could exhibit circular ownership patterns, a necessary precondition for deadlocks

[30]. To explore timers in a more realistic setting, this section augments πt with

locations and non-byzantine message failure, obtaining πmlt .

It is customary to distinguish four kinds of message failure.

• Message loss, which consists of a message emitted by some process to disap-

pear without a trace. A naive incorporation of message loss could be achieved

by adding the rule x〈~y〉→0. The chief cause for message loss is network satura-

tion: a router has received more packets than it can store before passing them

on and the surplus is simply discarded. In some flow control protocols, most

prominently TCP, messages are explicitly discarded to communicate “please

slow down!” to senders [111].

• Message duplication allows a message to be received more often then it was

sent. A first attempt at modelling this phenomenon might be to have an

additional rule x〈~y〉→x〈~y〉 |x〈~y〉. Message duplication is often a consequence

of retransmissions after an acknowledgement message has been lost or arrived

too late. Hence duplication and loss of messages are closely connected.

• If a message is received in a form that differs from how it was sent, we speak of

message corruption. The rule x〈~y〉→x〈~z〉, or even x〈~y〉→a〈~z〉 expresses this

157

158 CHAPTER 5. MESSAGE LOSS

behaviour. Imperfections of the network infrastructure, but also malicious

agents (“hackers”) cause message corruption.

• We have an instance of message forging if a message was received that has

never been sent by a legitimate sender : 0→x〈~y〉. It is mostly caused by the

aforementioned malicious agents.

Message forging and corruption are collectively referred to as byzantine failures.

We have chosen to omit byzantine failures for three reasons. Firstly, they are much

harder to account for. Secondly, non-byzantine faults are already fairly challenging,

and thirdly, byzantine faults are less ubiquitous: any TCP based network must deal

with message loss and duplication because they are part of that protocol’s normal

behaviour. Byzantine faults, on the other hand, can often be so infrequent as to be

effectively absent (message corruption can easily be spotted through conventional

redundancy and error-correction techniques [111], while separation from public ac-

cess networks prevents message forging rather effectively). In the long run it will be

unavoidable to extend our programme to include byzantine failures. It’s just that

we want to do the easy things first and leave the real work for later ...

Incorporation of non-byzantine message failure by just adding x〈~y〉 → 0 and

x〈~y〉→ x〈~y〉 |x〈~y〉 results in a calculus that is essentially unusable. Much of the

communications between processes, indeed the majority, is usually considered reli-

able, in particular when it does not “go over then net”. This suggests to distinguish

reliable from unreliable communication in models. Abdulla and Jonsson propose to

have two kinds of channels, non-dependable ones and dependable ones [4]. Howev-

er, in distributed systems the same channel could be both reliable and unreliable

depending on whether it is carrying a message sent locally or from a remote lo-

cation. We take the remote/local binary as basic and augment the calculus with

sites or locations, to allow to distinguish between local interactions that are not

subject to message failures and remote communications that are. Sites have the

form [P]A where P is a πt process and A is the associated set of access points, the

names that P may receive data on. Sites can be composed in parallel and their

names can be restricted. Messages travelling between locations that have left their

originating site but have not yet arrived at their destination, that are “on the net”,

to use the vernacular once more, are called in transit or in the ether. Message fail-

ure can only occur while in transit. Of course similar concepts have been proposed

before [8, 9, 14, 39, 99, 108, 121]. The main contribution of this chapter is to explore

locations and timing together. Chapter 7 will show that location has other uses too.

Before going into details, we summarise our main design objective for this chap-

ter.

• Addition of location and message failures should make minimal demands on

5.2. THE CALCULUS 159

the calculus to be located. Distribution should accommodate as many non-

distributed calculi as possible.

• The extension should be incremental. As much as possible of the equational

theory and reasoning technology for the underlying non-distributed process

calculus should be retained. Reasoning about πmlt should be modular : we

would like to separate reasoning about processes from reasoning about net-

works as much as possible. In particular, if two processes P and Q are equated

by the underlying process calculus, then [P]A and [Q]A should also be equal

in πmlt .

• The extension should be as simple as possible while still allowing to exhibit the

crucial phenomena that make distributed programming over the non-malicious

networks difficult, even when byzantine failures are not an issue. In particular,

we do not seek to model security protocols.

5.2 The Calculus

The calculus is a two sorted algebra, with one sort being processes, and the other

networks, ranged over by M,N, As processes, we take the timed asynchronous

π-calculus introduced in the previous chapter. We repeat its syntax.

P ::= x(~y).P || x〈~y〉 || P|Q || (νx)P || timert(x(~v).P,Q) || !x(~v).P || 0

Networks are given by the following grammar.

N ::= x〈~y〉 message in transit

|| [P]A located process

|| M |N parallel composition of located processes

|| (νx)N restriction

|| 0 inactive network

It will become obvious that πt is not the only possible choice for processes to be

located. Networks and their semantics require little from the underlying processes

apart form having inputs and outputs. We do not explore alternatives to the choice

of πt for processes further here.

In the introduction to this chapter, we mentioned the access points A in [P]A that

contain the set of names that [P]A might input on. But what does that mean? Con-

sider the network x〈a〉 | [x(v).v(w).P]A . Is a one of the names that [x(v).v(w).P]A

can receive messages on? One could find arguments either way, but we choose to

circumvent the problems arising from both answers by simply prohibiting input-

bound inputs. All located processes must be local (cf. §2.7.1). A formal definition

of locality follows.

160 CHAPTER 5. MESSAGE LOSS

Definition 54 The set of local πt-processes is given by the following rules.

• 0 and x〈~y〉 are local.

• If {~v} ∩ fin(P) = ∅, then x(~v).P and !x(~v).P are local.

• If x(~v).P and Q are local, then timert(x(~v).P,Q) is local.

• If P and Q are local, then P |Q is local.

• If P is local, then (νx)P is local.

As already alluded to in §2.7.1, locality does not significantly reduce the expressiv-

ity of πt, but how realistic is the resulting calculus? In the Internet, hosts cannot

dynamically receive arbitrary IP addresses and then use it to receive data, because

messages would not be routed properly. This means in essence that programs util-

ising the Internet are local.

A related problem is whether to allow different sites to receive data on the same

name, as in

[x(~v).P]A∪{x} | [x(~v).Q]B∪{x}.

We have decided against it, for simplicity. To have chosen the other alternative,

would probably have made little substantial difference. Once routing concerns will

also be important, the question must be reconsidered.

These well-formedness conditions on processes and networks are summarised by

the next definition.

Definition 55 We say N is well-formed, written ` N, if ` N is derivable using the

following rules.

• ` 0 is always derivable.

• ` [P]A if P is local and each free input subject in P is in A.

• ` N1|N2 if ` N1 and ` N2 and, moreover, ap(N1) ∩ ap(N2) = ∅.

• ` (νx)N if ` N.

where the access points ap(N) of a network N are given by: ap([P]A) = A, ap(N1|N2) =

ap(N1) ∪ ap(N2), ap((νx)N) = ap(N) \ {x} and ap(0) = ∅.

Convention 1 In the remainder of this text, except where explicitly noted, we

assume that expressions involving networks such as [P]A are well-formed. In partic-

ular, quantifications like: “for all P and all A, [P]A has property X” or even “for

all P, [P]A has property X” abbreviate the statement: “for all P and all A such that

[P]A is well-formed, [P]A has property X”.

5.3. SEMANTICS 161

Access points have quite an influence on the behaviour of the calculus. For exam-

ple [0]∅ and [0]x should never be equated by any semantically sound equivalence,

although both contain an utterly inactive process. But they are different in that

[0]x, unlike [0]∅ can never be composed with another network that may input on x.

[0]x is a domain squatter! Messages on x will be routed to [0]x but not to [0]∅. For

similar reasons we cannot allow [0]A ≡ 0, except when A = ∅.

5.3 Semantics

The semantics of πmlt can be split into three parts. The semantics of processes,

semantics of networks and the interplay between processes and networks.

5.3.1 Dynamics and Structural Congruence

Summarised in Figure 5.1 we find the semantics of πmlt . The structural congruence

is mostly a straightforward adaptation of the related rules in non-distributed π-

calculi. The only axiom that may still require justification is

[(νx)P]A ≡ (νx)[P]A∪{x}

The reason why scope extension must affect access points is that otherwise well-

formedness of networks would not be closed under structural congruence. Of course

we could use a less demanding rule, such as

x ∈ fin(P) ⇒ [(νx)P]A ≡ (νx)[P]A∪{x}, x /∈ fin(P) ⇒ [(νx)]PA ≡ (νx)[P]A.

(Here fin(P) returns all of P’s free input subjects.) It rarely makes sense to restrict

x in a local process P, without having x as an input subject, so we have opted for

the syntactically simpler alternative.

Reductions of processes are integrated in the most liberal way possible: any

reduction a process can do remains possible when located.

(Intra)
P→Q

[P]A→ [Q]A

This is a key step towards πmlt being incremental on top of πt. Inter-site commu-

nication works by senders putting messages into the ether and receivers fetching

them, as described by the next two rules.

(Get)
x ∈ A

[P]A|x〈~y〉→ [P | x〈~y〉]A
(Send)

x /∈ A

[x〈~y〉|P]A→ [φ(P)]A|x〈~y〉

There is an asymmetry between (Get) and (Send). The latter ticks the local timer

whenever a message leaves the location, but a message entering its target location

162 CHAPTER 5. MESSAGE LOSS

fn(x〈~y〉) = {x, ~y}
fn([P]A) = fn(P) ∪A

fn(M |N) = fn(M) ∪ fn(N)

fn((νx)N) = fn(N) \ {x}
fn(0) = ∅

bn(x〈~y〉) = ∅
bn([P]A) = bn(P)

bn(M |N) = bn(M) ∪ bn(N)

bn((νx)N) = bn(N) ∪ {x}
bn(0) = ∅

M ≡α N ⇒ M ≡ N M |N ≡ N |M
L | (M |N) ≡ (L |M) |N M | 0 ≡ M

x /∈ fn(M) ⇒ M | (νx)N ≡ (νx)(M |N) (νx)(νy)M ≡ (νy)(νx)M

(νx)0 ≡ 0 [(νx)P]A ≡ (νx)[P]A∪{x}
[0]∅ ≡ 0 P ≡ Q ⇒ [P]A ≡ [Q]A

(Intra) P→Q

[P]A→ [Q]A

(Send) x /∈ A
[x〈~y〉 |P]A→ [φ(P)]A |x〈~y〉

(Get) x ∈ A

[P]A |x〈~y〉→ [P |x〈~y〉]A

(Loss)
x〈~y〉→0

(Dupl)
x〈~y〉→x〈~y〉 |x〈~y〉

(N-Par) M→M′

M |N→M′ |N

(N-Res) M→N

(νx)M→ (νx)N

(Cong) M ≡ M′ M′→N′ N′ ≡ N

M→N

Figure 5.1: The inductive definition of the dynamics of πml networks, parametrised

over a π-calculus, such as πt of processes, with its associated dynamics, structural

congruence and notions of free and bound names.

5.3. SEMANTICS 163

has not effects measurable by a timer. Is this the right choice for an asynchronous

calculus? After all, ticking the clock allows a process to know if and when a message

as left the location. Isn’t that against the spirit of asynchrony? Why not use the

following rule?

(Send’)
x /∈ A

[x〈~y〉|P]A→ [P]A|x〈~y〉
Instead of (Get), why not use

(Get’)
x ∈ A

[P]A|x〈~y〉→ [φ(P) | x〈~y〉]A
?

Unfortunately, we cannot give a mathematical reason in support of our choice.

We rely on aesthetics at this point in the development of π-calculi for distributed

systems, because our intuition about the interplay between timing, location and

failure is insufficient.

There is one argument for part of our preference though: modularity of reason-

ing. We want the equations holding for πt-processes to stay valid when processes

are located. This means that Tmax ` P = Q must imply Tmax ` [P]A = [Q]A. But if

we were to replace (Send) by (Send’), so as to not tick timers when messages enter

or leave a location then this requirement would be violated. To see why, define

M = [x(v).x(w).w]x

P = (νy)(timer1(y.a, 0) |x〈y〉 |x〈y〉)
Q = (νy)(timer1(y.a, 0) |x〈y〉 | delay1(x〈y〉))

where a is a fresh name. It is easy to see that Tmax ` P = Q, cf. Example 7.

Unfortunately,

M | [P]∅⇓a while M | [Q]∅ 6⇓a . (5.1)

To see that M | [P]∅⇓a, consider

M | [P]∅ → M | (νy)(x〈y〉 | [timer1(y.a, 0) |x〈y〉]y) by (Send’)

→ M | (νy)(x〈y〉 |x〈y〉 | [timer1(y.a, 0)]y) by (Send’)

→ (νy)([x(w).w]x |x〈y〉 | [timer1(y.a, 0)]y)

→ (νy)([y]x | [timer1(y.a, 0)]y)

→ [0]x | (νy)(y | [timer1(y.a, 0)]y)

→ [0]x | (νy)[y | timer1(y.a, 0)]y

→ [0]x | (νy)[a]y

→ [0]x | a | (νy)[0]y ↓a

But the second output x〈y〉 is inside delay1(x〈y〉) and can only be freed when times

passes in [Q]∅. That will inevitable time-out timer1(y.a, 0), removing a from the

164 CHAPTER 5. MESSAGE LOSS

free names of timer1(y.a, 0). As one can easily verify, this means that M | [Q]∅ 6⇓a.
A similar argument shows that having (Get’) together with (Send’) is also not a

good idea. Just define

P = (νy)(timer2(y.a, 0) |x〈y〉 |x〈y〉)
Q = (νy)(timer2(y.a, 0) |x〈y〉 | delay1(x〈y〉))

with M as before, then 5.1 still holds. So it is the lack of a Decomposition Theorem

together with our required implication that rule out (Send’), (Get) and (Send’),

(Get’). Of course one could turn the argument on its head and claim that the

examples show the implication (Tmax ` P = Q ⇒ Tmax ` [P]A = [Q]A) to be

unreasonable.

Unfortunately, we don’t even have a contentious argument to prefer (Send) over

(Send’), since T ` P = Q implies T ` P |x〈~y〉 = Q |x〈~y〉, but also T ` φ(P) |x〈~y〉 =

φ(Q) |x〈~y〉. The reason for choosing (Send) is mostly a guess. We expect the

subsequent development in this field to suggest more compelling justifications. Here

is a proposal for investigations.

Conjecture 2 The identity map on πmlt processes is a fully abstract encoding be-

tween πmlt with (Send), (Get’) and πmlt with (Send), (Get), using any reasonable

equivalence that abstracts τ -actions.

Of the remaining reduction rules, those for message failure have already been dis-

cussed and the remaining ones are well known from conventional π-calculi. The most

interesting remaining design choice is the absence of timestepping in (N-Par). Why

(N-Par)
M→M′

M|N→M′|N
rather than

(N-Par′)
M→M′

M|N→M′|φ(N)

when the underlying process calculus has timers? How is time passing in different

sites coordinated? The answer is “not at all”! This may be a surprising choice

given that πmlt is based on πt. But in distributed systems clock-drift between

sites is often considerable and several orders of magnitude about the duration of

atomic computational steps. The easiest way to model such weak inter-site clock

synchronisation is by not guaranteeing inter-site clock synchronisation at all. This

design decision errs on the side of caution and but will have to be reevaluated

later when more realistic models of distributed computation are required. After all,

modern clock-synchronisation algorithms can reduce inter-site clock-drift below the

average latency for remote communication [73] (which is still orders of magnitude

above the duration of computational steps).

5.3. SEMANTICS 165

Example Reductions

Let’s have a look at some more example reductions. Consider the network

[x〈y〉 | timer3(z(v), 0)]z | [!x(v).z〈v〉]x.

All it does is send a message on x to anther site where it gets forwarded to z and

sent back to the originating site. There a timer is set that allows 2 units of to pass

before it refuses to accept the forwarded message. A typical reduction sequence

would be as follows.

[x〈y〉 | timer3(z(v), 0)]z | [!x(v).z〈v〉]x → [timer2(z(v), 0)]z |x〈y〉 | [!x(v).z〈v〉]x
→ [timer1(z(v), 0)]z |x〈y〉 | [!x(v).z〈v〉]x
→ [timer1(z(v), 0)]z | [x〈y〉 | !x(v).z〈v〉]x
→ [timer1(z(v), 0)]z | [z〈y〉 | !x(v).z〈v〉]x
→ [timer1(z(v), 0) | z〈y〉]z | [!x(v).z〈v〉]x
→ [0]z | [!x(v).z〈v〉]x

Nothing went wrong here. But message failures and idling can act non-deterministically

and produce different reduction sequences. Here is an example.

[x〈y〉 | timer3(z(v), 0)]z | [!x(v).z〈v〉]x → [timer2(z(v), 0)]z |x〈y〉 | [!x(v).z〈v〉]x
→ [timer2(z(v), 0)]z |x〈y〉 |x〈y〉 | [!x(v).z〈v〉]x
→ [timer1(z(v), 0)]z |x〈y〉 |x〈y〉 | [!x(v).z〈v〉]x
→ [timer1(z(v), 0)]z |x〈y〉 | [x〈y〉 | !x(v).z〈v〉]x
→ [timer1(z(v), 0)]z |x〈y〉 | [z〈y〉 | !x(v).z〈v〉]x
→ [timer1(z(v), 0) | z〈y〉]z |x〈y〉 | [!x(v).z〈v〉]x
→ [timer1(z(v), 0) |x〈y〉]z | [x〈y〉 | !x(v).z〈v〉]x
→ [timer1(z(v), 0) |x〈y〉]z | [z〈y〉 | !x(v).z〈v〉]x
→ [timer1(z(v), 0) |x〈y〉]z | [z〈y〉 | !x(v).z〈v〉]x
→ [timer1(z(v), 0) |x〈y〉]z | z〈y〉 | [!x(v).z〈v〉]x
→ [0]z | z〈y〉 | [!x(v).z〈v〉]x
→ [z〈y〉]z | [!x(v).z〈v〉]x

The last reduction sequence shows one crucial problem with setting timers to detect

message loss: time-out may be caused not because of message loss but because

166 CHAPTER 5. MESSAGE LOSS

messages arrive too late.

[x〈y〉 | timer3(z(v), 0)]z | [!x(v).z〈v〉]x → [timer2(z(v), 0)]z |x〈y〉 | [!x(v).z〈v〉]x
→ [timer1(z(v), 0)]z |x〈y〉 | [!x(v).z〈v〉]x
→ [timer1(z(v), 0)]z |x〈y〉 |x〈y〉 | [!x(v).z〈v〉]x
→ [timer1(z(v), 0)]z |x〈y〉 | [!x(v).z〈v〉]x
→ [0]z |x〈y〉 | [!x(v).z〈v〉]x
→ [0]z | [x〈y〉 | !x(v).z〈v〉]x
→ [0]z | [z〈y〉 | !x(v).z〈v〉]x
→ [z〈y〉]z | [!x(v).z〈v〉]x

What these examples ought to communicate is that the new calculus works very

much like πt except for the addition of sites which server two functions: localise

time-passing and structure message passing into parts that are failure free and

parts that are not.

Free Input and Output Names

The notions of free input names and free output names have a straightforward

extension to networks.

fin(x〈~y〉) = ∅ fon(x〈~y〉) = {x}
fin([P]A) = fin(P) fon([P]A) = fon(P)

fin(M|N) = fin(M) ∪ fin(N) fon(M|N) = fon(M) ∪ fon(N)

fin((νx)N) = fin(N) \ {x} fon((νx)N) = fon(N) \ {x}
fin(0) = ∅ fon(0) = ∅

Active Names and Insensitivity

Similarly, active names and insensitivity must be extended to networks.

an(x〈~y〉) = {x}
an([P]A) = an(P)

an(M|N) = an(M) ∪ an(N)

an((νx)N) = an(N) \ {x}
an(0) = ∅

Definition 56 A network M is insensitive if for all reduction sequences M�N it

is the case that an(N) = ∅. The set of all insensitive networks is denoted ins.

5.3. SEMANTICS 167

Contexts

Definition 57 Network contexts are given by the grammar

C[·] ::= [·] || C[·] |N || (νx)C[·]

Definition 58 If C[·] and C ′[·] are network contexts, then C[·] generically reduces

to C ′[·], denoted C[·]�C ′[·] if for all N some reduction sequence C[N]�C ′[N] exists.

Barbs

The barbs for processes are those of the underlying process calculus. For networks

we have

M↓x x /∈ ap(N)
M|N↓x

M↓x x 6= a
(νa)M↓x x〈~y〉↓x

This choice of barb-forming rules deserves some justification. Why have we not

included
P↓x x /∈ A

[P]A ↓x
?

The answer is that we believe observers to be other processes. The above rule

then follows, because our reduction rules make it impossible for other processes to

immediately observe an output at x in, say, [x〈~y〉 |P]A, x /∈ A, despite x〈~y〉 |P ↓x.

One may reply here that we could relax the requirement about what entities may

observe processes. It makes sense to allow the message passing fabric to also be an

observer. Prima facie, this is a reasonable objection and the right way to resolve

the issue would be to develop the theory of strong sound theories for πmlt , along

the lines of [61] and see what barbs it induces, but we will not do this here because

we are really after sound theories.

The motivation behind requiring x /∈ ap(N) in the leftmost rule is to prevent the

observation of messages that are destined for locations that cannot possibly be part

of an observer. Although it might ultimately more realistic to allow misrouting of

messages, the present model simplifies things by prohibiting this possibility.

Lemma 41 1. If M ≡ N and M↓x then N↓x.

2. If M ≡ N and M⇓x then N⇓x.

Proof: By straightforward nested inductions. ut

Barbed Congruences

In the previous chapter we asked if adding timers requires a new notion of barb. The

answer was no. A similar question arises for πmlt . Again the answer will turn out

168 CHAPTER 5. MESSAGE LOSS

to be a qualified “no”. No, because our barbs will still just look for active output,

but only in the ether. Outputs active within a site will not count as immediate

observations. We will show that this choice is semantically correct, as we have done

for πt.

Definition 59 A binary relation R on networks is a πmlt -congruence if it it an

equivalence, if ≡ ⊆ R and if M R N implies C[M] R C[N] for all network-contexts

C[·].

Definition 60 A symmetric binary relation R on networks is a strong barbed bisim-

ulation if it is a πmlt -congruence and if M R N implies the following.

• For all names x: M↓x implies N↓x.

• Whenever M→M′ then there is a network N′ such that N→N′ and M′ R N′.

It is easy to see that strong barbed bisimulations are closed under arbitrary unions.

The largest strong barbed bisimulation is called strong reduction congruence. We

denote it by
rc∼.

The corresponding notions of barbed bisimulation and reduction congruence
rc≈

are derived as explained in Chapter 2, by replacing↓x with⇓x and→with�. Clearly,

each strong barbed bisimulation is a barbed bisimulation.

Before continuing with the transitional semantics, we present examples of a

(strong) barbed bisimilarity and its absence, which will play a role later.

Example 9 For all network M:

M
rc∼ M | [(νx)x]∅.

To see that this is the case, define

R = {(C[M], C[M | [(νx)x]∅]) | M is a network, C[·] is a context}∪ ≡

It is easy to see that R is a barbed bisimulation.

Example 10 If a 6= x then

[x]∅
rc≈ [(νa)(a | a.x)]∅ but [x]∅ 6rc∼ [(νa)(a | a.x)]∅.

but the processes are not equated by
rc∼.

