
Logical Reasoning for
Higher-Order Functions with Local State

Nobuko Yoshida1, Kohei Honda2, and Martin Berger1

1 Department of Computing, Imperial College London
2 Department of Computer Science, Queen Mary, University of London

Abstract. We introduce an extension of Hoare logic for call-by-value higher-
order functions with ML-like local reference generation. Local references may
be generated dynamically and exported outside their scope, may store higher-
order functions and may be used to construct complex mutable data structures.
This primitive is captured logically using a predicate asserting reachability of a
reference name from a possibly higher-order datum and quantifiers over hidden
references. The logic enjoys three completeness properties: relative complete-
ness, a logical characterisation of the contextual congruence and derivability of
characteristic formulae. The axioms for reachability and local invariants play a
fundamental role in reasoning about non-trivial programs combining higher-order
procedures and dynamically generated references.

1 Introduction

New reference generation, embodied for example in ML’s ref-construct, is a highly
expressive programming primitive. The key functionality of this construct is, firstly, to
induce local state by generating a fresh reference inaccessible from the outside. Con-
sider the following program:

Inc
def= let x = ref(0) in λ().(x :=!x+1; !x) (1)

where “ref(M)” returns a fresh reference whose content is the value which M evalu-
ates to; “!x” means dereferencing the imperative variable x; and “;” is sequential com-
position. In (1), a reference with content 0 is newly created, but never exported to the
outside. When the anonymous function in Inc is invoked, it increments the content of
a local variable x, and returns the new content. The procedure returns a different re-
sult at each call, whose source is hidden from external observers. This is different from
λ().(x :=!x+1; !x) where x is globally accessible.

Secondly, local references may be exported outside of their original scope and be
shared. Consider the following program from [25, § 6]:

incShared
def= a :=Inc;b :=!a;z1 :=(!a)();z2 :=(!b)();(!z1+!z2) (2)

This program returns 3. To understand the behaviour of incShared, we must capture
the sharing of x between the procedures assigned to a and b. The scope of x is originally
restricted to !a but gets extruded to !b. If we replace b :=!a by b := Inc, two separate

instances of Inc are assigned to a and b, and the final result is 2. Controlling sharing by
local reference is essential to writing concise algorithms that manipulate mutable data
structures, but complicates formal reasoning, even for relatively small programs [8, 18].

Thirdly, through information hiding, local references can be used for efficient imple-
mentation of highly regular observable behaviour. The following program, taken from
[25, § 1], called memFact, is a simple memoised factorial.

leta = ref(0) b = ref(1)in λx.if x =!a then !b else (a := x ; b := fact(x) ; !b)

Here fact is the standard factorial function. To external observers, memFact behaves
purely functionally. The program implements a simple case of memoisation: when
memFact is called with a stored argument in a, it immediately returns the stored value
!b without calculation. If x differs from what is stored at a, the factorial f x is calculated
and the new pair is stored. The reason why memFact is indistinguishable from the pure
factorial function can be understood through the following local invariant [25]:

Throughout all possible invocations of memFact, the content of b is the facto-
rial of the content of a.

Such local invariants capture one of the basic patterns in programming with local state,
and play a key role in preceding studies of operational reasoning about program equiv-
alence in the presence of local state [15, 23, 25, 30].

As a further example of local invariants, this time involving mutually recursive
stored functions, consider the following program:

mutualParity
def= x := λn.if n=0 then f else not((!y)(n−1));

y := λn.if n=0 then t else not((!x)(n−1))

After running mutualParity, the application (!x)n, returns true if n is odd, false
if not, and (!y)n acts dually. But since x and y are free, another program may prevent
mutualParity from functioning correctly by inappropriate assignment to x or y. With
local state, we can avoid unexpected interference at x and y.

safeOdd
def= let x = ref(λn.t) y = ref(λn.t) in (mutualParity; !x) (3)

safeEven
def= let x = ref(λn.t) y = ref(λn.t) in (mutualParity; !y) (4)

(Here λn.t can be any initialising value.) Now that x,y are inaccessible, the programs
behave like pure functions, e.g. safeOdd(3) always returns true without any side ef-
fects. In this case, the invariant says that throughout all possible invocations, !x is a pro-
cedure which checks if its argument is odd, provided y stores a procedure which does the
dual, whereas !y is a procedure which checks if its argument is even, whenever x stores a
dual procedure. Later we present general reasoning principles for local invariants which
can verify these two and many other non-trivial examples [14, 15, 18, 23, 25].

