
Under consideration for publication in J. Functional Programming 1

Short Note: Verification of In-Place List-Reversal
with Effect Sets

Martin Berger∗ Kohei Honda† Nobuko Yoshida∗

This short note presents a modular correctness proof of a simple in-place list reversal al-
gorithm that is a stable of the relevant literature, cf. (Reynolds, 2002). To keep this note
short, we assume familiarity with (Berger et al., 2006). The algorithm in question is:

M def= r := nil;(µ f .λ().(case !p of {nil. () | a :: l .N; f ()}))()

N def= let tmp = !l in N′

N′ def= l :=!r;r :=!p; p := tmp

This algorithm satisfies the following natural specification.

{List(p,n)∧path(p, i,q)∧Dist︸ ︷︷ ︸
B(pniq)

} M {path(!r, i,q)}@ S(n) (1)

Intuitively, List(p,n) says that p stores a non-circular list of length n, and path(p, i,q)
expresses the existence of an i-long path starting at p that ends at q. Dist gives all the
relevant inequalities that need to hold for the algorithm to work and for the proof to go
through, like r 6= p and so on. Finally, S(n) lists all relevant effects: r and each π2(l) such
that l is reachable from p. These predicates are straightforward and defined below. We
note that (1) does not give the strongest possible specification, for example, as pointed out
in (Bornat, 2006), the algorithm also works with circular lists. It would be easy to adapt
our approach to reversing circular lists. We continue with the definition of a tailor-made
reachability predicate x ↪→ y.

x ↪→ y def= x = y∨ (!x 6= nil∧π2(!x) ↪→ y)

This predicate ignores the “left” components of the pairs making up lists, as they will not
be modified by the list reversal algorithm. The next predicate gives the distinction that
underlies our correctness proof.

Dist
def= (p ↪→ x∧ r ↪→ y)⊃ x 6= y.

∗ Deptartment of Computing, Imperial College London.
† Department of Computer Science, Queen Mary, University of London.



2 M. Berger K. Honda N. Yoshida

{C} M {C′}@ S
{C∧ [!S]C0} M {C′∧C0}@ S

[Invariance] {C} M {C′}@ S
{C} M {C′}@ S∪S′

[Weak]

{C} M {C0}@ S {C0} N {C′}@ S′ S′-!S

{C} M;N {C′}@ S∪S′
[Seq]

{C1} M {C′
1 ∧C}@ SM {C∧C2} N {C′

2}@ SN S-!SM
N

{C1 ∧ [!SM ]C2} M;N {C′
1 ∧C′

2}@ SM ∪SN
[Seq-I]

{C} M :m {C0}@ SM
{C0[nil/m]} N1 :u {C′}@ SN
{∃al.(m = 〈a, l〉∧C0)} N2 :u {C′}@ SN S-!SM

N
{C} case M of {nil.N1 | a :: l .N2} :u {C′}@ SM ∪SN

[ListCase]

Fig. 1. Auxiliary rules of inference used in the derivation, all of which are easy to justify.

Now we can give the remaining predicates.

path(p,0,q) def= !p = nil

path(p,n+1,q) def= ∃ar.(!p = a ::r∧path(r,n,q))

List(p,n) def= ∃q.path(p,n,q)∧¬∃q.path(p,n+1,q).

S(n) def= {a | a = r∨ (n > 1∧ p ↪→ a)}

For convenience, we sometimes confuse effect sets with their constituting effect compre-
hensions, i.e. S′ ≡ [!S]S′ is short for C1 ≡ [!S]C1, assuming that S′ def= {a|C1}. We write S-!S′

to mean the formula S′ ≡ [!S]S′. The overall structure of the proof follows the syntax of M.
Auxiliary rules streamling our reasoning are to be found in Figure 1.