5.3. SEMANTICS 169

(Intra) P
τ→ Q

[P]A
τ→ [Q]A

(N-Out)
P

x〈(ν~y)~z〉→ Q x 6∈ A {~y} ∩A = ∅
[P]A

x〈(ν~y)~z〉→ [Q]A∪{~y}

(N-In) P
x(~z)→ Q

[P]A
x(~z)→ [Q]A

(EtherIn)
0

x(~z)−→n x〈~z〉
(EtherOut)

x〈~z〉 x〈~z〉−→n 0

(Loss)
x〈~z〉 τ−→n 0

(Dupl)
x〈~z〉 τ−→n x〈~z〉 | x〈~z〉

(N-Par)
M

l→t M′ bn(l) ∩ fn(N) = ∅ t ∈ {n, ε} l = x〈(ν~y)~z〉 ⇒ x /∈ ap(N)

M|N l→t M′|N

(N-Com)
M

x〈(ν~y)~z〉→s M′ N
x(~z)→t N′ {~y} ∩ fn(N) = ∅ s, t ∈ {n, ε}, s 6= t

M|N τ→ (ν~y)(M′|N′)

(N-Res)
M

l→t N x /∈ fn(l) ∪ bn(l) t ∈ {n, ε}
(νx)M

l→t (νx)N

(N-Open)
M

x〈(ν~y)~z〉→t N v 6= x, v ∈ {~z} \ {~y} t ∈ {n, ε}
(νv)M

x〈(ν~y,v)~z〉→t N

(N-Alpha)
M ≡α M′ M′ l→t N′ N ≡α N′ t ∈ {n, ε}

M
l→t N

Figure 5.2: A synchronous transition system for the asynchronous timed π-calculus

with locations and message loss. Here →ε stands for →.

170 CHAPTER 5. MESSAGE LOSS

5.3.2 Transitional Semantics

Figure 5.2 presents a labelled transition system that captures the same computations

as the reductions in Figure 5.1. We hesitate to call it synchronous because of the way

the ether generates observations. The ether can never refuse to accept a message

from a site. It is of infinite capacity. This is modelled by the following rules

(EtherIn)
0

x(~z)−→n x〈~z〉
(EtherOut)

x〈~z〉 x〈~z〉−→n 0

which are very much like to corresponding asynchronous rules in the asynchronous

π-calculus, cf. §2.2.1. It is not clear how to have entirely synchronous semantics.

The remaining rules are straightforward adaptations of the reduction rules.

5.4 Equivalences

With the basic definitions out of the way, it is time to study the crucial proper-

ties of the calculus, to see if our constructions make sense at all. As with πt, the

investigations centre around the maximum sound theory. But the calculus is now

a 2-sorted algebra, so there is more than one way of defining the notions of sound

theory. We show that this is no reason to worry because all of them induce the

same unique maximum theory. With the problem of the right definition out of the

way, we then verify that the definition of barb in §5.3.1 is semantically correct be-

cause the induced reduction congruence coincides with the maximum sound theory.

Finally, we propose another labelled transition system with an associated notion of

bisimulation for tractable compositional reasoning. Unfortunately, this leads only

to a sound approximation of the maximum sound theory but a characterisation is

not in sight. Timers not being synchronised across sites precludes applications of

the technology developed for πt’s characterisation theorem. It seems πmlt is more

like an untimed pi-calculus rather than πt.

5.4.1 The Maximum Sound Theory for πmlt

The overall architecture of this section is much like that of §4.4.1 and hence [61].

The proofs are somewhat more involved due to the possibility of message failure

but not much.

Basic Definitions and Facts

All concepts fixed in Definition 22 remain unchanged, except for the notion of πmlt -

logic which must take account of access points.

Definition 61 A πmlt -logic is a logic where formulae are pairs (M,N) of networks

such that ap(M) = ap(N).

5.4. EQUIVALENCES 171

Without the coincidence of access points for related networks, no πmlt -logic could

be a congruence, as explained in §5.2.

But what is a πmlt -theory? πt is a 1-sorted algebra, but πmlt isn’t. How should

πmlt -theories account for equalities of the underlying processes? Our design goals

suggest that

Tmax ` P = Q ⇒ Tmax ` [P]A = [Q]A (5.2)

ought to hold. In this implication, Tmax in the premise is the maximum sound

theory for πt, as described in the previous chapter, while in the conclusion, Tmax

refers to the maximum sound theory on networks, whose existence this section sets

out to prove. We will usually not distinguish syntactically between these relations,

hoping that the reader can always find enough contextual clues for disambiguation.

There seem to be several ways of coherently defining πmlt -theories satisfying 5.2.

• One could treat πmlt as a 1-sorted algebra, with [P]A being a nullary operation

for all P, A. Then πmlt -theories are defined like πt-theories just over networks

instead of processes and 5.2 is proven as a theorem (hopefully, because a failure

to derive 5.2 would indicate problems with the whole approach).

• Alternatively, we could proceed as in the previous suggestion, except that 5.2

is enforced by definition, via an additional axiom in the requirements of what

it means for T to be a πmlt -theory:

Tmax ` P = Q ⇒ T ` [P]A = [Q]A (5.3)

These two proposals decree processes to be second class citizens. This is not neces-

sary

• We could also define the notion of πt-theory and πmlt -theory simultaneously,

as a pair (T ,T ′), where T relates networks and T ′ processes. The two are

connected by the following axiom.

T ′ ` P = Q ⇒ [P]A = [Q]A.

Some variations of these proposals are possible, but we restrict our efforts to showing

that these three all result in the same congruence.

We cannot require T ` [P]A = [Q]A to imply Tmax ` P = Q, for [x]{x,y} and [y]{x,y}
are both unable to interact in any form or shape, yet Tmax 6` x = y.

Definition 62 A 1-theory is a consistent and reduction-closed πmlt -logic (T ,`)

where entailment is defined inductively by the constrains given next.

• (M,N) ∈ T implies T ` M = N.

172 CHAPTER 5. MESSAGE LOSS

• M ≡ N implies T ` M = N.

• T ` M = N implies T ` N = M.

• T ` L = M and T ` M = N imply T ` L = N.

• T ` M = N implies T ` C[M] = C[N] for all network contexts C[·].

A 2-theory is a consistent and reduction-closed πmlt -logic (T ,`) where entailment

is defined by the rules for 1-theories with the additional requirement that

• Tmax ` P = Q implies T ` [P]A = [Q]A for all appropriate A.

A 3-theory is a pair (T ,T ′) such that T ′ is a consistent and reduction-closed πt-

theory while (T ,`) is a consistent and reduction-closed πmlt -logic where entailment

is defined by the rules for 1-theories with the additional requirement that

• T ′ ` P = Q implies T ` [P]A = [Q]A for all appropriate A.

1-theories and 2-theories are sound if the identify all insensitive networks. A 3-

theory (T ,T ′) is sound if T identifies all insensitive networks and T ′ identifies all

insensitive πt-processes.

Example 11 Barbed Congruence
rc≈ is a sound 1-theory: reduction-closure is by

definition. Consistency follows because barbed bisimulations preserve weak barbs.

To see that
rc≈ identifies all insensitive terms, consider

R = {(C[M], C[N]) | C[·] context,M,N insensitive} ∪ ≡ .

It is easy to check that R is a barbed congruence, as required.

The aim of this section is to verify the next theorem, which states that 1, 2 and

3-theories all give raise to the same notion of equivalence.

Theorem 27 1. There exists a unique maximum sound 1-theory T 1
max , but there

is no maximum 1-theory.

2. There exists a unique maximum sound 2-theory T 2
max , but there is no maxi-

mum 2-theory.

3. There exists a unique maximum sound 3-theory T 3
max = (T3,T ′

3), but there is

no maximum 3-theory.

4. T 1
max = T 2

max = T3. In addition, T ′
3 is the maximum sound πt-theory.

5.4. EQUIVALENCES 173

Proof: We prove (4) from (1, 2, 3), which we establish later.

Clearly, if T is a sound 2-theory, then T ,Tmax is a sound 3-theory. Similarly, if

(T n,T t) is a 3-theory, then T n is a 1-theory. But then, if T i
max is was the maximum

i-theory (i = 1, 2, 3) then

T 2
max ⊆ T 3,n

max ⊆ T 1
max ,

where T 3
max = (T 3,n

max ,T 3,t
max). We will now show that T 1

max is a 2-theory. This means

that

T 2
max = T 3,n

max = T 1
max ,

provided these maximum i-theories exist. Define

T = {([P]A, [Q]A) | Tmax ` P = Q} ∪ {(M,N) | M,N insensitive}.

We show that T is a sound 2-theory. The only non-trivial facts to check are

reduction-closure and consistency. For the former, we show by induction on the

derivation of T ` M = N that for all networks L: whenever M|L→M′ there there is

a reduction sequence N|L→N′ with T ` M′ = N′.

M = [P]A,N = [Q]A,Tmax ` P = Q. Induction on the derivation of M|L→M′.

[P]A|L→ [P′]A|L. Then strong reduction-closure of Tmax delivers a matching

reduction [P]A→ [P′]A.

[P]A|L→ [P]A|L′. Then clearly [Q]A|L→ [Q]A|L′ matches.

[P]A|x〈~y〉|L′→ [P|x〈~y〉]A|L′. Then x ∈ A and [Q]A|x〈~y〉|L′→ [Q|x〈~y〉]A|L′. This

is a match by congruency of Tmax .

[(ν~y)(P′|x〈~z〉)] |L→ (ν~y)([φ(P′)]A∪{~y} |x〈~z〉) |L. Then {~y} ⊆ {~z} \ {x}. From

Corollary 1 we know that Q ≡ (ν~y)(Q′|x〈~z〉) where Tmax ` φ(P′) = φ(Q′).

Hence [Q]A |L→ (ν~y)([φ(Q′)]A∪{~y} |x〈~z〉) |L is a matching reduction.

T ` M′′ = N′′,M = C[M′′],N = C[N′′]. We proceed by induction on the derivation

of C[M′′] |L→M′.

C[M′′] |L→M′′′ |L. Use the (IH).

C[M′′] |L→C[M′′] |L′. The matching reduction sequence is C[N′′] |L→C[N′′] |L′
by congruency.

C[M′′] |L→ (ν~x)(C ′[M′′] |L′). Then C[N′′] |L→ (ν~x)(C ′[N′′] |L′) is a match.

C[M′′] |L→ (ν~x)(C[M′′′] |L′). Now induction on the structure of C[·].
C[·] = [·]. The matching sequence is constructed using the outermost

(IH).

174 CHAPTER 5. MESSAGE LOSS

C[·] = C ′[·]|L′. We use the innermost (IH).

C[·] = (νx)C ′[·]. Then we must match (νx)(C ′[M′′] |L)→M′. By an easy

induction of this reduction we know that C ′[M′′] |L → M′′′. where

M′ ≡ (νx)M′′′. By the inner (IH) there must be a reduction sequence

C ′[N′′] |L�N′′′ with T ` M′′′ = N′′′, hence C[N′′] |L� (νx)N′′′ is an

appropriate reduction sequence.

The remaining cases are immediate. For consistency, we show by induction on the

derivation of T ` M = N that M⇓x implies N⇓x. This induction is straightforward.

The only slightly non-trivial case is T ` [P]A = [Q]A because Tmax ` P = Q. If

[P]A ⇓x then (Lemma 41.2) P⇓x and x /∈ A. But Tmax , too, preserves weak barbs

(Lemma 13), so Q⇓x and [Q]A⇓x.
An immediate consequence of weak barb preservation is consistency for 0 6⇓x but

x〈~y〉⇓x. ut

The next task is to conclude the proof of the theorem by verifying that the maximum

sound i-theories do exist. In this section, T ranges over 3-theories.

Lemma 42 Let T be an i-theory (i = 1, 2, 3).

1. T is reduction-closed if and only if,

• whenever T ` M = N, then, for all network contexts C[·], C[M]�M′

implies C[N]�N′, for some N′ with T ` M′ = N′.

• In addition, if i = 3, whenever T ` P = Q, then, for all contexts C[·],
C[P]�P′ implies C[Q]�Q′, for some Q′ with T ` P′ = Q′.

2. T is reduction-closed if and only if,

• whenever T ` M = N, then, for all network contexts C[·], C[M]�M′

implies C[N]�N′, for some N′ with T ` M′ = N′.

• In addition, if i = 3, whenever T ` P = Q, then, for all contexts C[·],
C[P]�P′ implies C[Q]→Q′, for some Q′ with T ` P′ = Q′.

3. Let T = Σi∈ITi. T ` M = N if and only if there are i1, ..., in ∈ I such that

Ti1 ` M0 = M1, ...Tin−1 ` Mn−2 = Mn−1, Tin ` Mn−1 = Mn,

where M = M0 and Mn = N.

4. If Ti is reduction-closed for all i ∈ I, then so is Σi∈ITi.

5. | Ti | ⊆ |Σi∈I Ti | for all i.

5.4. EQUIVALENCES 175

Proof: For (1) we use induction on the structure of the relevant contexts to show

(⇒). The converse direction is trivial. (2) is by (1) and Lemma 10.2. (3, 4, 5) are

proven as their counterparts in Lemma 10. ut

Definition 63 Networks M and N are i-incompatible (i = 1, 2, 3), written M #i N

if for all sound i-theories T : T 6` M = N.

Lemma 43 Let i = 1, 2, 3.

1. Assume that T is a sound i-theory with T ` (ν~x)[P]A = 0 for all P, some A

and some ~x such that {~x} ∩ fn(P) = ∅. Then T is inconsistent.

2. If M⇓x but N 6⇓x then M #i N.

3. Let T be a sound i-theory If T ` P = Q, then M⇓x if and only if N⇓x.

4. If C[·] is a network context and C[M] # C[N] then M #i N.

5. P #i Q does not imply [P]A #i [Q]A.

Proof: For (1) we show T ` 0 = M for all M by induction on the structure of

M. Assume M = N1|N2, then by (IH) T ` 0 = Ni, hence T ` 0|0 = M. But

T ` 0 = 0|0. Next, let M = a〈~b〉. By assumption T ` 0 = (ν~x)[a〈~b〉]A. But

[a〈~b〉]A→ a〈~b〉|(ν~x)[0]A. As (ν~x)[0]A is insensitive and 0� 0 is the only available

reduction sequence, we use reduction-closure to conclude to T ` 0 = a〈~b〉. The

remaining cases are immediate from the (IH).

For (2) assume T ` M = N and choose an arbitrary process P. Define

C[·] = (νz)([z.P]A | (ν~y)([·] | [x(~v).z]{x}))

where z is a fresh name, fn(M) ∪ fn(N) = {~y} and A is a set of names such that

[z.P]A is well-formed. Now assume M⇓x because M�(ν~a)(M′|x〈~z〉), where x /∈ {~a}.

Then

C[M] → C[M′]

→ (νz)([z.P]A | (ν~a~yx)(M′′ | x〈~z〉 | [x(~v).z]{x}))

→ (νz)([z.P]A | (ν~a~yx)(M′′ | [z]{x}))

→ (νz)([z.P]A | (ν~a~yx)(M′′ | [0]{x} | z))

→ (νz)[z | z.P]A | (ν~a~yx)(M′′ | [0]{x})

→ (νz)[P]A | (ν~a~yx)(M′′ | [0]{x})

As (ν~a~yx)(M′′ | [0]{x}) and C[N] are insensitive, we use reduction-closure and sound-

ness to deduce T ` 0 = (νz)[P]A for all P and A. Applying (1) gives a contradiction,

so actually T 6` M = N.

176 CHAPTER 5. MESSAGE LOSS

(3) and (4) are immediate consequences of (2). Finally, for (5), clearly x #3 y

whenever x 6= y, but [x]{x,y} and [y]{x,y} are both insensitive and hence equated

by all sound theories. Since sound theories exist (take id as a readily verifiable

example), we have proved (5). ut

Definition 64 Let S be set of networks. An i-theory T (i = 1, 2) isolates S if

T ` M = N and M ∈ S together imply N ∈ S.

If S = (Sn, St) is a pair of sets of networks (Sn) and processes (Sp). A 3-theory

T isolates S if T ` P = Q and P ∈ Sp together imply Q ∈ Sp, and T ` M = N and

M ∈ Sn together imply N ∈ Sn.

Lemma 44 Let T be a sound i-theory (i = 1, 2, 3).

1. Assume i 6= 3. If T isolates a S where S is neither empty or universal, then

T is consistent.

2. Assume i = 3. If T isolates (Sn, St) where neither Sn nor St are empty or

universal, then T is consistent.

3. If Ti isolates S for each i ∈ I then Σi∈ITi also isolates S.

4. Assume i 6= 3. Then T isolates ({M|M⇓x} for each name x.

5. If i = 3, then T isolates ({M|M⇓x}, {P|P⇓x}).

6. Let Tj be a sound i-theory for each j ∈ J . Then Σj∈JTj is also sound.

Proof: (1) is immediate from the definitions. (3) is immediate by Lemma 42.3, (4)

is by Lemma 43.3. In the light of 42.4, we need only show that Σi∈ITi is consistent

to establish (6): choose x ∈ N . By (4) we know that Ti isolates {P | P ⇓x}, so

Σi∈ITi does the same by (3). Now (1) guarantees soundness. ut

In §4.4 we defined the maximum sound theory with respect to the inclusion

ordering on the induced sets of consequences. This immediately generalises to 1-

and 2-theories, but 3-theories admit two immediately appealing orderings.

(T1,T ′
1) v1 (T2,T ′

2) iff | T1 | ⊆ | T2 | and | T2 | ⊆ | T ′
2 |

(T1,T ′
1) v2 (T2,T ′

2) iff | T1 | ⊆ | T2 | and | T1 | = | T2 | =⇒ | T2 | ⊆ | T ′
2 |

Fortunately, both definitions coincide at the top.

Lemma 45 If 3-theories Ti are maximum with respect to vi (i = 1, 2), then T1 = T2.

Proof: Immediate from the definitions. ut

5.5. REDUCTION-BASED CHARACTERISATIONS OF TMAX 177

Definition 65 For 3-theories T ,T ′ we write T v T ′ iff T v1 T ′. For 1-theories

and 2-theories, the order v is simply ⊆.

We can now complete the proof of Theorem 27

Proof: For i = 1, 2, 3, Theorem 27.i is established exactly as the corresponding

statement in Theorem 18, using the closure of sound i-theories under Σ (Lemmas

42 and 44). For the absence of a maximum reduction-closed consistent i-theory, we

start with i = 1. Let I = [(νx)x〈~y〉]∅ and define the 1-theory

T = {(M|I,N|I) | M,N networks}.

A contradiction is derived from the assumption that a maximum consistent and

reduction-closed 1-theory exists, just as in Lemma 18, using Example 9.

For i = 2, define

T ′ = {([P]A, [Q]A) | Tmax ` P = Q}

Since T and T ′ preserve weak barbs, as is easy to verify, both relations are consistent

(Lemma 43). By a straightforward induction on the derivation of T ∪ T ′ ` M = N

we show that T ∪ T ′ 6` 0 = a〈~b〉, implying consistency. It is also straightforward to

check that T ′ is reduction-closed (cf. the proof of Theorem 27). By Lemma 42.4,

this means that T ∪T ′ is reduction-closed. But
rc≈ is a sound 1-theory (see Example

11), so M
rc≈ M|I rc≈ N|I rc≈ N for all M,N, in violation to the assumed consistency.

Finally, for i = 3, we note that every 2-theory T induces a 3-theory (T ,Tmax).

The lack of a maximum reduction-closed and consistent 2-theory then means that

there cannot be a maximum reduction-closed and consistent 3-theory either. ut

5.5 Reduction-Based Characterisations of Tmax

Tmax admits characterisations as barbed congruence and along the lines of §4.5.2

and §4.5.3, but we will only describe the first of these here.

Theorem 28 | Tmax | = Tmax =
rc≈ and

rc∼ ⊂ Tmax.

Proof: Obviously |Tmax | = Tmax . In Example 11 we have shown that
rc≈ is a sound

1-theory. Conversely, clearly Tmax is a barbed bisimulation (preservation of weak

barbs is by Lemma 43.2). To see that Tmax 6= rc∼ consider the networks [x]∅ and

[(νa)(a | a.x)]∅. They are equated by Tmax (Example 10) but not by
rc∼. ut

Theorem 28 justifies our choice of barb.

178 CHAPTER 5. MESSAGE LOSS

5.6 A Labelled Approximisation to Tmax

The next step is to provide tractable tools for reasoning about the maximum sound

theory. We will follow the established pattern and present a labelled transition

system such that the induced notion of weak bisimilarity soundly approximates

Tmax . Unfortunately, we could not come up with a labelled characterisation.

Asynchronous labelled transitions
l→a are given in Figure 5.3. They are de-

rived from the labelled transitions in Figures 5.2 by throwing out observations on

processes. The next theorem verifies that
τ→a characterises πmlt -computations.

Theorem 29 1. M→N iff M
τ→aN.

2. If M
l→ N then M

τ→a · · ·
τ→a

︸ ︷︷ ︸

≥0

l→a
τ→a · · ·

τ→a
︸ ︷︷ ︸

≥0

N.

Proof: Straightforward. ut

The following facts will be useful later.

Lemma 46 1. If M
l→aN then ap(M) = ap(N).

2. If M
x(~y)→aN then N ≡ M |x〈~y〉.

3. If M
x〈(ν~y)~z〉→aN then M ≡ (ν~y)(M′ |x〈~z〉), {~y} ⊆ {~z} \ {x} and N ≡ M′.

Proof: By a straightforward induction on the derivation of transitions. ut

5.6.1 (Strong) Synchronous and Asynchronous Bisimulations

Next we define labelled bisimulations. One could now discuss the various ways this

could be done, as we did in the section on reduction congruence, but to make things

simple we just go with one.

Definition 66 A binary symmetric relation R on networks is a strong synchronous

bisimulation if (M,N) ∈ R and M
l→t M′ implies that some transition N

l→t N′ ex-

ists with (M′,N′) ∈ R. Here t is either n or ε. The largest strong synchronous

bisimulation is called strong synchronous bisimilarity and denoted ∼.

R is a synchronous bisimulation if (M,N) ∈ R and M
τ→ M′ implies that

some transition sequence N
τ→ · · · τ→
︸ ︷︷ ︸

≥0

N′ exists with (M′,N′) ∈ R, and M
l→ M′

(l 6= τ) implies that some transition sequence N
τ→ · · · τ→
︸ ︷︷ ︸

≥0

l→t
τ→ · · · τ→
︸ ︷︷ ︸

≥0

N′ exists

with (M′,N′) ∈ R (t as above). The largest synchronous bisimulation is called

synchronous bisimilarity and denoted ≈.

5.6. A LABELLED APPROXIMISATION TO TMAX 179

(Intra) P
τ→aQ

[P]A
τ→a[Q]A

(Send)
x 6∈ A

[P|x〈~y〉]A
τ→a[φ(P)]A | x〈~y〉

(Get) x ∈ A

[P]A | x〈~y〉 τ→a[P|x〈~y〉]A
(Loss)

x〈~z〉 τ→a0

(Dupl)
x〈~z〉 τ→ax〈~z〉 | x〈~z〉

(EtherIn)
0
x(~y)→ax〈~y〉

(EtherOut)
x〈~y〉 x〈~y〉→a0

(N-Par)
M

l→aM
′ bn(l) ∩ fn(N) = ∅ l = x〈(ν~y)~z〉 ⇒ x /∈ ap(N)

M|N l→aM
′|N

(N-Res)
M

l→aN x /∈ fn(l) ∪ bn(l)

(νx)M
l→a(νx)N

(N-Open)
M

x〈(ν~y)~z〉→aN v 6= x, v ∈ {~z} \ {~y}
(νv)M

x〈(ν~y,v)~z〉→aN

(N-Cong) M ≡ M′ M′ l→aN
′ N ≡ N′

M
l→aN

Figure 5.3: An asynchronous transition system for the timed, asynchronous π-

calculus with locations, message loss and message duplication. Transitions for pro-

cesses are omitted and can be found in Figure 4.2.