This paper studies a Hoare logic for imperative higher-order functions with dy-
namic reference generation, a core part of ML-like languages. Our aim is to identify
basic logical primitives needed to capture precisely the semantics of local state, on the
basis of a stratification of logics for sequential higher-order functions in our preceding

works [2, 10, 12, 13]. For this purpose we introduce two new logical primitives, one for
reachability of references from an arbitrary datum and another for quantifying hidden
references (§ 2.2). This leads to a simple proof system for reference generation, which
can assert and derive desired properties for programs with significant use of local state
from the literature [14, 15, 18, 23, 25] (§ 2.4). The status of these new logical primi-
tives is clarified through soundness and three completeness results, including relative
completeness (§ 3). Basic axioms for reachability, hiding and local invariants are stud-
ied in § 4. The local invariance axioms capture a common pattern in reasoning about
local state, and enable us to verify the examples in [14, 15, 18, 23, 25], including pro-
grams discussed above (§5). Comparisons with related work are found in §6. Detailed
derivations, large examples and proofs are found in the full version [1].

Acknowledgement We thank Andrew Pitts and Ian Stark for communications on an
early version of this paper. The mutual recursion example is due to Bernhard Reus.
This work is partially supported by EPSRC GR/T04236, GR/S55545, GR/S55538,
GR/T04724, GR/T03208, GR/T03258 and IST-2005-015905 MOBIUS.

2 Assertions for Local State

2.1 A Programming Language

Our target programming language is call-by-value PCF with unit, sums, products and
recursive types, augmented with imperative constructs. Let x,y, . . . range over an infinite
set of variables, and X,Y, . . . over an infinite set of type variables. Then types, values
and programs are given by:

α,β ::= Unit | Bool | Nat | α⇒β | α×β | α+β | Ref(α) | X | µX.α

V,W ::= c | xα | λxα.M | µ f α⇒β.λyα.M | 〈V,W 〉 | injα+β

i (V)

M,N ::= V | MN | M := N | ref(M) | !M | op(M̃) | πi(M) | 〈M,N〉 | injα+β

i (M)
| if M then M1 else M2 | case M of {ini(x

αi
i).Mi}i∈{1,2}

We use standard notation [22] like constants c (unit (), booleans t, f, numbers n and
locations l, l′, ...) and first-order operations op (+,−,×, =, ¬, ∧, . . .). Locations only
appear at runtime when references are generated. M̃ etc. denotes a vector and ε the
empty vector. A program is closed if it has no free variables. We freely use shorthands
like M;N, λ().M, and let x = M in N. Typing is standard: we take the equi-isomorphic
approach [22] for recursive types. Nat, Bool and Unit are base types. We leave illus-
tration of each construct to standard textbooks [22], except for reference generation
ref(M), the focus of the present study, which behaves as: first M of type α is evaluated
and becomes a value V ; then a fresh reference of type Ref(α) with initial content V is
generated. This behaviour is formalised by the following reduction rule:

(ref(V), σ)−→ (ν l)(l, σ] [l 7→V]) (l fresh)

Above σ is a store, a finite map from locations to closed values, denoting the initial
state, whereas σ] [l 7→V] is the result of disjointly adding a pair (l,V) to σ. The result-
ing configuration uses a ν-binder, which denotes l fresh. The general form (ν l̃)(M,σ)

means l̃ (a vector of distinct locations) occur in M and σ (the order is irrelevant). We
write (M,σ) for (ν ε)(M,σ). The one-step reduction −→ over configurations is defined
using standard rules [22] except for closure under ν-bindings. A basis Γ;∆ is a pair of
finite maps, one from variables to non-reference types (Γ,Γ′, . . .), the other from loca-
tions and variables to reference types (∆,∆′, . . .). Θ,Θ′, ... combine two kinds of bases.
The typing rules are standard. Sequents have form Γ;∆ ` M : α, to be read: M has type
α under Γ;∆. We omit empty Γ or ∆ . A store σ is typed under ∆, written ∆ ` σ, when,
for each l in its domain, σ(l) is a closed value which is typed α under ∆, where we
assume ∆(l) = Ref(α). A configuration (M,σ) is well-typed if for some Γ;∆ and α we
have Γ;∆ ` M : α and ∆ ` σ. Standard type safety holds for well-typed configurations.
Henceforth we only consider well-typed programs and configurations.

2.2 A Logical Language

The logical language is based on standard first-order logic with equality [17, § 2.8].
It extends the logic [2] with two new primitives. The grammar follows, letting ? ∈
{∧,∨,⊃}, Q ∈ {∃,∀,ν,ν} and Q′ ∈ {∃,∀}.

e ::= x | c | op(ẽ) | 〈e,e′〉 | πi(e) | inji(e) | !e
C ::= e=e′ | ¬C | C ?C′ | Qxα.C | Q′X.C | {C}e• e′=x{C} | [!e]C | e ↪→ e′

The first grammar (e,e′, . . .) defines terms; the second formulae (A,B,C,E, . . .). Terms
include variables, constants c (unit (), numbers n, booleans t, f and locations l, l′, ...),
pairing, projection, injection and standard first-order operations. !e denotes the deref-
erence of a reference e. Formulae include standard logical connectives and first-order
quantifiers [17], and following [2, 12], quantification over type variables.