1 {T} r := nil {!r = nil}@ r omitted

2 {[!r]B(pniq)} r := nil {!r = nil∧B(pniq)}@ r Invar., 1

3 B(pniq)⊃ [!r]B(pniq)

4 {B(pniq)} r := nil {!r = nil∧B(pniq)}@ r Cons, 2, 3

5 {!r = nil∧B(pniq)} (µ f .λ().M′)() {path(p, i,q)}@ S(n) see below

6 S(n)≡ [!r]S(n)

7 {B(pniq)} M {path(p, i,q)}@ S(n)∪{r} Seq, 4, 5, 6

8 S(n)∪{r}= S(n)

9 {B(pniq)} M {path(p, i,q)}@ S(n) Cons, 7, 8

We turn to Line 5, but omit the straightforward derivation for (µ f .λ().M′)(), focussing
instead on the body of the recursion to establish:

{P∧∀k < n.E(k)} case !p of {nil. () | a :: l .N; f ()} {Q}@ S(n) (2)



Short Note: Verification of In-Place List-Reversal with Effect Sets 3

and for this purpose, we define some more auxiliary predicates.

P def= List(p,n)∧List(!r,nr)∧Dist∧path(p, i,s)∧path(!r, j, t)

Q def= (i > 0 ⊃ path(!r, i,s))∧path(!r, j +n, t)

Now we can specify the key invariant.

E(n) def= ∀nri jst.{P} f • (){Q}@ S(n)

We shall now turn to deriving the body of the case-distinction using [ListCase]. We can
clearly derive

{P∧∀k < n.E(k)} !p :m {P∧∀k < n.E(k)∧!p = m}@ /0 (3)

and also
1 {!p = nil∧P∧∀k < n.E(k)} () {Q}@ /0

2 {!p = nil∧P∧∀k < n.E(k)} () {Q}@ S(n) Weak, 1

This covers the base case. For the inductive step in the case-statement we need to establish
that (omitting an application of [Cons]):

{∃al.(!p = 〈a, l〉∧P∧∀k < n.E(k))} N; f () {Q}@ S(n).

We do this in two steps. First we note that N preforms a straightforward rotation of content,
provided r, l, p are mutually distinct pointers. We express this last assumptions by Dist.
Then we easily derive, details omitted:

{Dist∧!r = z∧!p = x∧!l = y} N {!p = y∧!r = x∧!l = z}@ {r, l, p}

Defining

• P′ def=!r = z∧!p = x∧!l = y∧P∧∀k < k.E(k) and
• Q′ def= P∧∀k < k.E(k)∧!p = y∧!r = x∧!l = z,

we use [Invariance] and [Cons] to add:

{P′} N {Q′}@ {r, l, p}

But clearly

P ⊃ P′ and Q′ ⊃

 List(!t,nr +1)∧List(p,n−1)∧path(!r, j +1,s)
∧

(i > 0 ⊃ path(p, i−1, t))∧ (i = 0 ⊃ path(!r,0,s))


︸ ︷︷ ︸

Q′′

.

It is straightforward to see that

{Q′′} f () {Q}@ S(n−1) (4)

(this is simply the recursive call). Unfortunatly we cannot directly apply [Seq] now, because
the set S(n− 1) in (4) does not satisfy S(n− 1)-!{r,l,p}. The culprit is !p which occurs in
S(n−1). But, instead of S(n−1) we can use

S′(n−1) def= {a | a = r∨ (n > 1∧ (a = p∨π2(y) ↪→ a))}



4 M. Berger K. Honda N. Yoshida

Then [Cons] allows us to infer

{Q′′} f () {Q}@ S′(n−1)

with S′(n−1)-!{r,l,p}, hence we can apply [Seq] and obtain

{P} f () {Q}@ {l,r, p}∪S(n−1)

But, under P, clearly S(n) = {l,r, p}∪S(n−1), so in fact

{P} f () {Q}@ S′(n)

as required, completing the proof of (2).

References

Berger, Martin, Honda, Kohei, & Yoshida, Nobuko. (2006). A Logical Analysis of Aliasing in Imper-
ative Higher-Order Functions. Submitted.

Bornat, Richard. (2006). List reversal: back into the frying pan. Available from
http://homepages.phonecoop.coop/randj/richard.

Reynolds, John C. (2002). Separation logic: a logic for shared mutable data structures.
Proc. LICS’02.