180 CHAPTER 5. MESSAGE LOSS

By replacing
l→ with

l→a we obtain (strong) asynchronous bisimulations. Since

asynchronous bisimulations are clearly closed under arbitrary unions and since ≡ is

an asynchronous bisimulation, the largest asynchronous bisimulation exists and we

denote it by ≈a.

Lemma 47 If R is an asynchronous bisimulation then M R N implies ap(M) =

ap(N).

Proof: Assume x ∈ ap(N) \ ap(M). Then

M
x(~y)→aM |x〈~y〉 x〈~y〉→aM

But N
τ→a · · ·

τ→a
x〈~y〉→a

τ→a · · ·
τ→aN

′ implies x ∈ ap(N′) (Lemma 46). By a straight-

forward induction on the derivation of asynchronous transitions we show that this

means that there cannot be a transition N′ x〈~y〉→aN
′′. Hence M and N cannot be

related by R, contradicting the assumptions. ut

The following theorem summarises some of ≈a’s important properties.

Theorem 30 1. ≈a is a congruence

2. ≈a is not closed under renaming.

3. ∼ ⊂ ≈ ⊂ ≈a ⊂ Tmax and ∼a ⊆ ≈a.

4. If Tmax ` P = Q then [P]A ∼a [Q]A.

Proof: For (1), the only mildly non-trivial case is closure under parallel compo-

sition. So assume M R N and M
l→aM

′ and proceed by induction on the derivation

of this transition. If the last rule is: M|L = [P]A |x〈~y〉 τ→a[P |x〈~y〉]A because x ∈ A,

then consider

[P]A
x(~y)→a[P]A |x〈~y〉 τ→a[P |x〈~y〉]A

By assumption we can find

N
τ→a · · ·

τ→aN
′ x(~y)→aN

′′ τ→a · · ·
τ→aN

′′′

with N′′′ ≈a [P |x〈~y〉]A. By Lemma 46 then also

N
τ→a · · ·

τ→aN
′ |x〈~y〉 ≡ N′′ τ→a · · ·

τ→aN
′′′,

as required. The other cases are similar.

For (2) simply consider the processes P and Q in Lemma 34 and locate them

appropriately: clearly [P]{y} ≈a [Q]{y} but [P]{y}{x/y} 6⇓b while [Q]{y}{x/y}⇓b.
Theorem 29.2 implies that ≈ is an asynchronous bisimulation. To see that the

inclusion is proper, note that [fwxx]{x} 6≈ [0]{x} because the synchronous transition

5.7. EXPANSION LAWS AND DISTRIBUTION OF PROCESSES 181

[fwxx]{x}
x(~y)→ [fwxx |x〈~y〉]{x} cannot be matched by [0]{x}. Next, define R up to ≡

by

[fwxx |Πi∈Ix〈~yi〉]{x} |Πj∈Jaj〈~yj〉 R [Πi∈Ix〈~yi〉]{x} |Πj∈Jaj〈~yj〉.
where I, J ⊆ N are finite sets. It is straightforward to verify that R is an asyn-

chronous bisimulation. Hence [fwxx]{x} ≈a [0]{x}. It is easy to verify that ≈a is a

sound theory, that ∼ is a proper subset of ≈ and that ∼a is a proper subset of ≈a.

To finish the proof of (3) we must show that Tmax properly includes ≈a. For

that purpose consider

[P | fwya |x〈y〉]A and [P | fwza |x〈z〉]A

where A contains y, z but not x and P is an arbitrary process such that y, z /∈ fn(P).

To see that these two networks are related by Tmax , define T by

[P{y/v} | fwyz |x〈y〉]A |Πi∈I(bi〈~di〉{y/v}) T [P{z/v} | fwyz |x〈y〉]A |Πi∈I(bi〈~di〉{z/v})

[P{y/v} | fwyz]A |Πi∈I(bi〈~di〉{y/v}) T [P{z/v} | fwyz]A |Πi∈I(bi〈~di〉{z/v})

A tedious but straightforward verification establishes that T ∪{(M,N) |M,N insensitive}
is a sound theory.

Finally, for (4) we define R up to ≡ by

(ν~a)([P]A |Πiai〈~bi〉) R (ν~a)([Q]A |Πiai〈~bi〉)

whenever Tmax ` P = Q. We omit the straightforward verification that R is a strong

asynchronous bisimulation. ut

5.7 Expansion Laws and Distribution of Processes

The remainder of this chapter is concerned with what may be one of the most

important questions in the study of distributed systems: how to go from centralised

to distributed computation? The form of the questions suggests that it is possible

to apply the time-honoured engineering imperative of Divide-and-Conquer to the

design of distributed algorithms. In what follows, we wish to convince the reader

that this is indeed often possible, by distinguishing between an algorithmic core and

its distribution scaffold. But what does that mean?

• The algorithmic core is what a program would look like if it didn’t have to

worry about the partial failures characteristic of distributed systems.

• The distribution scaffold describes all mechanism in place to mask those par-

tial failures sufficiently, so the algorithmic core can work as planned. Examples

of such mechanisms include the error correction that seek to eradicate byzan-

tine faults, but in the present context the tricks for coping with message-loss

and message-failure are more relevant.

182 CHAPTER 5. MESSAGE LOSS

In practise, it might not always be easy to determine the boundary between the

two, but in the idealising world of process calculi, the initial question can be neatly

summarised as: can we find a scaffolding transformation [[·]] that allows to go from

P |Q to [[[P]]]A | [[[Q]]]B in a semantics preserving way?

Unfortunately, it is likely that the answer must be a resounding “no” in general.

For a start, an unreliable transport medium cannot be turned into a divergence

free and reliable one with a bit of software magic. Does that mean there cannot

be interesting subclasses of processes where such a transformation is nevertheless

possible? The present author does not think so and part of the point of this thesis

is to exhibit an interesting subclass to inspire further work in this direction.

To see how one would go about finding such a class, consider the issues that

render the transition from P |Q to [[[P]]]A | [[[Q]]]B problematic. There is only one

really: message failure, if P and Q interact. Without this interaction, nothing would

go wrong. But restricting distribution to processes that do not interact is hardly an

interesting choice. The next clue comes from the mechanism we have to deal with

non-byzantine message failures. There are essentially three.

• Message loss is masked by resending of disappeared message.

• Message loss is detected with explicit acknowledgements and timers that trig-

ger suitable recovery mechanisms if acknowledgements fail to arrive in time.

• Message duplication is defused through messages carrying unique identifiers

and/or input-linearity or input-affinity. A process is input-linear on x if it can

receive on x exactly once. If it can receive at most once, it is input-affine on

x.

Unfortunately, we cannot explore much of the theory of input linearity/affinity here,

but one crucial thing to notice is that processes that are input input-linear or input-

affine on a channel x is that they are not affected by message duplication on x, only

by message loss. But that means message loss can be masked by resending messages

sufficiently often. Linearity/affinity ensures that we can simply discard superfluous

messages, should there be any. If !x〈~y〉 abbreviates (νa)(a | !a.(x〈~y〉 | a)), the process

(P |x〈~y〉) | (x(~v).Q |R)

could be transformed into

[[[P]] | !x〈~y〉]A | [x(~v).[[Q]] | [[R]]]B

without changing the semantics, provided [[·]] does the right thing on P,Q and R.

We will not investigate this transformation further because it does not allow for

much refinement. Instead, we will focus on Recursive Timers. They are networks

5.7. EXPANSION LAWS AND DISTRIBUTION OF PROCESSES 183

of the form

[P | (νab)(x〈~ya〉 | timert
′
(a, b) | !b.(x〈~ya〉 | timert(a, b)))]A

|
[x(~va).Q |R]B ,

subject to some further constraints, like x /∈ fn(P), P timer-free etc., that we state

later. The idea behind Recursive Timers is to replace outputs x〈~y〉 in the algorith-

mic core by x〈~ya〉 where a is a fresh acknowledgement channel. Dually, input-linear

or input-affine inputs x(~v).P are converted to x(~va).(a |Q) to include the receiver

sending an acknowledgement. The semantic effect of this transformation is the same

as that of output replication above, but it allows for an important generalisation:

the n-timed-resends. They are different from Recursive Timers in that they resend

lost messages only n times, rather than potentially infinitely often. If an acknowl-

edgement has not been received after n resends, an alternative process is launched,

which – in many cases – would involve some sort of notification for the process that

requested the remote communication. Moving n to its limits yields recursive timers

and what may be called naive distribution as special cases. The latter simply takes

P |Q into [P]A | [Q]B , without any concern for message failures. The hope is that the

various forms of the n-timed-resends share many behavioural properties in forms

that would allow an easy transfer of results obtained for one form to others. The

rest of this chapter mostly studies Recursive Timers because it is the simplest useful

form of n-timed-resends. It is also indispensable for the 2PCP. An in-depth study

of n-timed-resends is on its way but its findings will have to be reported elsewhere.

Towards Expansion Laws

This section gives sufficient conditions for legitimately replacing certain remote

communications by non-determinism (Theorem 31 below). Because it allows to

remove timers, it can be considered an Expansion Theorem. It will be vital for

reasoning about Recursive Timers. Its proof is typical for what is to follow, in

that it is essentially a brute force exploration of the all possible transitions. Alas

we could not come up with smarter proofs. Brute-force proofs of such facts can

probably not be improved on. We will start with proving some basic facts about

≈a that are heavily used later.

Lemma 48 1. Let Q be timer-free and x /∈ fn(Q). Then

(a) [x〈~y〉 |x(~y).P |Q]A ≈a [P{~y/~v} |Q]A.

(b) [x〈~y〉 | !x(~y).P |Q]A ≈a [P{~y/~v} | !x(~y).P |Q]A.

2. If x /∈ fn(P) ∪ fn(M) then

184 CHAPTER 5. MESSAGE LOSS

(a) (νx)(M | [P]A) ≈a M | [P]A\{x}.

(b) (νx)(M | [P | !x(~v).Q]A) ≈a (νx)(M | [P]A).

(c) (νx)(M | [P |x(~v).Q]A) ≈a (νx)(M | [P]A).

(d) In addition, if R ≈a 0, then (νx)(M | [P | timert(x(~v).Q,R)]A)≈a(νx)(M | [P]A).

(e) (νx)(M | [x〈~y〉 |P]A) ≈a (νx)(M | [P]A).

3. Let n ≥ 0, then (on the network level) (νx)Πn
i=1x〈~y〉 ≈a 0.

4. M |Πm
i=1x〈~y〉 ≈a M |Πn

i=1x〈~y〉 for all m,n ≥ 0, provided: m = 0 ⇔ n = 0.

5. If x ∈ A \ fn(P), then

[P |x〈~y〉]A ≈a [P]A |x〈~y〉 ≈a [P]A.

6. Πn
i=1[xi〈~yi〉]Ai ≈a [Πn

i=1xi〈~yi〉]A where A =
⋃n
i=1Ai.

7. If x ∈ B \ fin(P), C[·] is an arbitrary process context and x is not bound in

C[·], then

[C[x〈~y〉]]A | [P]B ≈a [C[0]]A | [P]B .

Proof: The proof for (1) is straightforward. Consider

[x〈~y〉 |x(~v).P |Q]A |Πn
i=1ai〈~bi〉 R [P{~y/~v} |Q]A |Πn

i=1ai〈~bi〉.

where n ≥ 0, ai is a name, ~bi a vector of names and Q is a timer-free process not

containing x. Clearly R ∪ id is an asynchronous bisimulation, proving (1a). The

other case is similar. (2, 3, 4) are also straightforward and omitted. The key insight

for proving (5) is that x ∈ A prevents asynchronous transitions
x〈~y〉→a. A witness

R for (6) is given by

Πn
i=1[xi〈~yi〉 |Πm

j=1,aj∈Aiaj〈~bj〉]Ai |Πk
j=1cj〈~dj〉

R
[Πn

i=1xi〈~yi〉 |Πm
j=1aj〈~bj〉]A |Πk

j=1cj〈~dj〉

where k,m ≥ 0. It is easy to verify that R is indeed an asynchronous bisimulation,

taking into account that {Ai}ni=1 partitions A.

The proof of (7) proceeds by induction on the structure of C[·]. We only deal

with the most complicated case C[·] = a(~v).C ′[·] where x /∈ {~v}. The witness

relation R is given as

(ν~e)([Πm
i=ixi〈~yi〉 | a(~v).C ′[x〈~y〉]]A |Πn

i=iai〈~bi〉 | [Πk
i=ici〈~di〉 |P]B)

R
(ν~e)([Πm

i=ixi〈~yi〉 | a(~v).C ′[0]]A |Πn
i=iai〈~bi〉 | [Πk

i=ici〈~di〉 |P]B)

5.7. EXPANSION LAWS AND DISTRIBUTION OF PROCESSES 185

We only discuss one transition that could arise from R ∪ ≈a. The remaining ones

are easier. If m ≥ 1 and w.l.o.g. xm = a, then we have a transition (omitting the

outermost restriction)

[Πm
i=ixi〈~yi〉 | a(~v).C ′[x〈~y〉]]A |Πn

i=iai〈~bi〉 | [Πk
i=ici〈~di〉 |P]B

τ→a[Π
m−1
i=i xi〈~yi〉 |C ′[x〈~y〉]{ ~bm/~v}]A |Πn

i=iai〈~bi〉 | [Πk
i=ici〈~di〉 |P]B

It is matched by

[Πm
i=ixi〈~yi〉 | a(~v).C ′[0]]A |Πn

i=iai〈~bi〉 | [Πk
i=ici〈~di〉 |P]B

τ→a[Π
m−1
i=i xi〈~yi〉 |C ′[0]{ ~bm/~v}]A |Πn

i=iai〈~bi〉 | [Πk
i=ici〈~di〉 |P]B

by (IH). ut

The next lemma shows that networks, input-linear on x, need not worry about

message duplication.

Lemma 49 Let x ∈ A but x /∈ fn(P) ∪ fn(Q) ∪ fn(R). Also assume that x(~v).Q is

local. Then for all m,n ≥ 0 such that m = 0 ⇔ n = 0:

1. [P |x(~v).Q |Πm
i=1x〈~yi〉]A ≈a [P |x(~v).Q |Πn

i=1x〈~yi〉]A.

2. [P | !x(~v).Q |Πm
i=1x〈~yi〉]A ≈a [P |x(~v).Q |Πn

i=1x〈~yi〉]A.

3. [P | timert(x(~v).Q,R) |Πm
i=1x〈~yi〉]A ≈a [P | timert(x(~v).Q,R) |Πn

i=1x〈~yi〉]A.

Proof: For (1), we define R by

[P |x(~v).Q |Πm
i=1x〈~yi〉]A |Πk

i=1ai〈~bi〉 R [P |x(~v).Q |Πn
i=1x〈~yi〉]A |Πk

i=1ai〈~bi〉

and show that R ∪ ≈a is an asynchronous bisimulation. This is straightforward.

The other two cases are essentially similar. ut

we can now prove the first expansion theorem for πmlt . As pointed out before, it

allows to reduce timers to internal non-determinism, provided the channel that can

be used to stop the timer is input-linear.

Theorem 31 (Expansion)

Assume P and S are timer-free and x is fresh. Then for all k,m, n ≥ 0 with

k +m+ n > 0:

(νx)(M | [P | timert(x(~v).Q,R) |Πk
i=1x〈~y〉]A∪{x} |Πm

i=1x〈~y〉 | [Πn
i=1x〈~y〉 |S]B)

≈a

M | [P | (Q{~y/~v} ⊕ R)]A | [S]B .

186 CHAPTER 5. MESSAGE LOSS

Proof: We use the following abbreviation.

Ntkmn(M,P,S) = (νx)(M | [P | timert(x(~v).Q,R) |Πk
i=1x〈~y〉]A∪{x} |Πm

i=1x〈~y〉 | [Πn
i=1x〈~y〉 |S]B)

Define R by

(ν~c)Ntkmn(M,P,S) R (ν~c)(M | [P | (Q{~y/~v} ⊕ R)]A | [S]B)

where P and S range over all suitable processes, M ranges over all suitable networks

and 0 < t. Then R∪≈a is an asynchronous bisimulation. To see this, we check all

relevant transitions, ignoring (ν~c) and bound outputs for simplicity. It is trivial to

fill in the missing details.

• If P
τ→aP

′ and hence

Nt+1
kmn(M,P,S)

τ→aN
t
kmn(M,P′,S)

then

M | [P | (Q{~y/~v} ⊕ R)]A
τ→aM | [P′ | (Q{~y/~v} ⊕ R)]A | [S]B

is matching because timer-freeness and the absence of a given name is pre-

served by
τ→a-transitions.

• If P
τ→aP

′ and hence

N1
kmn(M,P,S)

τ→a(νx)(M | [P′ |R |Πk
i=1x〈~y〉]A∪{x} |Πm

i=1x〈~y〉 | [Πn
i=1x〈~y〉 |S]B)

then

M | [P | (Q{~y/~v} ⊕ R)]A |Πn
i=1ai〈~bi〉

τ→a
τ→aM | [P′ |R]A | [S]B

matches because

(νx)(M | [P′ |R |Πk
i=1x〈~y〉]A∪{x} |Πm

i=1x〈~y〉 | [Πn
i=1x〈~y〉 |S]B) ≈a M | [P′ |R]A | [S]B

by Lemma 48.2 and 48.5.

• Transitions induced by S
τ→aS

′ or M
l→aM

′ are dealt with as in the previous two

cases.

• If a /∈ A ∪ {x} and

Nt+1
kmn(M,P|a〈~b〉,S)

τ→aN
t
kmn(M|a〈~b〉,P,S)

then

M | [P | a〈~b〉 | (Q{~y/~v} ⊕ R)]A
τ→aM | a〈~b〉 | [P | (Q{~y/~v} ⊕ R)]A | [S]B

is a matching transition.

5.7. EXPANSION LAWS AND DISTRIBUTION OF PROCESSES 187

• If a /∈ A ∪ {x} and

N1
kmn(M,P|a〈~b〉,S)

τ→a(νx)(M | a〈~b〉 | [P |R |Πk
i=1x〈~y〉]A∪{x} |Πm

i=1x〈~y〉 | [Πn
i=1x〈~y〉 |S]B)

then

M | [P | a〈~b〉 | (P{~y/~v} ⊕ R)]A |Πn
i=1ai〈~bi〉

τ→a
τ→aM | a〈~b〉 | [P |R]A | [S]B

is a match, using Lemma 48.2 and 48.5 again.

• If a ∈ A, a 6= x and

Ntkmn(M|a〈~b〉,P,S)
τ→aN

t
kmn(M,P|a〈~b〉,S)

then

M | a〈~b〉 | [P | (Q{~y/~v} ⊕ R)]A | [S]B
τ→aM | [P | a〈~b〉 | (Q{~y/~v} ⊕ R)]A | [S]B

is a match.

• If Ntkmn(M,P,S)
l→aN

t
kmn(M′,P,S′) because M | [S]B

l→aM
′ | [S′]B (please remem-

ber that we omit scope extension), then

M | a〈~b〉 | [P | (Q{~y/~v} ⊕ R)]A | [S]B
τ→aM

′ | [P | (Q{~y/~v} ⊕ R)]A | [S′]B

is a match.

• If we have a message duplication

Ntkm+1n(M,P,S)
τ→aN

t
km+2n(M′,P,S′)

then the empty transition sequence is a match.

• For a message loss

Ntkm+1n(M,P,S)
l→aN

t
kmn(M′,P,S′)

we have two cases. If k +m+ n = 0, then

M | [P | (Q{~y/~v} ⊕ R)]A | [S]B
τ→aM | [P |R]A | [S]B

is a match, using Lemma 48.2 and 48.5, otherwise the empty transition se-

quence does the job.

• Message migration

Ntkmn+1(M,P,S)
τ→aN

t
km+1n(M′,P,S′)

or

Ntkm+1n(M,P,S)
τ→aN

t
k+1mn(M′,P,S′)

can also be matched by the empty transition sequence.

188 CHAPTER 5. MESSAGE LOSS

• A time-out interaction

Ntk+1mn(M,P,S)
τ→a(νx)(M | [P |Q{~y/~v} |Πk

i=1x〈~y〉]A∪{x} |Πm
i=1x〈~y〉 | [Πn

i=1x〈~y〉 |S]B)

is matched by

M | [P | (Q{~y/~v} ⊕ R)]A | [S]B
τ→aM | [P |Q{~y/~v}]A | [S]B

using Lemma 48.2 and 48.5 again.

• An input action

Ntkmn(M,P,S)
a(~b)→aN

t
kmn(M|a〈~b〉,P,S)

where a 6= x can be matched by

M | [P | (Q{~y/~v} ⊕ R)]A | [S]B
a(~b)→aM | a〈~b〉 | [P | (Q{~y/~v} ⊕ R)]A | [S]B .

• If a 6= x then the output

Ntkmn(M|a〈~b〉,P,S)
a〈~b〉→aN

t
kmn(M,P,S)

is matched by

M | a〈~b〉 | [P | (Q{~y/~v} ⊕ R)]A | [S]B
a〈~b〉→aM | [P | (Q{~y/~v} ⊕ R)]A | [S]B .

Now we must consider the transitions from the right component of R.

• A match for the internal choice

M | [P | (Q{~y/~v} ⊕ R)]A | [S]B
τ→aM | [P |Q{~y/~v}]A | [S]B

has 3 cases. If k > 0, then

Ntkmn(M,P,S)
τ→a(νx)(M | [P |Q{~y/~v} |Πk−1

i=1 x〈~y〉]A∪{x} |Πm
i=1x〈~y〉 | [Πn

i=1x〈~y〉 |S]B)

is a match by Lemma 48.2 and 48.5. If m > 0, then

Ntkmn(M,P,S)
τ→aN

t
k+1m−1n(M,P,S)

can be completed to a matching transition sequence with the transition given

for k = 0. Finally, if n > 0, then

Ntkmn(M,P,S)
τ→aN

t
km+1n−1(M,P,S)

can be completed as in the case m > 0.

5.7. EXPANSION LAWS AND DISTRIBUTION OF PROCESSES 189

• The transition

M | [P | (Q{~y/~v} ⊕ R)]A | [S]B
τ→aM |R | [P |R]A | [S]B

is matched by

Ntkmn(M,P,S)
τ→a · · ·

τ→a
︸ ︷︷ ︸

t

(νx)(M | [P |R |Πk
i=1x〈~y〉]A∪{x} |Πm

i=1x〈~y〉 | [Πn
i=1x〈~y〉 |S]B)

with the help of Lemma 48.2 and 48.5.

The remaining transitions are straightforwardly matched in ways that have already

been demonstrated by previous cases. ut

Unfortunately, the expansion theorem is a bit too weak for our purposes. The

problem is that the processes running in parallel with the timer that waits for an

acknowledgement must be timer free. But in a Recursive Timer, a time-out triggers

a new timer to be started. The following variant of the above Expansion Theorem

is more liberal in this regard

Theorem 32 (Expansion (2)) Assume that the following is true.

• P and S are timer-free.

• x /∈ fn(M) ∪ fn(P) ∪ fn(S) ∪ {~b~c}.