Introduced in [13], {C} e• e′ = x {C′} is the evaluation formula, which intuitively
says: If we apply a function e to an argument e′ starting from an initial state satisfying C,
then it terminates with a resulting value (name it x) and a final state together satisfying
C′. We shall also use a refined form of evaluation formulae, introduced in §2.3. [!e]C
is universal content quantification, introduced in [2] for treating aliasing. [!e]C (with
e of a reference type) says: Whatever value a program may store in a reference e, the
assertion C continues to be valid.

There are two new logical primitives. First, νx.C (for some hidden reference x, C
holds) and νx.C (for each hidden reference x, C holds) are hiding-quantifiers which
quantify over reference variables, i.e. x above is of the form Ref(β). They range over
hidden references, such as x generated by Inc in (1) in § 1. The need for adding these
quantifiers is illustrated in §4.1, Proposition 12. The second new primitive is e1 ↪→ e2
(with e2 of a reference type), which is the reachability predicate. It says: We can reach
the reference denoted by e2 from a datum denoted by e1. We then set its dual [6, 29] as
e#e′ ≡ ¬e′ ↪→ e, which says: One can never reach a reference e starting from a datum
denoted by e′. # is used for representing freshness of new references.

Convention. Logical connectives are used with standard precedence/association, using
parentheses as necessary to resolve ambiguities. We use truth T (definable as 1 = 1) and
falsity F (which is ¬T). x 6= y stands for ¬(x = y). fv(C) (resp. fl(C)) denotes the set of

free variables (resp. locations) in C. Note that x in [!x]C occurs free, while in {C}e•e′=
x{C′} x occurs bound with scope C′. We often write [!x1..xn]C for [!x1]..[!xn]C. C1 ≡C2
stands for (C1 ⊃C2)∧ (C2 ⊃C1). We write ẽ#e for ∧iei #e; e# ẽ for ∧ie#ei; and ẽ# ẽ′

for ∧i jei #e′j. Terms are typed starting from variables. A formula is well-typed if all
occurring terms are well-typed. Hereafter we assume all terms and formulae we use are
well-typed. Type annotations are often omitted.

2.3 Assertions for Local State

We explain assertions for programs with local state with examples.

1. The assertion x = 6 says x of type Nat is equal to 6. Assuming x has type Ref(Nat),
!x = 2 means x stores 2. Consider x := y;y := z;w := 1. After its run, we can reach
z by dereferencing y, and y by dereferencing x. Hence z is reachable from y, y from
x, hence z from x. So the final state satisfies x ↪→ y∧ y ↪→ z∧ x ↪→ z.

2. Next, assuming w is newly generated, we may wish to say w is unreachable from
x, to ensure freshness of w. For this we assert w#x, which, as noted, stands for
¬(x ↪→ w). x#y always implies x 6= y. Note that x ↪→ x and x ↪→!x are tautologies
whereas x#x ≡ F. But !x ↪→ x may or may not hold (since there may be a cycle
between x’s content and x in the presence of recursive types).

3. We consider reachability in procedures. Assume λ().(x := 1) is named fw and
λ().!x, fr. Since fw can write to x, we have fw ↪→ x. Similarly fr ↪→ x. Next suppose
let x = ref(z) in λ().x has name fc and z’s type is Ref(Nat). Then fc ↪→ z (e.g.
consider !(fc()) := 1). However x is not reachable from λ().((λy.())(λ().x)) since
semantically it never touches x.

4. λ().(x :=!x + 1; !x) named u satisfies: ∀iNat.{!x = i}u • ()= z{!x = z∧!x = i + 1}
saying: invoking the function u increments the content of x and returns that content.

5. We often wish to say that the write effects of an application are restricted to spe-
cific locations. The located assertion introduced in [2] is used for this purpose:
{C}e • e′ = x{C′}@ẽ where each ei is of a reference type and does not contain a
dereference. ẽ is called write set. As an example: inc(u,x) def= ∀i.{!x = i}u • ()=
z{z =!x = i + 1}@x is satisfied by λ().(x :=!x + 1; !x) named u, saying this func-
tion, when invoked, only touches x.

6. Assuming u denotes the result of evaluating Inc in the Introduction, we can assert,
using the existential hiding quantifier:

νx.(!x = 0 ∧ ∀iNat.{!x = i}u• ()=z{z =!x ∧ !x = i+1}@x) (5)

which says: there is a hidden reference x storing 0 such that whenever u is invoked,
it stores to x and returns the increment of the value in x at the time of invocation.

7. λnNat.ref(n), named u, meets the following specification. Let i,X be fresh.

∀nNat.∀X.∀iX.{T}u•n=z{νx.(!z = n ∧ z# i∧ z = x)}@ /0. (6)

This says that u, when applied to n, will return a hidden reference z whose content is
n and which is unreachable from any existing datum; and it has no writing effects to
the existing state. Since i ranges over arbitrary data, unreachability of x from each
such i indicates x is freshly generated and is not stored in any existing reference.

2.4 Proof Rules

Following Hoare [7], a judgement consists of a program and a pair of formulae, but
augmented with a fresh name called an anchor [10, 12, 13].