• {~b,~c} ∩ (fn(M) ∪ fn(P) ∪ fn(S)) = ∅.
Then for all m,m,n ≥ 0 with k +m+ n > 0:

(νx~b~c)(M | [P |Πibi(~vi).Pi |Πi!ci(~wi).P
′
i | timert(x(~v).Q,R) |Πk

i=1x〈~y〉]A |Πm
i=1x〈~y〉 | [Πn

i=1x〈~y〉 |S]B)

≈a

(νx~b~c)(M | [P |Πibi(~vi).Pi |Πi!ci(~wi).P
′
i | (Q{~y/~v} ⊕ R)]A | [S]B).

Proof: The proof is essentially like that of Theorem 31. The main difference is

the additional inputs Πibi(~vi).Pi |Πi!ci(~wi).P
′
i that may contain timers. But the

assumptions on ~b and ~c guarantee that only the processes Q and R may contain

outputs that could activate timers in Pi and P′
i. Hence these additional inputs

cannot add transitions that are of significant interest in the proof. ut

5.7.1 Recursive Timers

With the expansion law out of the way, we can now investigate Recursive Timers.

What we ought to show is the following. If ` [P]A | [x(~y).Q]B , x /∈ fn(Q) and P as

well as Q are timer free. Then

[P | (νab)(x〈~ya〉 | timert(a, b) | !b.(x〈~ya〉 | timert(a, b))]A | [x(~va).(a |Q)]B

≈a

[P]A | [Q{~y/~v}]B

190 CHAPTER 5. MESSAGE LOSS

(a, b are fresh). This equation can be summarised as “remote messages, guarded

by Recursive Timers, will eventually get through”. It should be understood that

this holds only “up to divergence”. It is perfectly possible for Recursive Timers to

produce an infinite number of messages, none of which reaches its receiver. But

≈a and hence Tmax is divergence insensitive, as one can easily establish. So the

equality above really says “either the message get through eventually, or infinitely

many messages get lost and none gets through”. This may be seen as a rather weak

result. But in realistic settings the probability that infinitely many messages get lost

is often taken to be 0. This justifies the initial slogan “remote messages, guarded

by Recursive Timers, will eventually get through”. Having to rely on probabilistic

arguments that are not reflected in the formal model is somewhat unsatisfactory,

but probabilistic semantics for π-calculi are not well-understood, so for the time

being we have to make do with conventional semantics and its hand-waving about

how likely any given branches in a synchronisation tree may be.

While establishing the correctness of the above equation we use these two ab-

breviations:

timer0(x(~v).P,Q) = Q,

Us = timers(a, b) | !b.(x〈~ya〉 | timert(a, b))

where s ≥ 0. Then we would like to reason as follows.

[P | (νab)(x〈~ya〉 |Ut)]A | [x(~va).(a |Q)]B

≡ (νab)([P |x〈~ya〉 |Ut]A∪{ab} | [x(~va).(a |Q)]B)

≈a (νab)([P |Ut]A∪{ab} |x〈~ya〉 | [x(~va).(a |Q)]B)

≈a (νab)([P |Ut]A∪{ab} | [x〈~ya〉 |x(~va).(a |Q)]B)

≈a (νab)([P |Ut]A∪{ab} | [a |Q{~y/~v}]B)

≈a (νab)([P |Ut]A∪{ab} | a | [Q{~y/~v}]B)

≈a (νab)([P |Ut | a]A∪{ab} | [Q{~y/~v}]B)

= (νab)([P | !b.(x〈~ya〉 | timert(a, b)) | timert(a, b) | a]A∪{ab} | [Q{~y/~v}]B)

≈a (νab)([P | !b.(x〈~ya〉 | timert(a, b)) | b⊕ 0]A∪{ab} | [Q{~y/~v}]B)

≈a (νab)([P | !b.timert(a, b) | b⊕ 0]A∪{ab} | [Q{~y/~v}]B)

≈a (νab)([P]A∪{ab} | [Q{~y/~v}]B)

≡ [Q{~y/~v}]B | (νab)[P]A∪{ab}

≈a [P]A | [Q{~y/~v}]B

Unfortunately, we could not establish several of the steps that would have made

5.7. EXPANSION LAWS AND DISTRIBUTION OF PROCESSES 191

this derivation valid. Instead we proceed with more coarse grained reasoning steps.

[P | (νab)(x〈~ya〉 |Ut)]A | [x(~va).(a |Q)]B

≡ (νab)([P |x〈~ya〉 |Ut]A∪{ab} | [x(~va).(a |Q)]B)

≈a (νab)([P |Ut]A∪{ab} | [x〈~ya〉 |x(~va).(a |Q)]B) (5.4)

≈a (νab)([P |Ut]A∪{ab} | [a |Q{~y/~v}]B) (5.5)

≈a (νab)([P |Ut | a]A∪{ab} | [Q{~y/~v}]B) (5.6)

= (νab)([P | !b.(x〈~ya〉 | timert(a, b)) | timert(a, b) | a]A∪{ab} | [Q{~y/~v}]B)

≈a (νab)([P | !b.(x〈~ya〉 | timert(a, b)) | 0 ⊕ b]A∪{ab} | [Q{~y/~v}]B) (5.7)

≈a (νab)([P | !b.timert(a, b) | 0 ⊕ b]A∪{ab} | [Q{~y/~v}]B) (5.8)

≈a (νab)([P]A∪{ab} | [Q{~y/~v}]B) (5.9)

≡ [Q{~y/~v}]B | (νab)[P]A∪{ab}

≈a [P]A | [Q{~y/~v}]B (5.10)

Here (5.5) is a consequence of Lemma 48.1, (5.10) follows directly from Lemma 48.2

and (5.7) is an application of the second Expansion Theorem (Theorem 32). This

leave the remaining gaps (5.4), (5.6), (5.8) and (5.9) to be plugged. This is what

we shall do now.

Lemma 50 Assume the following hold.

• m,m′,m′′, n, n′, n′′ ≥ 0,

• 0 ≤ t′, t′′ ≤ t, a 6= x,

• P timer-free and

• x ∈ B.

With Qs
k = Πk

i=1x〈~ya〉 |Us we have

[P |Qt′
m]A |Πm′

i=1x〈~y〉 | [Πm′′

i=1x〈~y〉 |R]B ≈a [P |Qt′′
n]A |Πn′

i=1x〈~y〉 | [Πn′′

i=1x〈~y〉 |R]B

Proof: Define R by

(ν~c)(Mt′

mm′m′′(P,Q) |Πk
i=1ai〈~bi〉) R (ν~c)(Mt′′

nn′n′′(P,Q) |Πk
i=1ai〈~bi〉)

where

Mt′

kk′k′′(P,R) = [P |Qt′

k]A |Πk′
i=1x〈~y〉 | [Πk′′

i=1x〈~y〉 |R]B

and k, k′, k′′ ≥ 0, 0 ≤ t′ ≤ t. Setting M = Mt′

mm′m′′(P,Q) |Πk
i=1ai〈~bi〉, and N =

Nt
′′

nn′n′′(P,Q) |Πk
i=1ai〈~bi〉 We extend φ(·) to natural numbers: φ(0) = 0, φ(t+ 1) = t.

we have the following transitions, neglecting restrictions and bound outputs as

before.

192 CHAPTER 5. MESSAGE LOSS

1. M
a(~b)→aM | a〈~b〉. This is matched by N

a(~b)→aN | a〈~b〉, regardless of whether

a〈~b〉 = x〈~y〉 or not.

2. Mt′

mm′m′′(P,R) |Πk
i=1ai〈~bi〉

τ→aM
φ(t′)
mm′m′′(P′,R) |Πk

i=1ai〈~bi〉 because P
τ→aP

′. This

is matched by Mt′′

nn′n′′(P,R) |Πk
i=1ai〈~bi〉

τ→aM
φ(t′′)
nn′n′′(P′,R) |Πk

i=1ai〈~bi〉.

3. Mt′

mm′m′′(P,R) |Πk
i=1ai〈~bi〉

τ→aM
t′

mm′m′′(P,R′) |Πk
i=1ai〈~bi〉 because R

τ→aR
′. This

is matched by Mt′′

nn′n′′(P,R) |Πk
i=1ai〈~bi〉

τ→aM
t′′

nn′n′′(P′,R′) |Πk
i=1ai〈~bi〉.

4. Mt′

mm′m′′(P,R) |Πk
i=1ai〈~bi〉 | a〈~b〉

τ→aM
t′

mm′m′′(P | a〈~b〉,R) |Πk
i=1ai〈~bi〉 where a ∈

A. This is matched by

Mt′′

nn′n′′(P,R) |Πk
i=1ai〈~bi〉 | a〈~b〉

τ→aM
t′′

nn′n′′(P | a〈~b〉,R) |Πk
i=1ai〈~bi〉.

5. Mt′

mm′m′′(P,R) |Πk
i=1ai〈~bi〉 | a〈~b〉

τ→aM
t′

mm′m′′(P,R) |Πk
i=1ai〈~bi〉 | a〈~b〉 | a〈~b〉 where

x〈~y〉 6= a〈~b〉. Then

Mt′′

nn′n′′(P,R) |Πk
i=1ai〈~bi〉 | a〈~b〉

τ→aM
t′′

nn′n′′(P,R) |Πk
i=1ai〈~bi〉 | a〈~b〉 | a〈~b〉

is a matching transition.

6. Mt′

mm′+1m′′(P,R) |Πk
i=1ai〈~bi〉

τ→aM
t′

mm′m′′(P,R) |Πk
i=1ai〈~bi〉, matched by the emp-

ty transition sequence.

7. Mt′

mm′+1m′′(P,R) |Πk
i=1ai〈~bi〉

τ→aM
t′

mm′+2m′′(P,R) |Πk
i=1ai〈~bi〉, also matched by

the empty transition sequence.

8. Mt′

mm′m′′+1(P,R) |Πk
i=1ai〈~bi〉

τ→aM
t′

mm′m′′(P,R′) |Πk
i=1ai〈~bi〉 because x〈~y〉 |R τ→aR

′.

If n′′ > 0, this is matched by

Mt′′

nn′n′′(P,R) |Πk
i=1ai〈~bi〉

τ→aM
t′′

nn′n′′−1(P,R′) |Πk
i=1ai〈~bi〉.

If n′′ = 0 we must work a bit harder. There are two cases. Here is the first.

Mt′′

n+1n′0(P,R) |Πk
i=1ai〈~bi〉

τ→a M
φ(t′′)
n1+n′0(P,R) |Πk

i=1ai〈~bi〉
τ→a M

φ(t′′)
nn′1 (P,R) |Πk

i=1ai〈~bi〉
τ→a M

φ(t′′)
nn′0 (P,R′) |Πk

i=1ai〈~bi〉

The second case begins as follows.

Mt′′

0n′0(P,R) |Πk
i=1ai〈~bi〉

τ→a · · ·
τ→a

︸ ︷︷ ︸

t′′

M0
0n′0(P,R) |Πk

i=1ai〈~bi〉

τ→a Mt
1n′0(P,R) |Πk

i=1ai〈~bi〉

Now we proceed as in the previous case.

5.7. EXPANSION LAWS AND DISTRIBUTION OF PROCESSES 193

9. Mt′

mm′m′′(P,R) |Πk
i=1ai〈~bi〉 | a〈~b〉

a〈~b〉→aM
t′

mm′m′′(P,R) |Πk
i=1ai〈~bi〉. A matching

transition is Mt′′

nn′n′′(P,R) |Πk
i=1ai〈~bi〉 | a〈~b〉

a〈~b〉→aM
t′′

nn′n′′(P,R) |Πk
i=1ai〈~bi〉.

10. Mt′

mm′+1m′′(P,R) |Πk
i=1ai〈~bi〉

x〈~y〉→aM
t′

mm′m′′(P,R) |Πk
i=1ai〈~bi〉. If n′ > 0 then

Mt′′

nn′n′′(P,R) |Πk
i=1ai〈~bi〉

x〈~y〉→aM
t′′

nn′−1n′′(P,R) |Πk
i=1ai〈~bi〉

matches. Otherwise we proceed as in (8): There are two cases. Here is the

first.

Mt′′

n+10n′′(P,R) |Πk
i=1ai〈~bi〉

τ→a M
φ(t′′)
n1n′′(P,R) |Πk

i=1ai〈~bi〉
x〈~y〉→a M

φ(t′′)
n0n′′(P,R) |Πk

i=1ai〈~bi〉

The second case begins as follows.

Mt′′

00n′′(P,R) |Πk
i=1ai〈~bi〉

τ→a · · ·
τ→a

︸ ︷︷ ︸

t′′

M0
00n′′(P,R) |Πk

i=1ai〈~bi〉

τ→a Mt
1n′0(P,R) |Πk

i=1ai〈~bi〉

Now we proceed as in the previous case.

ut

Clearly (5.4) is a special case of this last lemma.

Lemma 51 Assume the following hold.

• m,m′,m′′, n, n′, n′′ ≥ 0,

• 0 ≤ t′, t′′ ≤ t, a 6= x,

• P timer-free and

• x ∈ B.

With Qs
k = Πk

i=1x〈~ya〉 |Us we have

[P |Qt′
m]A |Πm′

i=1a | [Πm′′

i=1a |R]B ≈a [P |Qt′′
n]A |Πn′

i=1a | [Πn′′

i=1a |R]B

Proof: The proof is very similar to that of the previous lemma and hence omitted.

ut

We have now also proven (5.6).

Lemma 52 If P is timer-free and a, b /∈ fn(P) then

[P | !b.timert(a, b) |Πk
i=1b⊕ 0 |Πl

i=1b |Πm
i=10 |Πn

i=1a]A ≈a [P]A

for all l,m, n ≥ 0.

194 CHAPTER 5. MESSAGE LOSS

Proof: The relation R is given by

[P | !b.timert(a, b) |Πd
i=1timertd(a, b) |Πl

i=1b |Πm
i=10 |Πn

i=1a]A |Πs
i=1ci〈~di〉

R
[P |Πl′

i=1b |Πn′

i=1a]A |Πk
i=1ci〈~di〉

where d, k, l, l′,m,m′, n ≥ 0 and P is timer-free with a, b /∈ fn(P). We omit to show

that R∪≈a is indeed an asynchronous bisimulation, as that is straightforward. ut

5.8 Related Work

Process theoretic studies of message failure are rare, but many authors have pro-

posed and investigated process calculi intended for modelling certain features of DS.

Most of that work features sites or locations in some form. In [26] one can find an

overview. Almost all proposals for extending process calculi with sites have been

made in the context of code mobility. This vogue is probably a consequence of Ja-

va’s success, which took semanticists by surprise. For comparisons with πmlt this is

unfortunate, because code mobility is a powerful computational primitive: so much

so in fact, that the Ambient Calculus [25] gets away with mobility as its sole means

for computing. Adding an expressive mechanism to something as lightweight as

name-passing interaction might result in the former masking subtle semantic effects

of the latter.

Anyway, formalisms for message failure can be divided according to their mech-

anism for classifying interactions into those that are subject to failure and those

that ain’t. As we have seen, πmlt uses sites to distinguish between local and remote

communication. Abdulla and his collaborators propose to partition channels into

those that carry messages, subject to possible failure, and those that don’t [3, 4].

Of course finer distinctions are possible, for example by assigning probabilities.

Of the many formalisms using sites, if for other purposes, the following are most

relevant here.

• Dπ, introduced by Hennessy and Riely [96–98].

• A proposal by Sewell: dpi [108].

• The Seal Calculus [117] by Vitek and Castagna.

• The aforementioned Ambient Calculus by Cardelli and Gordon.

• The Distributed Join Calculus by [39] by Gonthier, Lévy, Maranget and Rémy.

• And finally the earliest relevant model, πl by Amadio and Prasad [8, 9].

5.8. RELATED WORK 195

With the exception of πl all these formalisms have been proposed to investigate code

mobility. Once one decides on using sites, several taxonomies become relevant.

• What is the underlying non-distributed calculus? Here we see much unifor-

mity: the Distributed Join Calculus is based on the Join calculus and hence

indirectly on a peculiar form of the asynchronous π-calculus. Dπ, dpi and πl

are based directly on some π-calculus. Ambient and Seal are not really based

on existing calculi. Our πmlt is unusual as it is the only formalism based on a

timed calculus, which in our opinion, is crucial. Just as in the case of timers,

we conjecture that expressivity differences in base calculi are preserved by the

transition to their located incarnations.

• Can sites be nested or have they got to be flat? This pertains to the question

of whether sites can themselves contain other sites or not. We have opted for

the latter, as do Dπ and πl. All the others have chosen to allow nesting of

sites. This is probably right for dealing with code mobility’s security issues,

but as units of message failure, flat sites appear more natural, because in real

computing systems, the unit of failure are physical devices such as PCs or

routers that cannot meaningfully be nested.

• How are sites achieved? Our solution is primitive but effective. We added

new syntax. Ambient, Seal, πl and Dπ do the same. The guiding metaphor is

spatial containment: a given process is executed ‘inside’ some computer. The

Distributed Join Calculus and dpi make a different choice. They locate names.

That means roughly that names are no longer atomic but structured, with

two components, one of which represents the location. Maffeis and Carbone

[24] study a pure form of structured names. We conjecture that these two

approaches are not as different as may seem on first glance.

• Another interesting issue that could be seen as a special case of the choice

of underlying calculus, is the choice of mechanism for failure detection. Our

weapon here is the timer because it is powerful, natural and used by important

distributed algorithms like TCP. Strangely, apart from πl, none of the other

formalisms has failure detection. πl offers a dedicated primitive that can tell

if a remote site has crashed or not. Since implementations of failure detectors

tend to be built on top of timing mechanisms (but probably not vice versa),

one could argue that our’s is the more versatile and basic choice. Be that

as it may, other detection technology must also be addressed. An important

example are unique message IDs. Since the π-calculus offers unique name

generation as a primitive, one could be tempted to think it was perfectly

suited for modelling algorithms that rely on unique IDs. This is not the

case. Firstly, many π-calculi do not allow to test names for (in)equality. It is

196 CHAPTER 5. MESSAGE LOSS

possible to code around this shortcoming, but at the expense of complicating

whatever is being modelled. A more serious problem is the mismatch between

π’s ability to generate infinitely many new names and the finite number of IDs

that a message can realistically carry in modern networks which has serious

algorithmic ramifications. An extreme case is the Alternating Bit Protocol

[111] that uses just one bit to generate message IDs for detecting message

failures. The cleverness in such algorithms lays in how they get around the

limited number of IDs. By assuming an infinite supply from the start, π-calculi

cannot model such resource constrains well. It would be interesting to study

a π-calculus that offers only a finite supply of fresh names. We imagine that

the mathematical theory of such processes would be closely related to, and

a generalisation of space-restricted Turing Machines, as studied in classical

complexity theory.

5.9 Concluding Remarks

We have extended πt with a notion of site and message failure to get a convenient

model for the study of DS. Much could be added to increase its realism and in

Chapter 7 we shall take a brief trip in that direction. Nevertheless, it might be more

interesting at this stage, to avoid complicating an already challenging formalism to

the point of infeasibility. Instead we suggest to study πmlt more deeply, for example

by getting more powerful expansion theorems or generalisations of the Recursive

Timer. A thorough investigation is likely to show that there are only few ways of

how to deal with message failures. It may be possible to capture some with suitable

typing systems. We hope to be able to report of progress in this direction soon.

If one wishes to have a more realistic model, our suggestion is to start with

making πmlt less asynchronous. With πt we had the opposite problem, we wanted

more asynchrony, which means that we wanted πt timers to exhibit some degree of

clock-drift, cf. §4.7. Here it is the lack of synchronisation between timers in different

sites that makes the model unrealistic. But with modern clock synchronisation

algorithms [73] it is possible to push inter-site clock-drift below the average inter-site

communication latency (which is still several orders of magnitude above the duration

of atomic computational steps). It is likely that moving from a totally asynchronous

model with no constraints on inter-site clock-drift to a partially synchronous one

with some constraints would have serious semantic effects, for example a shift away

from an impossibility to solve the leadership election problem across sites, that we

presume πmlt suffers from. The good news is that many of the techniques we believe

could be used to make πt less asynchronous are dual-use and would allow to make

πmlt more so (and vice versa).

Chapter 6

The 2PCP With Message

Failure

This chapter studies the 2PCP assuming the possibility of message failure.

6.1 Introduction

We now have a distributed π-calculus at our disposal and this chapter tests it by

encoding and verifying the 2PCP, first described in Chapter 3. Now participants and

the coordinator reside in their own locations, which means that votes and decision

messages can get lost or duplicated. But the algorithm in Chapter 3 works only

in the absence of message failures. It would deadlock if a message got lost. So we

scaffold the core algorithm with timers to enable the 2PCP to recover gracefully

from message failure.

6.2 The Algorithm

As before, the protocol has n participants and one coordinator, all hosted by dedi-

cated locations. Internal communication happens via the private names ~vote , ~dec ,

~e. The additional ~e is used for error recovery, as explained later. All processes carry

an index, denoting the time units left until time-out of their timers.

2PCPt,t′ = (ν ~vote)(ν ~dec)(ν~e)([Ct] ~vote ,~e | [P1,t′]dec1 | ... | [Pn,t′]decn)

Participants are almost unchanged from the error free version, except that the

receipt of the decision from the coordinator is wrapped in a form of Recursive

197

198 CHAPTER 6. THE 2PCP WITH MESSAGE FAILURE

Timer, cf. §5.7.1.

Pi,t = Pabort
i,t ⊕ Pcommit

i,t

Pabort
i,t = voteiright | !abort i

Pcommit
i,t = voteileft |Pwait

i,t

Pwait
i,t = timert(deci[!commit i, !abort i], ei |Pwait

i,t)

If the decision message on deci does not arrive within t units of time, a time-out

occurs, starting a new timer waiting for the decision and sending a message on

ei back to the coordinator. This message on ei triggers a resend of the decision

message. If the decision on deci fails every time, the ‘process’ made up of Pwait
i,t

and its counterpart in the coordinator responsible for sending the decision diverge,

but at each step in their joint evolution, the duo is capable of resuming error free

service. This insensitivity to previous message failures is the reason behind the term

“Recursive Timer”.

The coordinator is also almost unchanged from its non-distributed incarnation,

except that the receipt of a vote is now guarded by a timer. Its function is to

make the coordinator assume a participant has voted to abort if no message to the

contrary arrives in time. An additional new feature is that the sending of a decision

message for the descendant of Pi can now be triggered by receipt of a message on

ei.

Ct = Cabort ⊕ Ccommit
pre ,t

Cabort = Πn
i=1C

abort
i

Cabort
i = deciright | !ei.deciright

Ccommit
pre,t = (ν~ca)(Cwait

t |Cand | Cor)

Cwait
t = Πn

i=1C
wait
i,t

Cwait
i,t = timert(votei[ci, a], a)

Cand = c1.c2...cn.C
commit
final

Ccommit
final = Πn

i=1C
commit
i

Ccommit
i = decileft | !ei.decileft

Cor = a.Cabort

Clearly Cwait
i,t makes worst case assumptions: it is possible for a participant to decide

for voting to commit, without the vote arriving in time at the coordinator. The

coordinator then incorrectly but safely assumes that the participant had voted to

abort. This is a conservative assumption, but exactly the right one in an asyn-

chronous system where it is never clear if a message has not arrived because it was

lost or if it is just late.

6.3. CORRECTNESS OF THE 2PCP 199

From now on we will mostly omit specifying the access points of our networks.

For example we will write [Ct] instead of [Ct] ~vote ,~e the formalisms more readable.

Remarks on the Underlying Calculus

Just like in Chapter 3, the calculus we have used here to express the 2PCP is

not πmlt , but a variant with binary branching, replicated outputs and definition of

processes by recursive equations. As before, the reason for this choice is economy

of presentation. It is no problem to show that all our results for πmlt hold for

the modified calculus, too. Unfortunately, and in contradistinction to the situation

for the 2PCP without failures, it is not known if the above modifications can be

encoded nicely into πmlt .

6.3 Correctness of the 2PCP

As in the failure free case, a crucial part of what counts as correctness of the 2PCP

is to do with appearing as being only in one of two states: either all processes abort

or they all commit. This is guaranteed by the following theorem which is a located

version of the Theorems 12 in Chapter 3.

Theorem 33 Let t, t′ > 0, then 2PCPt,t′ ≈a [Abort ⊕ Commit]∅.

In Chapter 3 we added Theorem 13 to guarantee that the overall outcome of the

protocol was the conjunction of the n+1 individual decisions. With message failures

this is no longer possible: even if all votes had been cast for committing, a lost vote

would force the coordinator to abort. The following modification of Theorem 13

takes this into account.

Theorem 34 1. (ν ~vote)(ν ~dec)(ν~e)([Ccommit
pre ,t] | [Pc1,t] | ... | [Pcn,t])≈a[Commit⊕Abort]∅.

2. If P′
i ∈ {Pai,t,Pci,t}, then (ν ~vote)(ν ~dec)(ν~e)([Cabort] | [P′

1] | ... | [P′
n]) ≈a [Abort]∅.

3. If P′
i ∈ {Pai,t,Pci,t} and for at least one i0 ∈ {1, ..., n} P′

i0
= Pai0,t, then

(ν ~vote)(ν ~dec)(ν~e)([Ccommit
pre ,t] | [P′

1] | ... | [P′
n]) ≈a [Abort]∅.

The caveats discussed in Chapter 3 apply here too: Theorems 33 and 34 do not

exhaust all that one could say about the correctness of the 2PCP. However, unlike

in the failure free case where the missing bits were trivial, the possibility of mes-

sage failure in intersite communication requires an additional guarantee, usually

informally expressed as “if [...] no [...] failure occurs for sufficiently long, then all

processes will eventually reach a decision” [19]. This pertains to the possibility of

messages getting lost every time they leave their originating site. Since a partici-

pant who has voted to commit cannot consistently decide on whether to abort or

200 CHAPTER 6. THE 2PCP WITH MESSAGE FAILURE

commit without feedback from the coordinator, at least one message to each such

participant has to get through for the protocol to be atomic. Unfortunately, our se-

mantic model does not easily accommodate quantitative information about message

failure frequency. This makes it inadvisable to prove theorems about computations

that put limits on the number of message failures. Does that mean we have no way

of expressing the robustness of the 2PCP to limited numbers of failures? This is

not clear. We will prove Theorem 33 and it implies that no observer could ever see

anything other than total commitment or overall abort from the 2PCP, despite the

aforementioned possibility of a participant being blocked because the coordinator’s

decision will never arrive. This seems contradictory and it is not entirely clear how

to explain this. It seems that at the heart of any solution to this conundrum lays the

divergence insensitivity of the relevant equivalences. This phrase is usually taken

to mean

Tmax ` P = P |Ω (6.1)

(in the case of the maximal sound theory) where Ω is a divergent and insensitive

process. Clearly, infinitely iterated message failure is a form of divergence. But that

cannot be the whole story here, for we could also have a

2PCP�2PCP′ abort1→ τ→ . . .
τ→ abort1→ τ→ . . .

τ→ abort1→ τ→ . . .
τ→ . . .

where all the τ -actions
τ→ . . .

τ→ are either losses of dec2right, time steps by the

second participant or triggers to resend the lost message. This means we have a

proper subprocess diverging, but not being insensitive, at least from the point of

view of the coordinator. In addition, the divergence is interleaved with observable

actions. Is seems that our equivalences are divergence insensitive in a stronger

sense than that expressed in (6.1). It appears crucial that the diverging subprocess

is oblivious about previous message failure and may return to non-faulty behaviour

at each point in its evolution. As it is more important to know that 2PCP≈a [Abort⊕
Commit]∅ than why, we leave a better understanding of just what kind of divergence

insensitivity the 2PCP needs and ≈a offers as an open problem.

6.4 Correctness of the 2PCP with One Participant

The first correctness proof of the 2PCP did not constrain the number of participants.

Here we are less ambitious and only establish correctness for the protocol with one

participant. Just 1 participant? Is there a problem? Yes and no! No because it

is not conceptually difficult to generalise the proof we are about to present to n

participants. Unfortunately, if the coordinator has to communicate with more than

one process, the number of intermediate states, induced by messages in transit,

increases dramatically. None of these additional states is challenging in itself, it is

6.4. CORRECTNESS OF THE 2PCP WITH ONE PARTICIPANT 201

their sheer number that makes simply keeping track a formidable task. A quick look

at Lemma 57 may be instructive: despite stating a fairly straightforward equality,

its proof uses a process with 13 indices! With more participants things become

much worse.

Is this complexity inevitable? Probably, but ... We explored quite a few variants

of the proof and all suffered from an explosion of intermediate states. We felt

like pushing a bump in the carpet: we could move complexity around but failed

to remove it. On positive side, one may notice a fair degree of regularity in the

intermediate state bureaucracy, raising the spectre of a general theorem. Sadly, its

details, unlike its spirit, have resisted the author’s considerable efforts so far.

Some Useful Definitions and Lemmas

We begin the proof with a brief account of S-bisimulations, which is very similar

to what we did in Chapter 3, except that this time we deal with networks, not

processes.

Definition 67 Let S be a set of names. We call actions l with fn(l) ∩ S 6= ∅ S-

hidden. A network is static if all of its or its descendants outputs are free outputs.

A binary relation R on networks is an asynchronous S-bisimulation if (P,Q) ∈ R
implies that P as well as Q are static and

• whenever P
l→aP

′ and fn(l)∩S = ∅, then Q
l̂
�aQ

′ for some Q′ such that (P′,Q′) ∈
R,

• and vice versa.

By ≈S
a we denote the largest asynchronous S-bisimulation. The definitions of strong

asynchronous S-bisimulation and ∼S
a are similar.

The next two theorems are adaptations of Theorems 14 and 15. They explain how

the various equivalences relate and give some of their closure properties.

Theorem 35 ∼S
a ⊆ ≈S

a .

Proof: Straightforward. ut

Theorem 36 Let RS be one of ≈S
a and ∼S

a .

1. M RS N implies (νx)M RS\{x} (νx)N and R∅ ⊆ R.

2. If S ⊆ T , then RS ⊆ RT .

3. If M RS N and fn(R) ∩ S = ∅ then M |L RS N |L.

202 CHAPTER 6. THE 2PCP WITH MESSAGE FAILURE

Proof: Straightforward. ut

The next lemma shows some elementary properties of the internal sum.

Lemma 53 1. P ⊕ P ≈a P.

2. Assume that x, y /∈ fn(P) ∪ fn(Q). Then

(νxy)(x⊕ y |x.P | y.Q) ≈a P ⊕ Q

Proof: Straightforward. ut

The following lemma corresponds to Lemma 3 in Chapter 3.

Lemma 54 If x ∈ H \ (A ∪ fn(M) ∪ fn(P)), then

1. M | [xright〈~y〉 |P]A ≈H
a M | [P]A

2. M | [xleft〈~y〉 |P]A ≈H
a M | [P]A

3. M | [x〈~y〉 |P]A ≈H
a M | [P]A

4. M | [x[(~v).Q & (~w).R] |P]A ≈H
a M | [P]A

5. M | [x(~v).Q |P]A ≈H
a M | [P]A

Proof: Immediate by assumptions. ut

Next we touch on a crucial difference between ≈a and ≈H
a : the latter can relate

networks with different access points.

Lemma 55 1. Let M ≈H
a N. If x ∈ ap(M) \ ap(N) or x ∈ ap(N) \ ap(M), then

x ∈ H.

2. If A ⊆ H and ap(M) ∪A = ∅, then [0]A |M ≈H
a M.

Proof: For (1), assume x ∈ ap(M) \ ap(N), but x /∈ H. Let x〈~y〉 not be H-hidden.

Then

M
x(~y)→ax〈~y〉 |M

x〈~y〉→aM

But by Lemma 46.1, whenever

N�aN
′ x(~y)→ax〈~y〉 |N′

�aN
′′,

then x ∈ ap(N′′), so there cannot be a transition N′′ x〈~y〉→aN
′′′, which means that M

and N cannot be related by ≈a.

For (2), we define R up to ≡ by

M | [Πi∈Ixi〈~yi〉]A R M′

whenever A ⊆ H, ap(M) ∩A = ∅, M ≡ M′ |Πj∈Jxj〈~yj〉 and xi ∈ A for all i ∈ I ∪ J .

Now M | [Πi∈Ixi〈~yi〉]A has the following non H-hidden transitions.

6.4. CORRECTNESS OF THE 2PCP WITH ONE PARTICIPANT 203

• M | [Πi∈Ixi〈~yi〉]A
l→aN | [Πi∈Ixi〈~yi〉]A because M′ l→aN, then M′ l→aN is a match-

ing transition.

• If [Πi∈Ixi〈~yi〉]A
τ→aN, then the empty transition sequence matches

• If M | [Πi∈Ixi〈~yi〉]A
x(~y)→aM | [Πi∈Ixi〈~yi〉]A |x〈~y〉, then M′ x(~y)→aM

′ |x〈~y〉 match-

es because x /∈ A.

• If M | [Πi∈Ixi〈~yi〉]A |x〈~y〉 x〈~y〉→aM | [Πi∈Ixi〈~yi〉]A, then x /∈ A and consequently

M′ |x〈~y〉 x〈~y〉→aM
′ is a match.

• If x ∈ A then M | [Πi∈Ixi〈~yi〉]A
τ→aM | [Πi∈Ixi〈~yi〉 |x〈~y〉]A can be matched by

the empty transition sequence at M′.

The nonH-hidden transitions of M′ can obviously all be matched by M | [Πi∈Ixi〈~yi〉]A.

ut

Now we demonstrate how intersite communication on hidden names reduces to

internal non-determinism.

Lemma 56 Assume that R and S are timer-free and x ∈ A ∪ H but x /∈ fn(P) ∪
fn(Q) ∪ fn(R) ∪ fn(S). Then

1. [timert(x[(~v).P & ().Q],Q) |R]A | [xleft〈~y〉 |S]B ≈H
a [P{~y/~v} ⊕ Q]A | [S]B.

2. [timert(x[(~v).P & ().Q],Q) |R]A | [xright |S]B ≈H
a [Q]A | [S]B.

3. [timert(x(~v).P,Q) |R]A | [x〈~y〉 |S]B ≈H
a [P{~y/~v} ⊕ Q]A | [S]B.

Proof: This is essentially the first Expansion Theorem 31. ut

The following Lemma is an instance of the Recursive Timer.

Lemma 57 Let Pt = timert(x[(~v).Q & (~w).R], e |Pt) where x, e are fresh. Assume

that k, l,m ≥ 0. Then

[xright〈~y〉 | !e.xright〈~y〉 |Πk
i=1e]A |Πl

i=1e | [Πm
i=1e |Pt]B ≈{x,e}

a [R{~y/~w}]B .

Proof: Define

AI,Il,Ir,J,K = Πi∈Iai〈~bi〉 |Πi∈Ilaileft〈~bi〉 |Πi∈Irairight〈~bi〉 |Πi∈Je |Πi∈Kxright〈~y〉
Lt

′

I1,...,I12 = [A∅,∅,∅,I1,I2 |xright〈~y〉 | !e.xright〈~y〉]{e} |AI3,I4,I5,I6,I7 | [AI8,I9,I10,I11,I12 |Pt′]B

Now define R up to ≡ by

Lt
′

I1,...,I12 R [A∅,∅,∅,I1,I2] |AI3,I4,I5,I6 | [AI7,I8,I9,I10,I11,I12]B

204 CHAPTER 6. THE 2PCP WITH MESSAGE FAILURE

where 0 < t′ ≤ t and all the index sets Ij are chosen appropriately, e.g. for all

i ∈ I7 : ai〈~bi〉 ∈ B, ai〈~bi〉 6= e etc. It is straightforward but rather labourious to

show that R is an asynchronous {x, e}-bisimulation. ut

Next is the Divide-and-Conquer Theorem. It is easier than that of Chapter 3

because we need it only for situations with one participant.

Theorem 37 1. Let I, J be two index sets such that for all i ∈ I and j ∈ J ,

Mi,Ni are networks and Pi,Qj are processes such that

• fn(Mi) ⊆ H and A,B, ap(Mi) ⊆ H;

• Mi | [Pi |Qj]A ≈H
a Ni;

• Mi | [Pi |Rj]A ≈H
a Ni; and

• whenever Mi | [Pi]A
l→aM and l is neither H-hidden or an input, then for

some k ∈ I: M ≡ Mk | [Pk]A and Ni
l̂
�aNk.

Then Mi | [Pi | (Qj ⊕ Rj)]A ≈H
a Ni.

2. Let {Mi}i∈I be a collection of networks and assume P,Q,R,S are processes

such that for all i ∈ I:

• fn(Mi) ⊆ H and A,B, ap(Mi) ⊆ H;

• Mi | [P]A ≈H
a [R ⊕ S]B;

• Mi | [Q]A ≈H
a [R]B; and

• whenever Mi
l→aM and l is not H-hidden then at least one of the following

must be true.

– M | [P ⊕ Q]A ≈H
a [R]B or

– M ≡ Mj for some j ∈ I.

Then for all i ∈ I: M | [P ⊕ Q]A ≈H
a [R ⊕ S]B .

Proof: Define R up to ≡ by

Mi | [Pi | (Qj ⊕ Rj)]A R Ni

for all i ∈ I and j ∈ J . We show that R is an asynchronous H-bisimulation up to

≡.

Since by assumption, a transition Ni
l→aN where l is not H-hidden, is matched

my Mi | [Pi |Qj]A
l̂
�aM ≈H

a N, the transition

Ni
l→aN

6.4. CORRECTNESS OF THE 2PCP WITH ONE PARTICIPANT 205

where l is not H-hidden, is matched by

Mi | [Pi | (Qj ⊕ Rj)]A
τ→aMi | [Pi |Qj]A

l̂
�aM.

Conversely, Mi | [Pi | (Qj⊕Rj)]A
τ→aMi | [Pi |Qj]A and Mi | [Pi | (Qj⊕Rj)]A

τ→aMi | [Pi |Rj]A
are both matched by the empty transition sequence at Ni. Lastly, if

Mi | [Pi | (Qj ⊕ Rj)]A
l→aM

′ | [P′ | (Qj ⊕ Rj)]A

where l is not H-hidden, then by assumption

M′ | [P′]A ≡ Mk | [Pk]A

and

Ni
l̂
�aNk,

as required.

For (2) we proceed similarly. Define R (up to ≡) by

Mi |Πm
j=1aj〈~bj〉 | [P ⊕ Q]B R Πm

j=1aj〈~bj〉 | [R ⊕ S]B

where i ∈ I, {aj , ~bj} ⊆ H for all appropriate j. Then R ∪ ≈H
a is an asyn-

chronous H-bisimulation. Let M abbreviate Mi |Πm
j=1aj〈~bj〉 | [P ⊕ Q]B and N stand

for Πm
j=1aj〈~bj〉 | [R ⊕ S]B .

• M
x(~y)→aMi |M |x〈~y〉, where x(~y) is notH-hidden, is matched by N

x(~y)→aN |x〈~y〉.

• A message loss M
τ→aMi |Πm

j=1,j 6=j0aj〈~bj〉 | [P ⊕ Q]B is matched by

N
τ→aΠ

m
j=1,j 6=j0aj〈~bj〉 | [R ⊕ S]B.

• A message duplication M
τ→aMi |Πm

j=1aj〈~bj〉 | aj0〈 ~bj0〉 | [P ⊕ Q]B is matched by

N
τ→aΠ

m
j=1aj〈~bj〉 | aj0〈 ~bj0〉 | [R ⊕ S]B.

• A decision M
τ→aMi |Πm

j=1aj〈~bj〉 | [P]B is matched by N
τ→aΠ

m
j=1aj〈~bj〉 | [R⊕S]B .

The corresponding decision for Q is matched similarly.

• If M
τ→aM

′ |Πm
j=1aj〈~bj〉 | [P⊕Q]B we have two possibilities. If M′ | [P⊕Q]A≈H

a

[R]B , then also M′ |Πm
j=1aj〈~bj〉 | [P ⊕ Q]A ≈H

a [R]B |Πm
j=1aj〈~bj〉, so

[R ⊕ S]B |Πm
j=1aj〈~bj〉

τ→a[R]B |Πm
j=1aj〈~bj〉

is a match. Otherwise M′ ≡ Mj for some j ∈ I and the empty transition

sequence at [R ⊕ S]B |Πm
j=1aj〈~bj〉 matches.

ut

206 CHAPTER 6. THE 2PCP WITH MESSAGE FAILURE

The Core of the Proof

For convenience we present the processes that make up the 2PCP with one partic-

ipant before we go to the guts of the correctness proof. We start with the overall

protocol.

2PCPt = (νvote)(νdec)(νe)(Ct |P)

Next is the coordinator.

Ct = [Cabort ⊕ Ccommit
pre ,t]

Cabort = dec right | !e.dec right

Ccommit
pre ,t = (νca)(timert(vote [c, a], a) | c.Ccommit | a.Cabort)

Ccommit = dec left | !e.dec left

Finally, teh sole participant.

P = [Pa ⊕ Pct]

Pa = vote right | !abort
Pct = vote left |P′

t

P′
t = timert(dec [!commit , !abort], e |P′

t)

Definition 68 The set of restricted hidden names that we use below is H =

{vote , dec , e}.

The next lemma corresponds to Lemma 4 and states that the coordinator’s abort

is sufficient for overall abort.

Lemma 58 Let t > 0.

1. [Cabort] | [Pa] ≈H
a [!abort].

2. [Cabort] | [Pc] ≈H
a [!abort].

3. [Cabort] | [P] ≈H
a [!abort].

Proof: We begin by deriving (1).

[Cabort] | [Pa] ≡ [dec right | !e.dec right] | [vote right | !abort]

≈H
a [dec right | !e.dec right] | [!abort] (6.2)

≈H
a [0] | [!abort] (6.3)

≈H
a [!abort] (6.4)

6.4. CORRECTNESS OF THE 2PCP WITH ONE PARTICIPANT 207

For (2), we proceed similarly.

[Cabort] | [Pct] ≡ [dec right | !e.dec right] | [vote left |P′
t]

≈H
a [0] | [vote left | !abort] (6.5)

≈H
a [0] | [!abort] (6.6)

≈H
a [!abort] (6.7)

Now the only nonH-hidden transition Cabort can engage in, is the idle step Cabort τ→aC
abort ,

so we can apply Theorem 37.1 to infer (3) from (1) and (2). ut

Next is the equivalent of Lemma 5.

Lemma 59 Let t > 0, t′ > 0.

1. [Ccommit
pre ,t] | [Pa] ≈H

a [!abort].

2. [Ccommit
pre ,t] | [Pct′] ≈H

a [!abort⊕!commit].

3. [Ccommit
pre ,t] | [Pt′] ≈H

a [!abort⊕!commit].

Proof: The proof of (1) is a straightforward equation.

[Ccommit
pre ,t] | [Pa] ≡ [(νca)(timert(vote [c, a], a) | c.Ccommit | a.Cabort)] | [vote right | !abort]

≈H
a [(νca)(a ⊕ a | c.Ccommit | a.Cabort)] | [!abort] (6.8)

≈H
a [(νca)(a | c.Ccommit | a.Cabort)] | [!abort] (6.9)

≈H
a [(νa)(a | a.Cabort)] | [!abort] (6.10)

≈H
a [Cabort] | [!abort] (6.11)

≡ [dec right] | [!abort] (6.12)

≈H
a [0] | [!abort] (6.13)

≈H
a [!abort] (6.14)

For (2), we must work a bit harder.

[Ccommit
pre ,t] | [Pct′] ≡ [(νca)(timert(vote [c, a], a) | c.Ccommit | a.Cabort)] | [vote left |P′

t′]

≈H
a [(νca)(c ⊕ a | c.Ccommit | a.Cabort)] | [P′

t′] (6.15)

Now for all k, l,m ≥ 0

[Cabort |Πk
i=1e] |Πl

i=1e | [P′
t′ |Πm

i=1e] ≈H
a [0] | [!abort] (6.16)

≈H
a [!abort] (6.17)

[Ccommit |Πk
i=1e] |Πl

i=1e | [P′
t′ |Πm

i=1e] ≈H
a [0] | [!commit] (6.18)

≈H
a [!commit] (6.19)

208 CHAPTER 6. THE 2PCP WITH MESSAGE FAILURE

This together with Theorem 37.2 implies

[Cabort ⊕ Ccommit
pre ,t] | [Pct′] ≈H

a [!abort⊕!commit]

because [Πk
i=1e] |Πl

i=1e | [P′
t′ |Πm

i=1e] has exactly the following non H-hidden, non-

input transitions.

• [Πk
i=1e] |Πl

i=1e | [P′
t′+1 |Πm

i=1e]
τ→a[Π

k
i=1e] |Πl

i=1e | [P′
t′ |Πm

i=1e], an application of

(Idle) to the process in the right network.

• [Πk
i=1e] |Πl

i=1e | [P′
1 |Πm

i=1e]
τ→a[Π

k
i=1e] |Πl

i=1e | [P′
t′ |Πm+1

i=1 e], a time-out in the

right network.

• [Πk
i=1e] |Πl

i=1e | [P′
t′ |Πm

i=1e]
τ→a[Π

k
i=1e] |Πl

i=1e | [P′
t′ |Πm

i=1e], an (Idle) in the net-

work on the left.

• [Πk
i=1e] |Πl

i=1e | [P′
t′ |Πm+1

i=1 e]
τ→a[Π

k
i=1e] |Πl+1

i=1e | [P′
t′ |Πm

i=1e], a message e mi-

grating from its originating site to the ether.

• [Πk
i=1e] |Πl+1

i=1e | [P′
t′ |Πm

i=1e]
τ→a[Π

k
i=1e] |Πl

i=1e | [P′
t′ |Πm

i=1e], the loss of one e.

• [Πk
i=1e] |Πl+1

i=1e | [P′
t′ |Πm

i=1e]
τ→a[Π

k
i=1e] |Πl+2

i=1e | [P′
t′ |Πm

i=1e], the duplication of

one e.

• [Πk
i=1e] |Πl+1

i=1e | [P′
t′ |Πm

i=1e]
τ→a[Π

k+1
i=1 e] |Πl

i=1e | [P′
t′ |Πm

i=1e], the migration of one

e to its target site.

All of them are trivially matched by the empty transition sequence at [Cabort ⊕
Ccommit].

For (3), please consider the collection {[Ccommit
pre ,t]}t>0. [Ccommit

pre ,t+1] has exactly one

non H-hidden, non-input transition, namely [Ccommit
pre ,t+1]

τ→a[C
commit
pre ,t] which is matched

by the empty transition sequence at [!abort⊕!commit]. [Ccommit
pre ,1] has also exactly

one non H-hidden, non-input transition:

[Ccommit
pre ,1]

τ→a(νca)(a | c.Ccommit | a.Cabort)] ≈H
a [Cabort]A

This means, we can combine (1) and (2) with the help of Theorem 37.2 to get (3).

ut

6.5 Concluding Remarks

This chapter has adapted the 2PCP and its correctness proof from Chapter 3 to

the possibility of non-byzantine message failure. This essentially meant adding

Recursive Timers to detect and mask message loss. Message duplication played no

significant role as a source for failures because the 2PCP is input-affine. The original

proof remained largely unchanged except where Recursive Timers introduced new

intermediate states that need considerable efforts to be taken care of.