{C} M :u {C′}

The judgement is about total correctness and reads: If we evaluate M in the initial state
satisfying C, then it terminates with a value named by u and a final state, which together
satisfy C′. The same sequent is used for both validity and provability. If we wish to be
specific, we prefix it with either ` (for provability) or |= (for validity). Let Γ;∆ be the
minimum basis of M. In {C} M :u {C′}, the name u is the anchor of the judgement,
which should not be in dom(Γ,∆)∪ fv(C); and C is the pre-condition and C′ is the post-
condition. The primary names are dom(Γ,∆)∪{u}, while the auxiliary names (ranged
over by i, j,k, ...) are those free names in C and C′ which are not primary. An anchor is
used for naming the value from M and for specifying its behaviour.

The full compositional proof rules are given in Appendix A. Despite our semantic
enrichment, all compositional proof rules in [2] syntactically stay as they are, except
for adding the following rule for reference generation, with fresh i,X:

[Ref]
{C} M :m {C′}

{C} ref(M) :u {νx.(C′[!u/m]∧u# iX ∧u = x)}

In this rule, u# i indicates that the newly generated cell u is unreachable from any i of
arbitrary type X in the initial state: then the result of evaluating M is stored in that cell.

Reachability is a stateful property: for this reason it is generally not invariant under
state change. For example, suppose x is unreachable from y; after running y := x, x
becomes reachable from y. Hence a rule such as “if {C}M :m {C′}, then {C∧e#e′}M :m
{C′∧e#e′}” is unsound. However from the general invariance rule [Inv] from [2] below
(on the left), which uses the located form of judgement {C} M :u {C′}@ẽ (understood
as located evaluation formulae), we can derive an invariance rule for # , [Inv-#].

[Inv] {C} M :m {C′}@w̃
{C∧ [!w̃]C0} M :m {C′∧C0}@w̃

[Inv-#]

{C} M :m {C′}@x
no dereference occurs in ẽ

{C∧ x# ẽ} M :m {C′∧ x# ẽ}@x

In [Inv], unlike the existing invariance rules as found in [28], we need no side con-
dition “M does not modify stores mentioned in C0”: C and C0 may even overlap in
their mentioned references, and C does not have to mention all references M may read
or write. For [Inv-#], we note [!x]x# ẽ ≡ x# ẽ is always valid if ẽ contains no deref-
erence !e, cf. Proposition 7 3-(5) later. The side condition is indispensable: consider
{T}x := x{T}@x, which does not imply {x#!x}x := x{x#!x}@x.

3 Models, Soundness and Completeness

3.1 Models

We introduce the semantics of the logic based on term models. For capturing local state,
models incorporate hidden locations using ν-binders [20]. For example, the Introduc-

tion’s Inc, named u, is modelled as: (νl)({u : λ().(l :=!l +1; !l)},{l 7→ 0}), which says
that the appropriate behaviour at is at u, in addition to a hidden reference l storing 0.

Definition 1. An open model of type Θ = Γ;∆, with fv(∆) = /0, is a tuple (ξ,σ) where:

– ξ, called environment, is a finite map from dom(Θ) to closed values such that, for
each x ∈ dom(Γ), ξ(x) is typed as Θ(x) under ∆, i.e. ∆ ` ξ(x) : Θ(x).

– σ, called store, is a finite map from labels to closed values such that for each l ∈
dom(σ), if ∆(l) has type Ref(α), then σ(l) has type α under ∆, i.e. ∆ ` σ(l) : α.

When Θ includes free type variables, ξ maps them to closed types, with the obvious
corresponding typing constraints. A model of type (Γ;∆) is a structure (νl̃)(ξ,σ) with
(ξ,σ) being an open model of type Γ;∆ ·∆′ with dom(∆′) = {l̃}. (νl̃) act as binders.
M,M′, . . . range over models.

An open model maps variables and locations to closed values: a model then speci-
fies part of the locations as “hidden”. Since assertions in the present logic are in-
tended to capture observable program behaviour, the semantics of the logic uses mod-
els quotiented by an observationally sound equivalence. Below (νl̃)(M,σ) ⇓ means
(νl̃)(M,σ)−→n (νl̃′)(V,σ′) for some n.

Definition 2. Assume Mi
def= (νl̃i)(x̃ : Ṽi,σi) typable under Γ;∆. Then we write M1 ≈

M2 if the following clause holds for each closing typed context C[·] which is typable
under ∆ and in which no labels from l̃1,2 occur: (νl̃1)(C[〈Ṽ1〉],σ1)⇓ iff (νl̃2)(C[〈Ṽ2〉],σ2)⇓
where 〈Ṽ 〉 is the n-fold pairings of a vector of values.

3.2 Semantics of Reachability and Hiding.

Let σ be a store and S ⊂ dom(σ). Then the label closure of S in σ, written lc(S,σ), is
the minimum set S′ of locations such that: (1) S ⊂ S′ and (2) If l ∈ S′ then fl(σ(l))⊂ S′.

Lemma 3. For all σ, we have:

1. S ⊂ lc(S,σ); S1 ⊂ S2 implies lc(S1,σ)⊂ lc(S2,σ); and lc(S,σ) = lc(lc(S,σ),σ)
2. lc(S1,σ)∪ lc(S2,σ) = lc(S1∪S2,σ)
3. S1 ⊂ lc(S2,σ) and S2 ⊂ lc(S3,σ), then S1 ⊂ lc(S3,σ)
4. there exists σ′ ⊂ σ such that lc(S,σ) = fl(σ′) = dom(σ′).

(1,2) are direct from the definition, and (3,4) follow from (1,2). Now set Γ;∆ ` e : α,
Γ;∆ `M and M = (ξ,σ). The interpretation of e under M, denoted [[e]]ξ,σ is given by:

[[x]]ξ,σ = ξ(x) [[!e]]ξ,σ = σ([[e]]ξ,σ) [[c]]ξ,σ = c [[op(ẽ)]]ξ,σ = op([[ẽ]]ξ,σ)

[[〈e,e′〉]]ξ,σ = 〈[[e]]ξ,σ, [[e′]]ξ,σ〉 [[πi(e)]]ξ,σ = πi([[e]]ξ,σ) [[inji(e)]]ξ,σ = inji([[e]]ξ,σ)

We now set the satisfaction of the reachability which says that the set of hereditarily
reachable names from e1 includes e2 up to ≈.

M |= e1 ↪→ e2 if [[e2]]ξ,σ ∈ lc(fl([[e1]]ξ,σ),σ) for each (νl̃)(ξ,σ)≈M

For the programs in § 2.3 (3), we can check fw ↪→ x, fr ↪→ x and fc ↪→ z hold under
fw : λ().(x := 1), fr : λ().!x, fc : let x = ref(z) in λ().x (regardless of the store part).

The following characterisation of # is often useful for justifying axioms. Below σ =
σ1]σ2 indicates that σ is the union of σ1 and σ2, assuming dom(σ1)∩dom(σ2) = /0.

Proposition 4 (partition). M |= x#u iff for some l̃, V , l and σ1,2, we have M≈ (νl̃)(ξ ·
u : V · x : l, σ1]σ2) such that lc(fl(V),σ1]σ2) = fl(σ1) = dom(σ1) and l ∈ dom(σ2).

The characterisation says that if x is unreachable from u then, up to ≈, the store can be
partitioned into one covering all reachable names from u and another containing x.

The existential hiding-quantifier has the following semantics.

M |= νx.C if ∃M′.((νl)M′ ≈M ∧ M′[x : l] |= C)

where l is fresh, i.e. l 6∈ fl(M) where fl(M) denotes free labels in M. The notation
(νl)M′ denotes addition of the hiding of l to M′, as well as indicating that l occurs free
in M′. M[x : l] adds x : l to the environment part of M. This says that x denotes a hidden
reference, say l, and the result of taking it off from M satisfies C. νx.C is defined dually.
As an example of satisfaction, let: M

def= (νl)({u : λ().(l :=!l +1; !l)}, {l 7→ 0}) then we
have M |= νx.C with C = (!x = 0 ∧ ∀iNat.{!x = i}u• () = z{z =!x ∧ !x = i+1}) using
the above definition. To see this, let M′ def= ({u : λ().(l :=!l +1; !l)}, {l 7→ 0}) then we
surely have (νl)M′ = M and M′[x : l] |= C. Here M represents a situation where l is
hidden and u denotes a function which increments and returns the content of l; whereas
M′ is the result of taking off this hiding, exposing the originally local state.

3.3 Soundness and Completeness

The definition of satisfiability M |= C for the remaining formulae is given in [1]. where
logical connectives are interpreted classically and type variables are treated syntacti-
cally [12]. Let M be a model (νl̃)(ξ,σ) of type Γ;∆, and Γ;∆ ` M : α with u fresh.

Then validity |= {C}M :u {C′} is given by ∀M.(M |= C ⊃ (M[u :M] ⇓M′ ∧ M′ |=
C′) with M including all variables in M, C and C′ except u, where we write M[u:N]⇓M′

when (Nξ,σ) ⇓ (νl̃′)(V,σ′) and M′ = (νl̃ l̃′)(ξ ·u :V, σ′).

Theorem 5 (soundness). ` {C}M :u {C′} implies |= {C}M :u {C′}.

We next discuss the completeness properties of the logic. A strong completeness prop-
erty is descriptive completeness studied in [11], which is provability of a characteris-
tic assertion for each program (i.e. assertions characterising programs’ behaviour). In
[11], we have shown that, for our base logic, this property directly leads to two other
completeness properties, relative completeness (which says that provability and valid-
ity of judgements coincide) and observational completeness (which says that validity
precisely characterises the standard contextual equivalence).