Chapter 7

Persistence and Process Failures

This chapter introduces our final extension: location failure and savepoints.

7.1 Introduction

Message loss is not the only problem for DS. Machines and processes can fail or

crash. This is not specific to DS: lacking a notion of partial failure, when a cen-

tralised system crashes, the whole computational process comes to an end. But

when computation is made of discrete and fairly independent parts, it makes sense

to consider the possibility that some of those parts may fail while others don’t.

What semantic effect would such partial failure have? What mechanisms would be

appropriate to deal with partial failure?

This chapter has a first stab at answering such questions in a rigorously formal

sense. Unlike with timers and message failure, our treatment of process failures will

be superficial, because we do not think to have come anywhere near a good enough

understanding of all the issues involved. In a stronger sense than in other parts

of this document, our development here has been guided by a desire to provide a

minimal amount of technology sufficient for the convenient presentation of the full

2PCP, which can also overcome process failure. In particular, we do not investigate

the canonical reduction congruence, although that would be an interesting subject

of study.

We model partial failure at the level of sites. For a process to fail or crash

(henceforth we shall use these two terms interchangeably) means that it cannot

participate in interactions and that it cannot perform any reductions until it restarts

(which it might or might not do). One may think of crashed processes as those

that, before restarting, act like the 0 process. Failure and restart are allowed at any

point in time. Since there is nothing a process can do to influence failure or restart,

failures and restarts of sites are completely non-deterministic events. More precisely,

we assume that failure cannot occur during an interaction, that is, we assume the

209

210 CHAPTER 7. PERSISTENCE AND PROCESS FAILURES

all computational steps to be atomic. This gives a fairly accurate approximation

to the behaviour of distributed systems under the assumption that no byzantine

failure is possible.

One way of coping with the possibility of non-deterministic site failures and

restarts, and the one that we are going to formalise, is to allow processes to specify

how to restart, if a restart happens, but not if or when. This can be achieved in many

ways that often boil down to the existence of persistent memory that is (assumed to

be) unaffected by failures, together with mechanism that allows restarting processes

to read data off that persistent store to find out as what kind of process it should re-

emerge. This means splitting computation in two: subject to failure and failure-free.

There are more than one way to save process state: operating systems often save

entire processes for scheduling purposes at run time. A weaker mechanism would

allow ‘passive data’ to be made persistent, for example indications that a process

has passed a certain program point. Data that is made persistent to aid later

restart is called a savepoint. So in some sense we overcome some of the problems of

distribution by even more distribution. This sounds paradoxical unless one notices

an asymmetry: the part of the computation that is not subject to failure is passive,

it is just data sitting around, not doing very much, unlike the failure-prone part.

Activity seems to incur more of a danger of failure than passivity.

Our model of site failure and restart is syntactically straightforward. We start

with πmlt , although any calculus with a reasonable notion of location would do just

as well. At the level of processes, we introduce a new prefix for making savepoints.

As π-calculi do not distinguish state, data and processes, we allow processes to be

savepoints.

P ::= . . . || save(P).Q.

Each site records the latest savepoint in a superscript, with new savepoints over-

writing previous ones. Additionally, we need to represent a crashed process that

has not yet restarted. We denote such a process by [?]PA. Networks are now given

by the following grammar.

N ::= . . . || [P]QA || [?]PA

A process [P]QA should be understood as a site containing a process P with the latest

savepoint being Q. Should it crash, it will become [?]QA. A site [?]QA represents a

crashed process that will become [Q]QA should it ever restart. We do not require Q

to have any resemblance to P.

7.2. THE CALCULUS 211

7.2 The Calculus

Just as in the case of πmlt , the calculus is a two-sorted algebra with processes, ranged

over by P,Q,R, ..., given by the following grammar

P ::= x(~v).P input

|| x〈~y〉 output

|| save(P).Q savepoint

|| P |Q parallel composition

|| (νx)P restriction

|| !x(~v).P replication

|| timert(x(~v).P,Q) timer

|| 0 inactive process

Networks, as before ranged over by M,N, are defined by the next grammar.

N ::= [P]Q running process

|| [?]PA crashed process

|| (νx)N restriction

|| N|N parallel composition

|| 0 inaction

The free and bound names of processes and networks are summarised in Figure 7.1,

together with the definition of the structural congruence.

The well-formedness conditions, formalised in πmlt with a predicate ` are ex-

tended straightforwardly to deal with process failure and savepoints.

Definition 69 We say N is well-formed, written ` N, if ` N is derivable using the

following rules.

• ` 0 is always derivable.

• ` [P]QA if P as well as Q are local and each free input subject in P and in Q is

in A.

• ` [?]PA if P is local and each free input subject in P is in A.

• ` M|N if ` M and ` N and, moreover, ap(M) ∩ ap(N) = ∅.

• ` (νx)N if ` N.

where the access points ap(N) of a network N are given by: ap([P]QA) = A, ap([?]PA) =

A, ap(N1|N2) = ap(N1)∪ap(N2) and ap((νx)N) = ap(N)\{x}. In addition, the notion

of locality from Definition 54 in §5.2 is extended to include savepointing by saying

that save(P).Q is local if both, P and Q are local.

212 CHAPTER 7. PERSISTENCE AND PROCESS FAILURES

fn(save(P).Q) = fn(save(P)) ∪ fn(Q)

fn(timert(P,Q)) = fn(P) ∪ fn(Q)

fn(x〈~y〉) = {x, ~y}
fn(x(~y).P) = {x} ∪ (fn(P) \ {~y})

fn(!x(~v).P) = {x} ∪ (fn(P) \ {~y})

fn(P|Q) = fn(P) ∪ fn(Q)

fn((νx)P) = fn(P) \ {x}
fn(0) = ∅

fn(x〈~y〉) = {x, ~y}
fn([P]QA) = fn(P) ∪A ∪ fn(Q)

fn(M |N) = fn(M) ∪ fn(N)

fn((νx)N) = fn(N) \ {x}
fn(0) = ∅

bn(save(P).Q) = bn(save(P)) ∪ bn(Q)

bn(timert(P,Q)) = bn(P) ∪ bn(Q)

bn(x〈~y〉) = ∅
bn(x(~y).P) = bn(P) ∪ {~y}
bn(!x(~v).P) = {x} ∪ (fn(P) \ {~y})

bn(P|Q) = bn(P) ∪ bn(Q)

bn((νx)P) = bn(P) ∪ {x}
bn(0) = ∅

bn(x〈~y〉) = ∅
bn([P]QA) = bn(P) ∪ bn(Q)

bn(M |N) = bn(M) ∪ bn(N)

bn((νx)N) = bn(N) ∪ {x}
bn(0) = ∅

≡ is the least congruence satisfying the following rules.

P ≡α Q ⇒ P ≡ Q (νx)0 ≡ 0

P|Q ≡ Q|P P|0 ≡ P

P|(Q|R) ≡ (P|Q)|R x /∈ fn(P) ⇒ P|(νx)Q ≡ (νx)(P|Q)

(νx)(νy)P ≡ (νy)(νx)P

M ≡α N ⇒ M ≡ N M |N ≡ N |M
L | (M |N) ≡ (L |M) |N M | 0 ≡ M

x /∈ fn(M) ⇒ M | (νx)N ≡ (νx)(M |N) (νx)(νy)M ≡ (νy)(νx)M

(νx)0 ≡ 0 [(νx)P]A ≡ (νx)[P]A∪{x}
[0]∅ ≡ 0 P ≡ Q ⇒ [P]A ≡ [Q]A

Figure 7.1: The inductive definition of the free and bound names as well as the

structural congruence.

7.3. SEMANTICS 213

7.3 Semantics

7.3.1 Dynamics and Structural Congruence

The reduction relation is defined in Figures 7.1, 7.2 and 7.3. With the exception of

three new rules that we will explain now, the definition is essentially that of Figure

5.1 for πmlt .

The first new rule shows how taking savepoints works.

(Save)
[P | save(Q).R]SA→ [P |R]QA

In the context of a site, the program save(Q).R does essentially two things: it saves

the process Q in permanent storage and it releases the continuation R. One may

ask if this introduces synchrony into an otherwise asynchronous calculus. We are

not so sure. The very concept is usually defined with respect to input and output,

in ways that are not directly applicable here. On the other hand, it seems vital

for consistent restarts, to combine savepointing with sequencing. This will become

clearer in the next chapter.

Process failure is modelled by the (Stop) rule given next.

(Stop)
[P]QA→ [?]QA

All it does is erase any trace of the active process P. As you can see, the savepoint

Q is unaffected by the crash. To restart a process we use the dual (Start) rule,

which simply plugs the saved process into the site.

(Start)
[?]PA→ [P]PA

These rules ensure that processes can always crash and restart. This is a vital

assumption for the 2PCP, but alternatives are conceivable.

We could now define all manner of semantic technology, as we have done in

previous chapters. But there is no need here, because we do not develop the theory

of reduction congruence here. Instead we only introduce those constructs needed in

the next chapter.

Definition 70 Process contexts are inductively given (up to ≡) by the following

grammar, extending that in §4.3.1.

C[·] ::= ... || save(C[·]).P || save(P).C[·]

214 CHAPTER 7. PERSISTENCE AND PROCESS FAILURES

(Com)
x(~v).P | x〈~y〉 → P{~v/~y}

(Rep)
!x(~v).P | x〈~y〉 → !x(~v).P | P{~v/~y}

(TimeIn)
timert+1(x(~v).P,Q) | x〈~y〉→P{~y/~v}

(Par) P→P′

P |Q→P′ |φ(Q)

(Res) P→Q

(νx)P→ (νx)Q

(Idle)
P→φ(P)

Figure 7.2: The inductive definition of the reduction relation.

Free Input and Output Names

The functions fin(·) and fon(·) are straightforward extensions of their πmlt counter-

parts with the following new clauses

fin(save(P).Q) = fin(P) ∪ fin(Q) fon(save(P).Q) = fon(P) ∪ fon(Q)

fin([P]QA) = fin(P) ∪ fin(Q) fon([P]QA) = fon(P) ∪ fon(Q)

For consistency, P’s free input and output names in save(P).Q are also counted

towards fin(save(P).Q) and fon(save(P).Q), respectively, despite no process in the

same site as save(P).Q being able to interact with P. For a finer analysis, one would

need to be more careful with what counts as free names, but this is not necessary

here.

7.3.2 Transitional Semantics

To obtain labelled semantics for our new calculus we add labels of the form save(P)

(where P is any process) to those of the π-calculi already discussed. Actions are

then generated by the following grammar.

π ::= x〈(ν~y)~z〉 || x((ν~y)~z) || save(P) || τ

The free and bound names of save(P) are (not surprisingly) given by fn(save(P)) =

fn(P) and bn(save(P)) = bn(P).

7.3. SEMANTICS 215

(Save)
[P | save(Q).R]SA→ [P |R]QA

(Intra) P→Q

[P]RA→ [Q]RA

(Stop)
[P]QA→ [?]QA

(Start)
[?]PA→ [P]PA

(Send) x /∈ A

[x〈~y〉 |P]QA→ [φ(P)]QA |x〈~y〉

(Get) x ∈ A

[P]A |x〈~y〉→ [P |x〈~y〉]A

(Loss)
x〈~y〉→0

(Dupl)
x〈~y〉→x〈~y〉 |x〈~y〉

(N-Par) M→M′

M |N→M′ |N

(N-Res) M→N

(νx)M→ (νx)N

(Cong) M ≡ M′ M′→N′ N′ ≡ N

M→N

Figure 7.3: The inductive definition of the reduction relation (continued).

216 CHAPTER 7. PERSISTENCE AND PROCESS FAILURES

(S-Out)
save(P).Q

save(P)→aQ

(Save) P
save(S)→aQ

[P]R
τ→a[Q]S

(Intra) P
τ→aQ

[P]A
τ→a[Q]A

(Stop)
[P]PA

τ→a[?]
P
A

(Start)
[?]PA

τ→a[P]P

(Send)
x 6∈ A

[P|x〈~y〉]A
τ→a[φ(P)]A | x〈~y〉

(Get) x ∈ A

[P]A | x〈~y〉 τ→a[P|x〈~y〉]A

(Loss)
x〈~z〉 τ→a0

(Dupl)
x〈~z〉 τ→ax〈~z〉 | x〈~z〉

(EtherIn)
0
x(~y)→ax〈~y〉

(EtherOut)
x〈~y〉 x〈~y〉→a0

(N-Par)
M

l→aM
′ bn(l) ∩ fn(N) = ∅ l = x〈(ν~y)~z〉 ⇒ x /∈ ap(N)

M|N l→aM
′|N

(N-Res)
M

l→aN x /∈ fn(l) ∪ bn(l)

(νx)M
l→a(νx)N

(N-Open)
M

x〈(ν~y)~z〉→aN v 6= x, v ∈ {~z} \ {~y}
(νv)M

x〈(ν~y,v)~z〉→aN

(N-Cong) M ≡ M′ M′ l→aN
′ N ≡ N′

M
l→aN

Figure 7.4: An asynchronous transition system for the timed, asynchronous π-

calculus with locations, message loss and message duplication. Apart from (S-Out),

transitions for processes are omitted and can be found in Figure 4.2.

7.4. CONCLUDING REMARKS 217

The transition relation is generated inductively by the rules in Figure 7.4 to-

gether with those of πt, cf. Figure 4.3. The rules are all familiar from πmlt with

the exception of (S-Out) and (Save), which should be clear from the the explana-

tions above. The (S-Out) rule introduces a form of process passing. It is weaker

than process passing in higher order π-calculi [100] because no process can interact

with an emission of save(P). Interaction with such an emission is exclusive to the

persistence mechanism integrated into sites.

The next definition – repeated for convenience – is formally identical with Def-

inition 66 but works with respect to a different labelled transition system.

Definition 71 A binary symmetric relation R on networks is a strong asynchronous

bisimulation if (M,N) ∈ R and M
l→aM

′ implies that some transition N
l→aN

′ exists

with (M′,N′) ∈ R. Asynchronous bisimulations are obtained analogously.

7.4 Concluding Remarks

This chapter added process failure and savepoints to πmlt , not to study the proper-

ties of the resulting calculus in any depth, but rather as a stepping stone towards

the full 2PCP. Persistence and savepointing have received much attention from the

distributed systems community [33, 47], but to the best of our knowledge process

theoretic accounts are lacking. This leaves much work to be done, in particular, a

satisfactory theory of the induced reduction congruence. We conjecture that this

will be entirely along the lines of what we did for πmlt and hence straightforward.

The barbs used for the asynchronous π-calculus, πt and πmlt are most likely also

the right ones for our calculus. An important problem that has to be investigat-

ed more thoroughly is the appropriateness of this chapter’s extensions. We simply

have not got enough experience with the problem domain to confidently pass a

judgement. Being able to compare with alternative approaches would be good for

a start, but what could those look like in π-calculi? Since names are important, it

might be possible to distinguish persistent from volatile names, although details far

from clear. Alternatively, we might give up on distinguishing an active but volatile

process from a passive, yet persistent process within a site [P]QA. Instead we could

distinguish volatile sites [P]A, subject to process failure, from persistent sites [[P]]A

which are not. The ability to take savepoints by way of dedicated syntax would no

longer be necessary and superseded by appropriate interaction with persistent sites.

This would be a more lightweight addition than save(P).Q. It would also appear

to lead to more realistic models. A variant of this proposal is to use sites [P |Q]A

instead of [P]QA. The idea here is that both P and Q are active and can interact, but

the underlined Q is persistent while P is subject to process failure (i.e. we have tran-

sitions like [P |Q]A→ [? |Q]A). This model reflects many contemporary distributed

218 CHAPTER 7. PERSISTENCE AND PROCESS FAILURES

systems where each physical node has its own persistent storage (the hard-disk or

tape-drive). Clearly, the last proposal is a generalisation of distinguishing persistent

from volatile sites. It seems likely that primitives like save(P).Q can be encoded into

either of the alternatives last sketched.

Regardless of the details, persistent processes will have a peculiar structure

which could be described by interesting typing systems. Similarly, and we will

discuss this in the next chapter, programs that can guarantee consistent behaviour

in the face of process failure must be rather constrained. Suitable constraints should

be pinned down by types, too.

Chapter 8

The Two-Phase Commit

Protocol

In this chapter, the full 2PCP with message and process failure is presented. In

addition, the correctness of the protocol with one participant is verified.

8.1 Introduction

In previous chapters we presented the 2PCP under restricted failure assumptions.

Now that we have process failures at our disposal, we can augment the protocol to

obtain the full 2PCP of [19, 47]. In comparison with the upgrade from no failures

to message failures, the present change requires no modification apart from the

occasional judiciously chosen savepoint. The proof will also retain its Divide-And-

Conquer structure, but with intermediate equations being significantly more coarse

grained. It seems that while process failure requires fewer algorithmic changes than

message failure, its effect on proofs is greater. As in Chapter 6, the correctness

proof will only tackle the special case of one participant, to keep the presentation

manageable.

8.2 The Full 2PCP

Once again, the protocol has n participants and one coordinator, all hosted by

dedicated locations. Internal communication happens via the private names ~vote ,
~dec , ~e. All processes carry an index, denoting the time units left until time-out of

their timers. In addition, each process has a current savepoint that it will restart

as, after it re-emerges from a process failure.

2PCPt,t′ = (ν ~vote)(ν ~dec)(ν~e)([Ct]
Cabort

{ ~vote ,~e} | [P1,t′]
Pabort

1,t′

{dec1} | ... | [Pn,t′]
Pabort
n,t′

{decn})

219

220 CHAPTER 8. THE TWO-PHASE COMMIT PROTOCOL

The new challenge is to keep these savepoints up to date to avoid inconsistency. As

an example of why that needs some care, consider a potential implementation of

a participant, just before it decides how to vote: [Pai ⊕ Pci]
Pai
A . It has the aborting

process as a savepoint because it seems reasonable to make a crashed process abort:

process failure indicates a serious fault and commitment should only be agreed on if

all participants have executed with without encountering problems. But with pro-

cesses crashing non-deterministically, computations like the following are possible.

[Pai ⊕ Pci]
Pai
A → [Pci]

Pai
A

voteileft→a [...]
Pai
A

→ [?]
Pai
A

→ [Pai]
Pai
A

voteiright→a [...]
Pai
A

This means we can have processes voting twice and inconsistently. If only the first

vote is received by the coordinator and all other participants voted for commitment,

the atomicity of the protocol would be broken.

Fortunately, we can use savepointing to update the savepoints in ways that

prevent inconsistency. Timing is important for this. Savepoints must be taken

immediately after a process has changed its state in ways that have observable

effects, but before this state change has been communicated. Relevant sources of

state change are internal choices, time-outs or branching inputs. As it is vital to

take savepoints immediately, uses of save(·) will be of the form

• (save(P).P) ⊕ (save(Q).Q),

• x[(~v).save(P).P & (~w).save(Q).Q],

• timert(x(v).save(P).P, save(Q).Q) or

• timert(x[(~v).save(P).P & (~w).save(Q).Q], save(R).R).

Savepoints that have no semantic effect can be omitted, For example save(Q) in

[(save(P).P) ⊕ (save(Q).Q)]QA is without semantic effect. Hence we would normally

just write [(save(P).P) ⊕ Q]QA, etc.

Participants are obtained as just described from those in §6.2 by adding save-

points to the two sources of uncertainty: the internal choice that decides how to

vote and the decision message from the coordinator (in case the vote was towards

committing). To understand the algorithm, it should be kept in mind that the

8.2. THE FULL 2PCP 221

initial savepoint of the ith participant is Pabort
i,t′ .

Pi,t = Pabort
i ⊕ P

precommit
i,t

Pabort
i = voteiright | !abort i

P
precommit
i,t = save(Pcommit

i,t).Pcommit
i,t

Pcommit
i,t = voteileft |Pwait

i,t

Pwait
i,t = timert(deci[P

precommit
i ,Ppreabort

i], ei |Pwait
i,t)

P
precommit
i = save(!commit i).!commit i

P
preabort
i = save(!abort i).!abort i

The coordinator is derived in the same way. It has two semantically relevant sources

of uncertainty that need savepointing. The first is its choice about whether to abort

immediately or not. The second is whether all participants vote for commitment

in time. Of course the coordinator features more branching inputs and timers that

on their own would seem prime candidates for uncertainty in need of savepointing.

But in the context they find themselves in here, none of them removes uncertainty

that would have effects observable on the outside. Hence there is not need for

savepointing. Of course more savepoints might help to speed up recovery from

process failure, for example by reducing the number of interactions that have to be

repeated, but our semantics does not allow to observe network efficiency, so this is

not relevant there. With a more fine-grained semantics, for example by having time

(partially) synchronised across networks, as alluded to in §5.9, this would change

and different savepoints would have to be taken.

Ct = Cabort ⊕ Ccommit
pre,t

Cabort = Πn
i=1C

abort
i

Cabort
i = deciright | !ei.deciright

Ccommit
pre ,t = (ν~ca)(Cwait

t |Cand | Cor)

Cwait
t = Πn

i=1C
wait
i,t

Cwait
i,t = timert(vote i[ci, a], a)

Cand = c1.c2...cn.C
precommit
final

C
precommit
final = save(Ccommit

final).Ccommit
final

Ccommit
final = Πn

i=1C
commit
i

Ccommit
i = decileft | !ei.decileft

Cor = a.Cabort

As before we will often omit the access point of sites.

222 CHAPTER 8. THE TWO-PHASE COMMIT PROTOCOL

Remarks on the Underlying Calculus

As in previous chapters, the calculus used here to express the 2PCP is not that

of the last chapter, but a variant with binary branching, replicated outputs and

definition of processes by recursive equations. As before, the reason for this choice

is economy of presentation. All the caveats of §6.2 apply here too.

8.3 Correctness of the 2PCP With One Participant

The meaning of correctness for the 2PCP is hardly changed from Chapter 6, except

that we need to take savepoints into account. Of course we cannot simply say

2PCP ≈a [Abort ⊕ Commit]Abort⊕Commit
∅ as that would not be atomic:

[Abort ⊕ Commit]Abort⊕Commit
∅ → [Abort]Abort⊕Commit

∅
abort i→a [Abort]Abort⊕Commit

∅

→ [?]Abort⊕Commit
∅

→ [Abort ⊕ Commit]Abort⊕Commit
∅

commit i→a ...

The problem arises because of not taking a savepoint after removal of uncertainty

by internal choice. This is easy to remedy.

Definition 72 preAbort = save(Abort).Abort, preCommit = save(Commit).Commit.

Theorem 38 Let t, t′ > 0, then 2PCPt,t′≈a [preAbort⊕preCommit]preAbort⊕preCommit

∅ .

Incidentally, this theorem shows that we also have to add savepoints to the save-

point, i.e. we ought to have [preAbort⊕preCommit]preAbort⊕preCommit

∅ , not just [preAbort⊕
preCommit]Abort⊕Commit

∅ , because savepoints may in general also contain sources of

uncertainty which can have external effects if the savepoints become active process-

es. In the transformation of the 2PCP algorithm described in the previous section,

this was not relevant because all used savepoints were devoid of uncertainty.

Theorem 38 does not exhaust what can be considered the 2PCP’s correctness,

so we establish additional equalities, cf. Theorem 34.

Theorem 39 For all n, t, t′ > 0.

1. (ν ~vote)(ν ~dec)(ν~e)([Ccommit
pre ,t]C

commit
pre,t | [Pc1,t]P

c
1,t | ... | [Pcn,t]P

c
n,t)≈a[preAbort⊕preCommit]preAbort⊕preCommit

∅ .