The proof of descriptive completeness closely follows [11]. Relative and observa-
tional completeness are its direct consequences. Descriptive completeness is established
for a refinement of the present logic where evaluation formulae and content quantifica-
tion are decomposed into fine-grained operators [1]. For the space sake, we only state
observational completeness, which we regard as a basic semantic property of the logic.

Write ∼= for the standard contextual congruence for programs [22]; further write
M1 ∼=L M2 to mean (|= {C}M1 :u {C′} iff |= {C}M2 :u {C′}). We have:

Theorem 6 (observational completeness). For each Γ;∆ ` Mi : α (i = 1,2), we have
M1 ∼=L M2 iff M1 ∼= M2.

4 Axioms for Reachability, Hiding and Local Invariant

4.1 Basic Axioms for Reachability and Hiding

We start from the axioms for reachability. Note that our types include recursive types.

Proposition 7 (axioms for reachability). The following assertions are valid.

1. (1) x ↪→ x; (2) x ↪→ y∧ y ↪→ z ⊃ x ↪→ z;
2. (1) y#xα with α∈ {Unit,Nat,Bool}; (2) x#y ⇒ x 6= y; (3) x#w∧w ↪→ u ⊃ x#u.
3. (1) 〈x1,x2〉 ↪→ y ≡ x1 ↪→ y∨x2 ↪→ y; (2) inji(x) ↪→ y ≡ x ↪→ y; (3) x ↪→ yRef(α) ⊃

x ↪→!y; (4) xRef(α) ↪→ y∧ x 6= y ⊃ !x ↪→ y; (5) [!x]x#y ≡ x#y.

The proofs use Lemma 3. 3-(5) says that altering the content of x does not affect reach-
ability to x. Note [!x]y#x ≡ y#x is not valid at all. 3-(5) was already used for deriving
[Inv-#] in §2.4 (we cannot substitute !x for y in [!x]x#y to avoid name capture).

Let us say α is finite if it does not contains an arrow type or a type variable. We say
e ↪→ e′ is finite if e has a finite type. Then by Proposition 7 2-(1) and 3:

Theorem 8 (elimination). Suppose all reachability predicates in C are finite. Then
there exists C′ such that C ≡C′ and no reachability predicate occurs in C′.

A straightforward coinductive extension of the above axioms gives a complete axioma-
tisation with recursive types [1], but not function types. For analysing reachability, we
define the following “one-step” reachability predicate. Below e2 is of a reference type.

M |= e1 B e2 if [[e2]]ξ,σ ∈ fl([[e1]]ξ,σ) for each (νl̃)(ξ,σ)≈M (7)

We can show (νl̃)(ξ,σ) |= x B l′ is equivalent to l′ ∈
T
{fl(V) | V ∼= ξ(x)}, (the latter

says that l′ is in the support [6, 24, 30] of f). We set: x B1 y ≡ x B y; x Bn+1 y ≡
∃z.(xB z ∧ !zBn y) (n ≥ 1). We also set xB0 y ≡ x = y. By definition:

Proposition 9. x ↪→ y ≡ ∃n.(xBn y)≡ (x = y ∨ xB y ∨ ∃z.(xB z∧ z 6= y∧ z ↪→ y)).

Proposition 9, combined with Theorem 8, suggests that if we can clarify one-step reach-
ability at function types then we will be able to clarify the reachability relation as a
whole. Unfortunately this relation is inherently intractable.

Proposition 10. (1) M |= f α⇒β Bx is undecidable. (2) M |= f α⇒β ↪→ x is undecidable.

The same result holds for call-by-value βη-equality. The result also implies that the
validity of ∀x f .(A ⊃ f B x) is undecidable, since we can represent any PCFv-term as a
formula using the method [11]. However Proposition 10 does not imply that we cannot
obtain useful axioms for (un)reachability for function types. We discuss a collection of
basic axioms in the following.

Proposition 11. For an arbitrary C, the following is valid with i,X fresh: {C∧x# f yw̃} f•
y=z{C′}@w̃ ⊃ ∀X, iX.{C∧ x# f iyw̃} f •y=z{C′∧ x# f iyzw̃}@w̃.

The above axiom says that if x is unreachable from f , y and w̃, then the application of
f to y with the write set w̃ never exports x. Next we list basic axioms for hiding.

Proposition 12. (1) C ⊃ νx.C if x 6∈ fv(C); νx.C ≡ C if x 6∈ fv(C) and no evaluation
formula occurs in C; (2) νx.(C ∧ u = x) ≡ C ∧ νx.u = x where x 6∈ fv(C); and (3)
νx.(C1∨C2)≡ (νx.C1)∨ (νx.C2); νx.(C1∧C2)⊃ (νx.C1)∧ (νx.C2)

For (1), it is notable that we do not generally have C ⊃ νx.C. Neither νx.C ⊃ C with
x 6∈ fv(C) holds generally, see [1]. This shows that integrating these quantifiers into the
standard ∀ and ∃-quantifiers let the latter lose their standard axioms, motivating the
introduction of ν-operator. (2,3) list some of useful axioms for moving the scope of x.