2. If P′
i ∈ {Pai,t,Pci,t}, then (ν ~vote)(ν ~dec)(ν~e)([Cabort]C

abort | [P′
1]P

′
1 | ... | [P′

n]P
′
n)≈a

[Abort]Abort
∅ .

8.4. CORRECTNESS OF THE 2PCP WITH ONE PARTICIPANT 223

3. If P′
i ∈ {Pai,t,Pci,t} and for at least one i0 ∈ {1, ..., n} P′

i0
= Pai0,t, then

(ν ~vote)(ν ~dec)(ν~e)([Cabort]C
abort | [P′

1]P
′
1 | ... | [P′

n]P
′
n) ≈a [Abort]Abort

∅ .

The caveats about divergence apply here too, in particular since process failure

introduces another source of divergence.

8.4 Correctness of the 2PCP with One Participant

The previous correctness proof of the 2PCP in πmlt was restricted to one participant

to keep notation manageable. Since process failure makes things decidedly worse in

this department, we stick with just one participant.

Some Useful Definitions and Lemmas

The definition of S-bisimulation and related notions remain formally unchanged

from Chapter 6, except that the underlying transition system has changed.

Definition 73 Let S be a set of names. We call actions l with fn(l) ∩ S 6= ∅ S-

hidden. A network is static if all of its or its descendants outputs are free outputs.

A binary relation R on networks is an asynchronous S-bisimulation if (P,Q) ∈ R
implies that P as well as Q are static and

• whenever P
l→aP

′ and fn(l)∩S = ∅, then Q
l̂
�aQ

′ for some Q′ such that (P′,Q′) ∈
R,

• and vice versa.

By ≈S
a we denote the largest asynchronous S-bisimulation. The definitions of strong

asynchronous S-bisimulation and ∼S
a are similar.

The next two theorems are adaptations of Theorems 14 and 15.

Theorem 40 ∼S
a ⊆ ≈S

a .

Proof: Straightforward. ut

Theorem 41 Let RS be one of ≈S
a and ∼S

a .

1. M RS N implies (νx)M RS\{x} (νx)N and R∅ ⊆ R.

2. If S ⊆ T , then RS ⊆ RT .

3. If M RS N and fn(R) ∩ S = ∅ then M |L RS N |L.

224 CHAPTER 8. THE TWO-PHASE COMMIT PROTOCOL

Proof: Straightforward. ut

The following lemma states two simple but very useful facts.

Lemma 60 1. [?]PA ≈a [P]PA.

2. Assume that x /∈ A and P contains no active timers. Let � be one of x〈~y〉,
xleft〈~y〉, xright〈~y〉, then [� |P]QA ≈a � | [P]QA

Proof: Straightforward ut

The next lemma shows how certain networks can be ignored when they have

only H-hidden names.

Lemma 61 Let H be a set of names.

1. If S ⊆ H and M
l→aN is not H-hidden, then fn(M)∩S = ∅ implies fn(N)∩S = ∅.

2. Let fn(M) ⊆ H and fn(M) ∩ fn(N) = ∅. Then M |N ≈H
a N.

3. If fn(M) ⊆ H, x ∈ fn(M) ⇒ x /∈ fin(P) ∪ fin(Q), and for all i ∈ I: ai /∈ fin(P),

then

M | [Πi∈Iai〈~bi〉 |P]QA ≈H
a [P]QA.

Proof: A straightforward induction on the derivation of M
l→aN shows (1). The key

insight making the induction work is that l’s being H-hidden precludes the import

of names in S.

For (2) we define R up to ≡ by

M |N R N whenever fn(M) ⊆ H and fn(M) ∩ fn(N) = ∅.

Since by construction, M cannot interact with N and all of M’s transitions are H

hidden, M |N has at most the following relevant transitions.

• M |N τ→aM
′ |N because M

τ→aM. It is matched by the empty transition se-

quence at N.

• M |N l→aM |N′ because N
l→aN

′. By (1), fn(M) ∩ fn(N′) = ∅, so N
l→aN

′ is a

match.

Conversely, every non H-hidden transition N
l→aN

′ is matched by M |N l→aM |N′.

Since clearly ap(M |N)\H = ap(N)\H whenever fn(M) ⊆ H, R is an asynchronous

H-bisimulation.

The proof of (3) utilises R, defined up to ≡ by the following rules.

M | [Πi∈Iai〈~bi〉 |P]QA |Πj∈Jcj〈~dj〉

[?]QA |Πj∈Jcj〈~dj〉

R

[P]QA |Πj∈Jcj〈~dj〉

[?]QA |Πj∈Jcj〈~dj〉

8.4. CORRECTNESS OF THE 2PCP WITH ONE PARTICIPANT 225

A straightforward check of all possible transitions for the networks related by R
completes the proof. ut

We can often ignore inputs and outputs when they cannot possible find someone to

interact with. The next lemma shows how.

Lemma 62 Let C[·] be a process context not binding x Assume � ranges over

{x〈~y〉, xleft〈~y〉, xright〈~y〉} and 4 over {x(~v).P, x[(~v).P & (~w).Q]}.

1. Let x ∈ H, but x /∈ fin(M) ∪ fin(C[·]). Then

• [C[�]]PA |M ∼a [C[0]]PA |M.

• [P]
C[�]
A |M ∼a [P]

C[0]
A |M.

2. Let x ∈ H, but x /∈ fon(C[·]). Then

• [C[4]]RA |M ∼a [C[0]]RA |M.

• [R]
C[4]
A |M ∼a [R]

C[0]
A |M.

3. Let x ∈ H, but x /∈ fin(M) ∪ fin(C[·]). Then

• [P | (νx)C[�]]QA ∼a [P |C[0]]QA.

• [P]
Q | (νx)C[�]
A ∼a [P]

Q |C[0]
A .

4. Let C[·] be a process context not binding x If x /∈ fon(C[·]), then

• [P | (νx)C[4]]RA ∼a [P |C[0]]RA.

• [P]
R | (νx)C[4]
A ∼a [P]

R |C[0]
A .

Proof: The verification of this lemma is straightforward because by construction

neither � nor 4 can find anybody to interact with. We omit the straightforward

but tedious details. ut

Of course cuts can be eliminated under ≈a, just as in all other π-calculi.

Lemma 63 Assume x is fresh, then

[(νx)(x〈~y〉 |x(~v).P)]
P{~y/~v}
A ≈a [P{~y/~v}]

P{~y/~v}
A .

Proof: We omit the proof as it is straightforward. ut

The next lemma shows how the Recursive Timers work in the presence of process

failure: essentially unchanged. The proof is very tedious but played through for

once.

Lemma 64 Let A,B ⊆ H and x, e fresh. Assume that 0 < t ≤ t′.

226 CHAPTER 8. THE TWO-PHASE COMMIT PROTOCOL

1. Let Pt,t′ = timert(x(~v).save(Q).Q, e |Pt′,t′). Then

[x〈~y〉 | !e.x〈~y〉]x〈~y〉 | !e.x〈~y〉A | [Pt,t′]
Pt′,t′

B ≈H
a [Q{~y/~v}]

Q{~y/~v}
B

2. Let Pt,t′ = timert(x[(~v).save(Q).Q & (~w).save(R).R], e |Pt′,t′). Then

[xleft〈~y〉 | !e.xleft〈~y〉]xleft〈~y〉 | !e.xleft〈~y〉A | [Pt,t′]
Pt′,t′

B ≈H
a [Q{~y/~v}]

Q{~y/~v}
B

3. Let Pt,t′ = timert(x[(~v).save(Q).Q & (~w).save(R).R], e |Pt′,t′). Then

[xright〈~y〉 | !e.xright〈~y〉]xright〈~y〉 | !e.xright〈~y〉
A | [Pt,t′]

Pt′,t′

B ≈H
a [R{~y/~v}]

R{~y/~v}
B

Proof: Let �i be one of ai〈~b〉, aileft〈~b〉, airight〈~b〉, such that fn(�i), defined in the

obvious way, is disjoint from H. We start with a couple of abbreviations.

Lk,m = [Πk
i=1x〈~y〉 |Πm

i=1e | !e.x〈~y〉]
x〈~y〉 | !e.x〈~y〉
A

Mn,p,q = Πn
i=1e |Πp

i=1x〈~y〉 |Π
q
i=1�i

Nr,s,t = [Πr
i=1e |Πs

i=1x〈~y〉 |Pt,t′]
Pt′,t′

B

N′
r,s = [Πr

i=1e |Πs
i=1x〈~y〉 | save(Q{~y/~v}).Q{~y/~v}]

Pt′,t′

B

Define R up to ≡ by

Lk,m |Mn,p,q |Nr,s,t

[?]
x〈~y〉 | !e.x〈~y〉
A |Mn,p,q |Nr,s,t

Lk,m |Mn,p,q | [?]
Pt′,t′

B

[?]
x〈~y〉 | !e.x〈~y〉
A |Mn,p,q | [?]

Pt′,t′

B

Lk,m |Mn,p,q |N′
r,s

[?]
x〈~y〉 | !e.x〈~y〉
A |Mn,p,q |N′

r,s

R

[P{~y/~v}]
P{~y/~v}
B |Πq

i=1�i

[?]
P{~y/~v}
B |Πq

i=1�i

We will now show R ∪ ≈H
a to be an asynchronous H-bisimulation. First note that

six networks on the left of the definition of R can all reduce to either network on

the right. This means that every transition of the latter is easily matched by the

former. On the other hand, K
def
= Lk,m |Mn,p,q |Nr,s,t has the following transitions.

• K
τ→aK, an idle step of the left site.

• K
τ→a[?]

x〈~y〉 | !e.x〈~y〉
A |Mn,p,q |Nr,s,t, a crash of the left site.

8.4. CORRECTNESS OF THE 2PCP WITH ONE PARTICIPANT 227

• K
τ→aLk,m |Mn,p,q | [?]

Pt′ ,t′

B , a crash of the right site.

• K
τ→aLk+1,m−1 |Mn,p,q |Nr,s,t, an interaction in Lk,m, launching a new x〈~y〉,

provided m > 0.

• K
τ→aLk−1,m |Mn,p+1,q |Nr,s,t, a migration of one x〈~y〉 into the ether, provided

k > 0.

• K
τ→aLk,m |Mn,p−1,q |Nr,s+1,t, a migration of one x〈~y〉 to its target site, provided

p > 0.

• If r, t > 0 then K
τ→aLk,m |Mn+1,p,q |Nr−1,s,t−1, a migration of one e into the

ether.

• K
τ→aLk,m |Mn+1,p,q |Nr−1,s,t′ , a migration of one e into the ether, given r > 0,

but t = 1.

• K
τ→aLk,m |Mn,p+1,q |Nr,s,t, a duplication of one x〈~y〉 in the ether, assuming

p > 0.

• K
τ→aLk,m |Mn+1,p,q |Nr,s,t, a duplication of one e in the ether, assuming n > 0.

• K
τ→aLk,m |Mn,p−1,q |Nr,s,t, a loss of one x〈~y〉 in the ether, assuming p > 0.

• K
τ→aLk,m |Mn−1,p,q |Nr,s,t, a loss of one e in the ether, assuming n > 0.

• K
τ→aLk,m |Mn,p,q |Nr,s,t−1, an idle step in the right site, provided t > 1.

• K
τ→aLk,m |Mn,p,q |Nr,s,t′ , an idle step in the right site, provided t = 1.

• If s > 0, the timer can be stopped: K
τ→aLk,m |Mn,p,q |N′

r,s−1.

All of these are matched by the empty transition sequence at either process on the

right of the definition of R. We also have two non-τ transitions.

• K
a(~b)→aLk,m |Mn,p,q | a〈~b〉 |Nr,s,t−1, the import of an output, under the assump-

tion that a(~b) is not H-hidden. It is matched by

[P{~y/~v}]
P{~y/~v}
B |Πq

i=1�i
a(~b)→a[P{~y/~v}]

P{~y/~v}
B |Πq

i=1�i | a〈~b〉

and also by

[?]
P{~y/~v}
B |Πq

i=1�i
a(~b)→a[?]

P{~y/~v}
B |Πq

i=1�i | a〈~b〉.

• K | a〈~b〉 a〈~b〉→aLk,m |Mn,p,q |Nr,s,t−1, the export of an output, under the assump-

tion that a(~b) is not H-hidden. Here the matches are

[P{~y/~v}]
P{~y/~v}
B |Πq

i=1�i | a〈~b〉
a〈~b〉→a[P{~y/~v}]

P{~y/~v}
B |Πq

i=1�i

228 CHAPTER 8. THE TWO-PHASE COMMIT PROTOCOL

and also

[?]
P{~y/~v}
B |Πq

i=1�i | a〈~b〉
a〈~b〉→a[?]

P{~y/~v}
B |Πq

i=1�i.

The network [?]
x〈~y〉 | !e.x〈~y〉
A |Mn,p,q |Nr,s,t has essentially the same transitions, except

that the crashed site can only do two things, idling and restarting. Both are again

matched by the empty transition sequence. The networks Lk,m |Mn,p,q | [?]
Pt′,t′

B and

[?]
x〈~y〉 | !e.x〈~y〉
A |Mn,p,q | [?]

Pt′ ,t′

B are dealt with in the same way. Lk,m |Mn,p,q |N′
r,s has

only one novel transition, namely

Lk,m |Mn,p,q |N′
r,s

τ→aLk,m |Mn,p,q | [Πr
i=1e |Πs

i=1x〈~y〉 |Q{~y/~v}]
Q{~y/~v}
B

But since e, x are fresh, it must be the case that x /∈ fn(Q{~y/~v}) and we can apply

Lemma 61.3 to obtain

Lk,m |Mn,p,q | [Πr
i=1e |Πs

i=1x〈~y〉 |Q{~y/~v}]
Q{~y/~v}
B ≈H

a [Q{~y/~v}]
Q{~y/~v}
B .

This means, the empty transition sequence is again a match. The transitions of

[?]
x〈~y〉 | !e.x〈~y〉
A |Mn,p,q |N′

r,s are matched in the same way. This shows (1). The proof

of (2) and (3) is essentially the same. ut

The following lemma is very similar to the previous one, except that we add a

savepoint. As the save point is “harmless”, the proof is also very similar.

Lemma 65 Let A,B ⊆ H and x, e fresh. Assume that 0 < t ≤ t′.

1. Let Pt,t′ = timert(x(~v).save(Q).Q, e |Pt′,t′). Then

[x〈~y〉 | !e.x〈~y〉]x〈~y〉 | !e.x〈~y〉A | [save(Pt′,t′).Pt′,t′]
Q{~y/~v}
B ≈H

a [Q{~y/~v}]
Q{~y/~v}
B

2. Let Pt,t′ = timert(x[(~v).save(Q).Q & (~w).save(R).R], e |Pt′,t′). Then

[xleft〈~y〉 | !e.xleft〈~y〉]xleft〈~y〉 | !e.xleft〈~y〉
A | [save(Pt′,t′).Pt′,t′]

Q{~y/~v}
B ≈H

a [Q{~y/~v}]
Q{~y/~v}
B

3. Let Pt,t′ = timert(x[(~v).save(Q).Q & (~w).save(R).R], e |Pt′,t′). Then

[xright〈~y〉 | !e.xright〈~y〉]xright〈~y〉 | !e.xright〈~y〉
A | [save(Pt′,t′).Pt′,t′]

R{~y/~v}
B ≈H

a [R{~y/~v}]
R{~y/~v}
B

Proof: The proof of this lemma is essentially the same as that of Lemma 64,

except that we must also incorporate the additional state arising from savepointing.

This is straightforward, if somewhat tedious. ut

Here comes yet another variant of the last two results.

Lemma 66 Let Qt′ = timert
′
(vote[c, a], a).

8.4. CORRECTNESS OF THE 2PCP WITH ONE PARTICIPANT 229

1. Abbreviating

M = [(νca)(Qt |Cand|Cor)]
decright | !e.decright
A

N = [voteleft |Pt]vote left |Pt
B ,

We have M |N ≈H
a [preAbort ⊕ preCommit]preAbort⊕preCommit

B .

2. On the other hand, if

M = [(νca)(Qt |Cand|Cor)]
decright | !e.decright

A

N = [save(vote left |Pt).(voteleft |Pt)]voteright | !abort
B ,

we also have M |N ≈H
a [preAbort ⊕ preCommit]preAbort⊕preCommit

B .

Proof: The proof is very similar to that of Lemma 64, except more tedious due

to the additional intermediate states induced by the savepoint, and, in case of (2),

the additional timer. ut

Here is this chapter’s version of the Divide-And-Conquer Theorem. It is in some

sense easier than that its predecessors because the equational it unifies are more

coarse grained.

Theorem 42 1. Let (Mi)i∈I be a collection of networks such that for all i ∈ I:

• ap(M ∪A) ⊆ H;

• Mi | [P]PA ≈H
a N;

• Mi | [Q]PA ≈H
a N;

• Mi
l→aM where l is not H-hidden implies l = τ and M ≈H

a Mi.

Then Mi | [P ⊕ Q]PA ≈H
a N.

2. Let (Mi)i∈I be a collection of networks such that for all i ∈ I:

• ap(M), B ⊆ H;

• Mi ≡ Πj∈Ii [Tj]
Uj
Aj

|Πj∈Ji [?]
Uj
Aj

;

• Mi | [P]PA ≈H
a [R]RB;

• Mi | [Q]PA ≈H
a [save(R).R ⊕ save(S).S]

save(R).R⊕save(S).S
B ; and

• if Mi
l→ N and l is not H-hidden and not an input, then at least one of

the following must be true.

– N ≡ Mk for some k ∈ I, or

– N | [P ⊕ Q]PA ≈H
a [R]RB.

Then for all i ∈ I: Mi | [P ⊕ Q]PA ≈H
a [save(R).R ⊕ save(S).S]

save(R).R⊕save(S).S
B

230 CHAPTER 8. THE TWO-PHASE COMMIT PROTOCOL

Proof: The proof of (1) defines R up to ≡ by by

Mi | [P ⊕ Q]PA |Πj∈Jxj〈~yj〉 R N |Πj∈Jxj〈~yj〉

for all i ∈ I, where each xj〈~yj〉 is not H-hidden. It is straightforward to see that

this defines an asynchronous H-bisimulation, because all computations induced by

transitions Mi
l→aM can be matched by the empty transition sequence at N.

For (2), we define R up to ≡ by

Mi | [P⊕Q]PA |Πj∈Jxj〈~yj〉 R

[save(R).R ⊕ save(S).S]
save(R).R⊕save(S).S
B |Πj∈Jxj〈~yj〉

[?]
save(R).R⊕save(S).S
B |Πj∈Jxj〈~yj〉

for all i ∈ I. Here each xj〈~yj〉 is non H-hidden. Note that

[?]
save(R).R⊕save(S).S
B

τ→a[save(R).R ⊕ save(S).S]
save(R).R⊕save(S).S
B

so we need only match transitions by Mi | [P ⊕ Q]PA |Πj∈Jxj〈~yj〉 with transitions

from [save(R).R⊕ save(S).S]
save(R).R⊕save(S).S
B |Πj∈Jxj〈~yj〉. Now Mi | [P⊕Q]PA has the

following non H-hidden transitions, where N abbreviates Πj∈Jxj〈~yj〉.

• Mi |N | [P ⊕ Q]PA
τ→aMi |N | [P]PA. It is matched by

[save(R).R ⊕ save(S).S]
save(R).R⊕save(S).S
B |N τ→a

τ→a[R]RB |N.

• Mi |N | [P ⊕ Q]PA
τ→aMi |N | [Q]PA. It is matched by the empty transition se-

quence.

• Mi |N | [P ⊕ Q]PA
τ→aMi |N | [?]PA. It is also matched by

[save(R).R ⊕ save(S).S]
save(R).R⊕save(S).S
B |N τ→a

τ→a[R]RB |N.

• Mi |N | [P ⊕ Q]PA
τ→aM | [P ⊕ Q]PA because Mi

l→aM, where l is not H-hidden.

Then we have two possibilities.

– M ≡ Mk for some k ∈ I, in which case the empty transition sequence

matches, or

– M | [Q]PA≈H
a [R]RB . Then [save(R).R⊕save(S).S]

save(R).R⊕save(S).S
B |N τ→a

τ→a[R]RB |N
is a match.

We have four more transitions which are all induced by (In), (Out), (Dupl) and

(Loss) on messages that are not H-hidden.

• Mi |N | [P ⊕ Q]PA
x(~y)→aMi |N | [P ⊕ Q]PA |x〈~y〉, where x〈~y〉 is not H-hidden.

8.4. CORRECTNESS OF THE 2PCP WITH ONE PARTICIPANT 231

• Mi |N |x〈~y〉 | [P ⊕ Q]PA
x〈~y〉→aMi |N | [P ⊕ Q]PA (x〈~y〉 not H-hidden).

• Mi |N |x〈~y〉 | [P ⊕ Q]PA
x〈~y〉→aMi |N |x〈~y〉 |x〈~y〉 | [P ⊕ Q]PA (x〈~y〉 not H-hidden).

• Mi |N |x〈~y〉 | [P ⊕ Q]PA
τ→aMi |N | [P ⊕ Q]PA (x〈~y〉 not H-hidden).

They are all matched by doing the corresponding transition on the other side of

R. Note that we cannot have a message migration into [P ⊕ Q]PA because by the

restrictions on the shape of Mi, all the outputs in the ether are not H-hidden, so

their subject cannot be in B. By our requirements, the non H-hidden access points

on any two networks related by R coincide, so R ∪ ≈a is indeed an asynchronous

H-bisimulation. ut

The Core of the Proof

We begin as usual with restating the 2PCP in its incarnation with just one partic-

ipant. First comes the whole protocol.

2PCPt,t′ = (νvote)(νdec)(νe)([Ct]
Cabort

{vote ,e} | [Pt′]
Pabort

{dec})

The next network represents the only participant.

Pt = Pabort ⊕ P
precommit
t

Pabort = vote right | !abort
P

precommit
t = save(Pcommit

t).Pcommit
t

Pcommit
t = vote left |Pwait

t

Pwait
t = timert(dec [Pprecommit ,Ppreabort], e |Pwait

t)

Pprecommit = save(!commit).!commit

Ppreabort = save(!abort).!abort

We conclude the presentation of the protocol with the coordinator.

Ct = Cabort ⊕ Ccommit
pre,t

Cabort = dec right | !e.dec right

Ccommit
pre ,t = (νca)(Cwait

t |Cand | Cor)

Cwait
t = timert(vote [c, a], a)

Cand = c.Cprecommit
final

C
precommit
final = save(Ccommit

final).Ccommit
final

Ccommit
final = dec left | !e.dec left

Cor = a.Cabort

232 CHAPTER 8. THE TWO-PHASE COMMIT PROTOCOL

Before we start, we fix the set H of channels that will be restricted when the

next two lemmas will be combined.

Definition 74 H = {e, dec , vote}

The next lemma shows that as soon as there is one decision to abort, the overall

decision is also to abort.

Lemma 67 Let t > 0.

1. [Cabort]C
abort | [Pabort] ≈H

a [Abort]Abort
∅

2. [Cabort]C
abort | [Pcommit

t]P
commit
t ≈H

a [Abort]Abort
∅

3. [Cabort]C
abort | [Pprecommit

t]P
abort
t ≈H

a [Abort]Abort
∅

4. [Cabort]C
abort | [Pt]P

abort
t ≈H

a [Abort]Abort
∅

Proof: We begin by showing (1).