4.2 Local Invariant

We now introduce an axiom for local invariants. Let us first consider a function which
writes to a local reference of a base type. Even programs of this kind pose fundamental
difficulties in reasoning, as shown in [18]. Take the following program:

compHide
def= let x = ref(7) in λy.(y >!x) (8)

The program behaves as a pure function λy.(y > 7). Clearly, the obvious local invariant
!x = 7 is preserved. We demand this assertion to hold under arbitrary invocations of
compHide: thus (naming the function u) we arrive at the following invariant:

C0 = !x = 7 ∧ ∀y.{!x = 7}u• y = z{!x = 7}@ /0 (9)

Assertion (9) says: (1) the invariant !x = 7 holds now; and that (2) once the invariant
holds, it continues to hold for ever (note x can never be exported due to the type of y
and z, so that only u will touch x). compHide is easily given the following judgement:

{T}compHide :u {νx.(x# iX ∧ C0 ∧ C1)} (i fresh) (10)

with C1 = ∀y.{!x = 7}u • y = z{z = (y > 7)}@ /0. Thus, noting C0 is only about the
content of x, we conclude C0 continues to hold automatically. Hence we cancel C0
together with x:

{T}compHide :u {∀y.{T}u• y = z{z = (y > 7)}} (11)

which describes a purely functional behaviour. Below we stipulate the underlying rea-
soning principle as an axiom. Let y,z be fresh. For simplicity of presentation, we assume
y has a base type.3

Inv(u,C0, x̃) = C0 ∧ (∀yi.{C0}u• y=z{T} ⊃ ∀yi.{C0}u• y=z{C0 ∧ x̃#z}) (12)

where we assume C0 ⊃ x̃# i. Inv(u,C0,x) says that, first, currently C0 holds; and that
second if C0 holds, then applying u to y results in, if it ever converges, C0 again and the
returned z is disjoint from x̃. Below we say C is stateless if M |= C and M[u : N] ⇓M′

imply M′ |= C (its syntactical characterisation can be found in Appendix A).
3 That is sufficient for all examples in this paper: The refinement allows arbitrary types [1].

Proposition 13 (axiom for information hiding). Assume C0⊃ x̃# i and [!x̃]C0 is state-
less. Suppose i,m are fresh, {x̃, g̃}∩ (fv(C,C′)∪{w̃}) = /0 and y has a base type. Let
E1 = Inv(u,C0, x̃)∧∀yi.{C0∧[!x̃]C}u•y=z{C′}@w̃x̃ and E2 = ∀y.{C}u•y=z{C′}@w̃.
Then the following assertion is valid.

(AIH) {E}m• ()=u{νx̃.∃g̃.(E1∧E ′)} ⊃ {E}m• ()=u{E2∧E ′}

(AIH) is used with the consequence rule (Appendix A) to simplify from E1 to E2. Its
validity is proved using Proposition 4. The axiom says: if a function u with a fresh
reference xi is generated, and if it has a local invariant C0 on the content of xi, then
we can cancel C0 together with xi. The statelessness of [!x̃]C0 ensures that satisfiability
of C0 is not affected by state change except at x̃; and [!x̃]C says that whether C holds
does not depend on x̃. Finally ∃g̃ in E1 allows the invariant to contain free variables,
extending applicability as we shall use in §5 for safeEven.

Coming back to compHide, we take C0 to be !x = 7∧ x# i, w̃ empty, both C and E ′

to be T and C′ to be z = (y > 7) in (AIH), to reach the desired assertion. [1] lists the
axioms of the higher-order version of Proposition 11 and apply to the examples in [18].

5 Reasoning Examples

Shared Stored Function This section presents concrete reasoning examples. We show
the key ideas; the detailed derivations can be found in [1]. We first present a simple
example of hiding-quantifiers and unreachability using incShared in (2) from § 1. We
use a derived rule for the combination of “let” and new reference generation.

[LetRef]
{C} M :m {C0} {C0[!x/m]∧ x# ẽ} N :u {C′} x /∈ fpn(ẽ)

{C} let x = ref(M) in N :u {νx.C′}

where fpn(e) denotes the set of free plain names of e which are reference names in e that
do not occur dereferenced, defined as: fpn(x) = {x}, fpn(c) = fpn(!e) = /0, fpn(〈e,e′〉) =
fpn(e)∪ fpn(e′), and fpn(πi(e)) = fpn(inji(e)) = fpn(e). We also restrict C′ above to a
thin formula given in Appendix A (this does not limit the usability of this rule, at least
for the reasoning examples we shall treat). The notation x# ẽ appeared in § 2.3. The
rule reads: Assume (1) M with pre-condition C leads to post-condition C0, with the
resulting value named m; and (2) running N from C0 with m as the content of x together
with the assumption x is unreachable from each ei, leads to C′ with the resulting value
named u. Then running let x = Ref(M) in N from C leads to C′ whose x is fresh
and hidden. The side condition x 6∈ fpn(ei) is essential for consistency (e.g. without it,
we could assume x#x, i.e. F). The rule directly gives a proof rule for new reference
declaration [18, 23, 28], new x := M in N, which has the same operational behaviour as
let x = ref(M) in N. Note also that the original Hoare and Wirth [9]’s rule for local
variable declaration is a special case of this rule.