[Cabort]C
abort | [Pabort]P

abort

≡ [dec right | !e.dec right]dec right | !e.decright | [vote right | !abort]vote right | !abort

≈H
a [vote right | !abort]vote right | !abort (8.1)

≈H
a [!abort]vote right | !abort (8.2)

≈H
a [!abort]!abort (8.3)

≡ [Abort]Abort

Here equation (8.1) follows from Lemma 61.2, while (8.2) is a consequence of Lemma

62.1 and (8.3) of Lemma 62.2.

[Cabort]C
abort | [Pcommit]P

commit

≡ [dec right | !e.dec right]dec right | !e.decright | [vote left |Pwait
t]vote left |Pwait

t

≈H
a [dec right | !e.dec right]dec right | !e.decright | [Pwait

t]vote left |Pwait
t (8.4)

≈H
a [dec right | !e.dec right]dec right | !e.decright | [Pwait

t]P
wait
t (8.5)

≈H
a [!abort]!abort (8.6)

Equation (8.4) is a consequence of Lemma 62.1, (8.5) of Lemma 62.2 and (8.6) of

Lemma 64.3. For (3), we proceed almost exactly like for (2).

[Cabort]C
abort | [save(Pcommit).Pcommit]P

abort

≡ [dec right | !e.dec right]dec right | !e.decright

| [save(vote left |Pwait
t).vote left |Pwait

t]vote right | !abort

≈H
a [dec right | !e.dec right]dec right | !e.decright | [save(Pwait

t).Pwait
t]!abort (8.7)

≈H
a [!abort]!abort (8.8)

8.4. CORRECTNESS OF THE 2PCP WITH ONE PARTICIPANT 233

Here (8.7) is a consequence of Lemma 65.3, while (8.8) follows from Lemma 65.2.

For (4), please note that

[Cabort]C
abort ≈H

a [!e.dec right]C
abort |Πn

i=1dec right

by Lemma 60.2. Hence we can apply Theorem 42.1. ut

Next we show, that the coordinator’s decision not to abort will mean the overall

decision depends on the participant’s behaviour.

Lemma 68 Let t > 0.

1. [Ccommit
pre ,t]C

abort | [Pabort] ≈H
a [Abort]Abort

∅

2. [Ccommit
pre ,t]C

abort | [Pcommit
t]P

commit
t ≈H

a [preAbort ⊕ preCommit]preAbort⊕preCommit

∅

3. [Ccommit
pre ,t]C

abort | [Pprecommit
t]P

abort
t ≈H

a [preAbort ⊕ preCommit]preAbort⊕preCommit

∅

4. [Ccommit
pre ,t]C

abort | [Pt]P
abort
t ≈H

a [preAbort ⊕ preCommit]preAbort⊕preCommit

∅

Proof: We proceed as usual.

[Ccommit
pre ,t]C

abort | [Pabort]

≡ [(νca)(timert(vote [c, a], a) |Cand | Cor)]dec right | !e.decright

| [vote right | !abort]vote right | !abort

≈H
a [!abort]vote right | !abort (8.9)

≈H
a [!abort]!abort (8.10)

≡ [Abort]Abort

Here (8.9) is a consequence of Lemma 66, while (8.10) can be obtained by application

of Lemma 62.3.

The derivation of (2) is essentially Lemma 66.1 while (3) is given by Lemma

66.2.

Finally, for (4), please note that networks in ([Ccommit
pre ,t]C

abort

)t>0 have only the

following non-input, non H-hidden transition.

• [Ccommit
pre ,t+1]C

abort τ→a[C
commit
pre ,t]C

abort

,

• [Ccommit
pre ,t+1]C

abort τ→a[?]
Cabort

• [Ccommit
pre ,1]C

abort τ→a[(νca)(c |Cand | Cor)]C
abort

• [Ccommit
pre ,t]C

abort τ→a[?]
Cabort

234 CHAPTER 8. THE TWO-PHASE COMMIT PROTOCOL

But [?]C
abort ≈a [Cabort]C

abort
(Lemma 60.1). In addition

[(νca)(a |Cand | Cor)]C
abort ≡ [(νca)(a | c.Cprecommit

final | Cor)]C
abort

∼a [(νca)(a | Cor)]C
abort

(8.11)

≈a [Cabort]C
abort

(8.12)

Here equation (8.11) follows from Lemma 62.3, while (8.12) is by Lemma 63. Hence

we can use Theorem 42.2 to infer (4) from (1) and (3). ut

8.5 Concluding Remarks

This chapter has presented the full 2PCP and given a correctness argument. Imple-

menting the algorithm was straightforward, whereas proofs suffered from a prolifer-

ation of intermediate states that still awaits taming. Apart from better expansion

theorems for message loss and timers in the presence of process failure, it would be

nice to have more fine grained reasoning steps for process failure in general. The

equational steps taken here seem bigger than necessary. Our optimism that this

should be possible comes from the regularity of the behaviour added by process

failure: looking at synchronisation trees, it seems that the transition from a model

without to one with such failure is just a saturation with certain simple loops, al-

though savepoints may be a bit more complex. In most cases, it should be possible

to determine the behaviour of [save(P).P]QA from just knowing what [Q]QA and [P]PA
do.

It would also be good to know more about the map [[·]] which takes processes

without savepoints to those that have them, in the way described in §8.2 (by taking

savepoint immediately after uncertainty has been removed). We conjecture that [[·]]
is fully-abstract and compositional, or at least could be made so by straightforward

restrictions on source or target.

Chapter 9

Conclusions and Further Work

We hope to have demonstrated not just that the task is formidable, but also how

powerful π-calculi can be as basic building blocks towards a mathematical theory of

distributed systems. We take our main accomplishments to be (1) the clean integra-

tion of discrete timing with π-calculi, in particular the characterisation of reduction

congruence as a labelled bisimilarity; (2) the provision of a simple, yet effective

distributed π-calculus with some associated basic reasoning technology; and (3) a

straightforward encoding of the 2PCP, a fundamental distributed algorithm. The

main benefit of our work is likely to be in its wide range of applicability to problems

arising in the construction and verification of DS. Many avenues for further work

suggest themselves and some have already been mapped out in previous chapters.

In addition, we’d like to mention some more.

Refinement of message and process failure and the associated detection and

recovery mechanism would be welcome, but that is unlikely to yield a comprehensive

theory of DS. One feature awaiting sustained attention is multicasting, in particular

broadcasting, and with those, the enabling message routing infrastructure. The

calculus of [34, 35] may be a good starting point.

Security is a big issue in all of computing, but particularly so for DS, if only

because their data streams potentially cross many boundaries, conceptual or other-

wise. Much problem-specific work has been done [1, 2, 43, 60, 62, 82], but still awaits

integration with the kind of DS theory the present work has focused on.

Metalevel or reflexive computation is an area that has spawned a lot of research

[71], but little has been assimilated by process theorists. This may be due to a

fundamental expressivity gap of name-passing interaction. But then again it might

not be. It would be good to see this omission filled in, because DS are plagued

by resource management issues that have the flavour of reflexive computation, for

example lockable resources and deadlocks.

Finally, given the expressive power of name passing interaction, a natural ques-

tion, alluded to already, is whether and how added constructs can be represented

235

236 CHAPTER 9. CONCLUSIONS AND FURTHER WORK

in the extended π-calculi. Unfortunately, representability of a given construct in

one calculus is not always preserved by adding other computational mechanisms.

Consider for example the encoding of branching into the π-calculus [57, 78]:

[[xleft〈~y〉]] = (νc)(x〈c〉 | c(z1z2).z1〈~v〉)

(symmetrically for the right selection, and dually for branching input). This en-

coding is sound and compositional in the base calculus without branching: however

the encoding into the full calculus (or the calculus with message loss and timers) is

much more involved since we need to consider the case when a branching selection is

sent remotely: we either want this interaction sequence implementing the branching

output to be lost completely or to be executed safely, in other works, to happen

atomically. For this purpose we may be able to use Recursive Timers just as we did

for the 2PCP. Thus it may be possible to encode this branching construct into the

full calculus, but its representation would be quite complex. This example suggests

that individual representability of extensions may not lead to the representability of

their combination so that the study of expressiveness for these constructs should be

performed with care. Revisiting the accumulated embedding results for distributed

π-calculi is likely to result in some surprises.

Bibliography

[1] Mart́ın Abadi and Bruno Blanchet. Secrecy Types for Asymmetric Commu-

nication. In Proc. FoSSaCs’01, 2001.

[2] Mart́ın Abadi and Andy Gordon. A Calculus for Cryptographic Protocols:

The Spi Calculus. In Proc. ACM Conference on Computer and Communica-

tions Security. ACM Press, 1997.

[3] Parosh Aziz Abdulla, Aurore Annichini, and Ahmed Bouajjani. Algorithmic

verification of lossy channel systems. In Proc. TACAS’99, 1999.

[4] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable

channels. Info. & Comp., 127(2):91–101, 1996.

[5] Samson Abramsky and Guy McCusker. Game semantics. In Logic and Com-

putation: Proc. of the 1997 Marktoberdorf Summer School, 1998.

[6] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical

Computer Science, 126:183–235, 1994.

[7] Roberto Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations

for the asynchronous π-calculus. In Proc. CONCUR’96, 1996.

[8] Roberto M. Amadio. An asynchronous model of locality, failure, and process

mobility. In Proc. COORDINATION 97, 1997.

[9] Roberto M. Amadio and Sanjiva Prasad. Localities and failures. In

Proc. FSTTCS’94, 1994.

[10] Maurice Bach. The Design of the Unix Operating System. Prentice-Hall, 1986.

[11] Henk Barendregt. The Lambda Calculus. North Holland, 1985.

[12] Martin Berger. (Almost) Every Process Algebra has a Fully-Abstract and

Compositional Encoding into the Asynchronous π-Calculus. Draft, 2000.

[13] Martin Berger and Kohei Honda. The Two-Phase Commit Protocol in an

Extended π-calculus. Full version of [14]. In preparation.

237

238 BIBLIOGRAPHY

[14] Martin Berger and Kohei Honda. The Two-Phase Commit Protocol in an

Extended π-Calculus. In Proc. EXPRESS’00, 2000.

[15] Martin Berger, Kohei Honda, and Nobuko Yoshida. Genericity and the π-

Calculus. Draft, 2001.

[16] Martin Berger, Kohei Honda, and Nobuko Yoshida. Sequentiality and the

π-calculus. In Proc. TLCA’01, 2001.

[17] Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors. Handbook of

Process Algebra. Elsevier, 2001.

[18] Marco Bernardo and Roberto Gorrieri. A Tutorial on EMPA: A Theory

of Concurrent Processes with Nondeterminism, Priorities, Probabilities and

Time. TCS, 1998.

[19] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency

Control and Recovery in Database Systems. Addison-Wesley, 1987.

[20] Gérard Berry and Gérard Boudol. The Chemical Abstract Machine. TCS,

96:217–248, 1992.

[21] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cam-

bridge University Press, 2001.

[22] Gerard Boudol. Asynchrony and the pi-calculus. Technical Report 1702,

INRIA, 1992.

[23] Gérard Boudol. The pi-calculus in direct style. In Proc. POPL’97, 1997.

[24] Marco Carbone and Sergio Maffeis. On the expressive power of polyadic

synchronisation in pi-calculus. In Proc. EXPRESS’02, 2002.

[25] Luca Cardelli and Andy Gordon. Mobile ambients. TCS, 240, 2000.

[26] Ilaria Castellani. Process algebras with localities. In [17], chapter 15. North-

Holland, 2001.

[27] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.

MIT Press, 2000.

[28] B. Jack Copeland. The Church-Turing Thesis. Entry in the Stanford Ency-

clopedia of Philosophy, http://plato.stanford.edu/entries/church-turing/.

[29] B. Jack Copeland and R. Sylvan. Beyond the universal turing machine. Aus-

tralasian Journal of Philosophy, 1998.

BIBLIOGRAPHY 239

[30] George Couloris, Jean Dollimore, and Tim Kindberg. Distributed Systems,

Concepts and Design. Addison-Wesley, 2001.

[31] Martin Davis and Elene Weyuker. Computability, Complexity, and Languages.

Academic Press, 1983.

[32] Pierpaolo Degano, Jean-Vincent Loddo, and Corrado Priami. Mobile process-

es with local clocks. In Proc. of the Workshop on Analysis and Verification

of Multiple-Agent Languages, 1996.

[33] Elmootazbellah N. Elnozahy, David B. Johnson, and Yi-Min Wang. A survey

of rollback-recovery protocols in message-passing systems. Technical Report

CMU-CS-96-181, School of Computer Science, Carnegie Mellon University,

1996.

[34] Cristian Ene and Traian Muntean. Expressiveness of point-to-point versus

broadcast communications. In Proc. FCT’99, LNCS, 1999.

[35] Cristian Ene and Traian Muntean. A Broadcast-Based Calculus for Commu-

nicating Systems. In Workshop on Formal Methods for Parallel Programming,

2001.

[36] Lindsay Errington. Twisted Systems. PhD thesis, Imperial College, 1999.

[37] Cédric Fournet. The Join-Calculus: a Calculus for Distributed Mobile Pro-

gramming. PhD thesis, Ecole Polytechnique, 1998.

[38] Cédric Fournet and Georges Gonthier. A hierarchy of equivalences for asyn-

chronous calculi. In Proc. ICALP’98, 1998.

[39] Cédric Fournet, Georges Gonthier, Jean-Jaques Lévy, Luc Maranget, and

Didier Rémy. A Calculus of Mobile Agents. In Proc. POPL’96, 1996.

[40] Simon J. Gay. A sort inference algorithm for the polyadic pi-calculus. In

Proc. POPL’93, 1993.

[41] Jean-Yves Girard. Linear logic. TCS, 50, 1987.

[42] Jean-Yves Girard. Locus solum: From the rules of logic to the logic of rules.

MSCS, 11(3), 2001.

[43] Andy Gordon and Alan Jeffrey. Types and effects for asymmetric crypto-

graphic protocols. In Proc. CSFW 2002, 2002.

[44] Eric Goubault. The Geometry of Concurrency. PhD thesis, École Polytech-

nique, 1995.

240 BIBLIOGRAPHY

[45] Eric Goubault. Geometry and concurrency: A user’s guide. MSCS, 10(4),

2000.

[46] Ronald Graham, Oren Patashnik, and Donald E. Knuth. Concrete Mathe-

matics: A Foundation for Computer Science. Addison-Wesley, 1994.

[47] Jim Gray and Andreas Reuter. Transaction processing: concepts and tech-

niques. Morgan Kaufmann, 1993.

[48] Carl A. Gunter. Semantics of Programming Languages. MIT Press, 1995.

[49] Matthew Hennessy. Timed process algebras: a tutorial, 1992.

[50] Matthew Hennessy and Robin Milner. Algebraic Laws for Non-Determinism

and Concurrency. JACM, 32(1), 1985.

[51] Rolf Herken, editor. The Universal Turing Machine: a Half-Century Survey.

Springer, 1995.

[52] Tony Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[53] Kohei Honda. Types for the π-calculus. http://www.dcs.qmul.ac.uk/˜kohei.

[54] Kohei Honda. Two bisimilarities in ν-calculus. Technical Report 92-002, Keio

University, Department of Computer Science, 1992.

[55] Kohei Honda. Types for dyadic interaction. In Proc. CONCUR ’93, number

715 in LNCS, pages 509–523. Springer, 1993.

[56] Kohei Honda. Elementary Structures for Process Theory (1): Sets with Re-

naming. MSCS, 2001.

[57] Kohei Honda and Mario Tokoro. An object calculus for asynchronous com-

munication. In Proceedings of ECOOP’91, 1991.

[58] Kohei Honda and Mario Tokoro. A small calculus for concurrent objects.

OOPS Messenger, 2(2):50–54, 1991.

[59] Kohei Honda and Mario Tokoro. On asynchronous communication semantics.

TCS, 151, 1995.

[60] Kohei Honda, Vasco T. Vasconcelos, and Nobuko Yoshida. Secure information

flow as typed process behaviour. In Proc. ESOP’99, 2000.

[61] Kohei Honda and Nobuko Yoshida. On reduction-based process semantics.

TCS, 151, 1995.

BIBLIOGRAPHY 241

[62] Kohei Honda and Nobuko Yoshida. A uniform type structure for secure in-

formation flow. In POPL’02, 2002.

[63] Winfried Just and Martin Weese. Discovering Modern Set Theory. AMS,

1996.

[64] Marco Kick. Bialgebraic Modelling of Timed Processes. In Proc. ICALP’02,

2002.

[65] Marco Kick. Rule Formats for Timed Processes. In Proc. CMCIM’02, 2002.

[66] Kenneth Kunen. Set Theory: An Introduction to Independence Proofs. North-

Holland, 1980.

[67] James J. Leifer and Robin Milner. Deriving bisimulation congruences for

reactive systems. In Proc. CONCUR’2000, 2000.

[68] Giuseppe Longo. The difference between clocks and turing machines. In

Arturo Carsetti, editor, Functional Models of Cognition. Kluwer, 1999.

[69] Lúıs Miguel Barros Lopes. On the Design and Implementation of a Virtual

Machine for Process Calculi. PhD thesis, Departamento de Cincia de Com-

putadores, FCUP, 1999.

[70] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[71] Narciso Mart́ı-Oliet and José Meseguer. Rewriting Logic: Roadmap and Bib-

liography. TCS, 2001.

[72] Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing calculi.

In Proc. ICALP’98, 1998.

[73] Dave Mills. Time synchronization server. URL

http://www.eecis.udel.edu/̃ ntp/.

[74] Robin Milner. Communication and Concurrency. Prentics Hall, 1989.

[75] Robin Milner. Functions as processes. MSCS, 2(2):119–141, 1992.

[76] Robin Milner. Elements of interaction. CACM, 36(1), 1993.

[77] Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cam-

bridge University Press, 1999.

[78] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile

processes, parts I and II. Info. & Comp., 100(1), 1992.

242 BIBLIOGRAPHY

[79] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In Proc. ICALP’92,

1992.

[80] Yiannis N. Moschovakis. Notes on Set Theory. Springer, 1994.

[81] Sape Mullender, editor. Distributed Systems. Addison-Wesley, 1993.

[82] Andrew C. Myers and Andrei Sabelfeld. Language-based information-flow

security. IEEE Journal on Selected Areas in Communication, 2002.

[83] Roger Needham. Names. In [81], pages 315–327. Addison-Wesley, 1993.

[84] Uwe Nestmann. What is a ‘good’ encoding of guarded choice? Technical

report, BRICS, 1997.

[85] Uwe Nestmann and Benjamin C. Pierce. Decoding choice encodings. In

Proc. CONCUR’96, 1996.

[86] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event

structures and domains, part i. TCS, 13(1):85–108, 1981.

[87] Piergiorgio Odifreddi. Classical Recursion Theory. North-Holland, 1989.

[88] Catuscia Palamidessi. Comparing the expressive power of the synchronous

and the asynchronous π-calculus. In Proc. POPL, 1997.

[89] Christos H. Papadimitriou. Complexity Theory. Addison Wesley, 1994.

[90] Benjamin C. Pierce. Type Systems and Programming Languages. MIT Press,

2002.

[91] Benjamin C. Pierce and David N. Turner. Pict: A programming language

based on the pi-calculus. In Gordon Plotkin, Colin Stirling, and Mads Tofte,

editors, Proof, Language and Interaction: Essays in Honour of Robin Milner.

MIT Press, 2000.

[92] Gordon D. Plotkin. A structural approach to operational semantics. Technical

report, DAIMI, Aarhus University, 1981.

[93] Paola Quaglia and David Walker. On encoding pπ in mπ. In Proc. 18th FST

& TCS, 1998.

[94] Wolfgang Reisig. Petri Nets, an Introduction. Springer, 1985.

[95] Wolfgang Reisig and Grzegorz Rozenberg, editors. Lectures on Petri Nets I:

Basic Models. Springer, 1998.

BIBLIOGRAPHY 243

[96] James Riely and Matthew Hennessy. Resource access control in systems of

mobile agents. ENTCS, 16(3), 1998.

[97] James Riely and Matthew Hennessy. A typed language for distributed mobile

processes. In Proc. POPL 1998, 1998.

[98] James Riely and Matthew Hennessy. Trust and partial typing in open systems

of mobile agents. In Proc. POPL 1999, 1999.

[99] James Riely and Matthew Hennessy. Distributed processes and location fail-

ures. TCS, to appear.

[100] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order and

Higher Order Paradigms. PhD thesis, University of Edinburgh, 1992.

[101] Davide Sangiorgi. Internal mobility and agent passing calculi. In

Proc. ICALP‘95, 1995.

[102] Davide Sangiorgi. πI: A symmetric calculus based on internal mobility. In

Proc. TAPSOFT’95, 1995.

[103] Davide Sangiorgi and David Walker. The π-Calculus: a Theory of Mobile

Processes. Cambridge University Press, 2001.

[104] Davide Sangiorgi and David Walker. Some results on barbed equivalences in

pi-calculus. In Proc. CONCUR’01, 2001.

[105] Ichiro Satoh and Mario Tokoro. Semantics for a real-time object-oriented

programming language. In Proc. ICCL’94, 1994.

[106] Peter Selinger. First-order axioms for asynchrony. In Proc. CONCUR ’97,

1997.

[107] Peter Sewell. From rewrite rules to bisimulation congruences. In Proc. CON-

CUR 98, 1998.

[108] Peter Sewell. Global/local subtyping and capability inference for a distributed

pi-calculus. In Proc. ICALP’98, 1998.

[109] Cosma Rohilla Shalizi. Causal Architecture, Complexity and Self-Organization

in Time Series and Cellular Automata. PhD thesis, University of Wisconsin,

2001.

[110] Saharon Shelah. Every two elementary equivalent models have isometric ul-

trapowers. Israel Journal of Mathematics, 10:224–233, 1971.

[111] Andrew S. Tannenbaum. Computer Networks. Prentice Hall, 1996.

244 BIBLIOGRAPHY

[112] Bent Thomsen. Plain CHOCS: A Second Generation Calculus for Higher

Order Processes. Acta Informatica, 30(1):1–59, 1993.

[113] David N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation.

PhD thesis, University of Edinburgh, 1996.

[114] Vasco Vasconcelos. Typed concurrent objects. In Proc. ECOOP’94, 1994.

[115] Vasco T. Vasconcelos and Kohei Honda. Principal typing scheme for polyadic

π-calculus. In Proc. CONCUR’93, 1993.

[116] Vasco T. Vasconcelos and António Ravara. Communication errors in the pi-

calculus are undecidable. Information Processing Letters, 71(5–6):229–233,

1999.

[117] Jan Vitek and Giuseppe Castagna. Seal: A Framework for Secure Mobile

Computations. In Internet Programming Languages, 1999.

[118] Glynn Winskel. Event structures. In Advances in Petri Nets 1986, Part II,

1987.

[119] Glynn Winskel. The formal semantics of programming languages. MIT Press,

1993.

[120] Glynn Winskel and Mogens Nielsen. Models for concurrency. In S. Abramsky,

D. Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer

Science. Oxford University Press, 1995.

[121] Pawe l Wojciechowski. Nomadic Pict: Language and Infrastructure Design for

Mobile Computation. PhD thesis, University of Cambridge, 2000.

[122] Wang Yi. Real-time behaviour of asynchronous agents. In Proc. CONCUR’90,

pages 502–520, 1990.

[123] Nobuko Yoshida. Graph Types for Monadic Mobile Processes. In

Proc. FSTTCS’96, 1996.

[124] Nobuko Yoshida, Martin Berger, and Kohei Honda. Strong Normalisation in

the π-Calculus. In Proc. LICS’01, 2001.