Let inc(x,u,n) = ∀ j.{!x = j}u• ()= j +1{!x = j +1}@x∧!x = n and inc′(n,m) =
inc(!a,x,n)∧ inc(!b,y,m)∧x 6= y. The left derivation is for incShared, while that on the
right is for a program where “b :=!a” has been replaced by “b := Inc” in incShared.

We assume and use pairwise distinctness of a,b,z1,z2, and omit anchors of unit type.

1.{T} a := Inc {νx.inc(!a,x,0)}

2.{inc(!a,x,0)} b :=!a {inc(!a,x,0)∧ inc(!b,x,0)}

3.{inc(!a,x,0)} z1 := (!a)() {inc(!a,x,1)∧!z1 = 1}

4.{inc(!b,x,1)} z2 := (!b)() {inc(!b,x,2)∧!z2 = 2}

5.{!z1 = 1∧!z2 = 2} (!z1)+(!z2) :u {u = 3}

{T} a := Inc {νx.inc(!a,x,0)}

{inc(!a,x,0)} b := Inc {νy.inc′(0,0)}

{inc′(0,0)} z1 := .. {inc′(1,0)∧!z1 = 1}

{inc′(1,0)} z2 := .. {inc′(1,1)∧!z2 = 1}

{!z1 = 1∧!z2 = 1} (!z1)+(!z2) :u {u = 2}

Line 1 uses [LetRef]. In Line 2 on the left, x is automatically shared after “b :=!a”
which leads to scope extrusion, while in the right, x 6= y in inc′(0,0) is ensured by the
ν-binding operator.

Memoised Factorial [25] (from memFact in § 1). Our target assertion specifies the
behaviour of a pure factorial. The following inference starts from the let-body of
memFact, which we name V . We set: E1a = C0 ∧ ∀xi.{C0}u• x=y{C0∧ab#y}@ab,
and E1b = ∀xi.{C0 ∧C}u • x= y{C′}@ab where we set C0 to be ab# i ∧ !b=(!a)!!!, C
to be T, and C′ to be y = x!!!. Note that [!ab]C0 is stateless by Prop. 7 5; and that, by the
type of y being Nat and Prop. 7 2-(1), we have ab#y ≡ T. We can now reason:

1.{T}V :u {∀xi.{C0}u• x=y{C0 ∧ C′}}@ /0

2.{ab# i}V :u {E1a ∧ E1b} (1, Conseq, Inv-#)

3.{T} memFact :u {νab.(E1a∧E1b)} (2, LetRef)

4.{T} memFact :u {∀x.{T}u• x = y{y = x!!!}@ /0.} (3,(AIH),Conseq)

Line 2 uses the axiom {C} f • x=y{C1∧C2}@w̃ ⊃ ∧i=1,2{C} f • x = y{Ci}@w̃.

5.2 Mutually Recursive Stored Functions (from (3) in § 1). We first verify [1]:

{T}mutualParity :u {∃gh.IsOddEven(gh, !x!y,xy,n)} (13)

where, with Even(n)≡ ∃x.(n=2× x) and Odd(n)≡ Even(n+1):

IsOddEven(gh,wu,xy,n) = (IsOdd(w,gh,n,xy) ∧ IsEven(u,gh,n,xy) ∧ !x = g ∧ !y = h)
IsOdd(u,gh,n,xy) = ∀n.{!x = g ∧ !y = h}u•n=z{z = Odd(n) ∧ !x = g ∧ !y = h}@xy

where IsOdd(u,gh,n,xy) says that x stores a procedure which checks if its argument
is odd if y stores a procedure which does the dual, and x does store the behaviour.
IsEven(u,gh,n,xy) is defined dually. Our aim is to derive the following judgement for
safeOdd starting from (13) (the case for safeEven is symmetric).

{T}safeOdd :u {∀n.{T}u•n=z{z = Odd(n)}@ /0} (14)

We first identify the local invariant: C0 = !x = g ∧ !y = h ∧ IsEven(h,gh,n,xy) ∧
xy# i j. Since C0 only talks about g, h and the content of x and y, we know [!xy]C0 is
stateless. We now observe IsOddEven(gh, !x!y,xy,n) is the conjunction of:

Odda = C0 ∧ ∀n.{C0}u•n=z{C0}@xy Oddb = ∀n.{C0}u•n=z{z=Odd(n)}@xy

As Line 3 in memFact, we can apply (AIH) to obtain (14).

Higher-Order Invariant [30, p.104]. We move to a program whose invariant be-
haviour depends on another function. The program instruments an original program
with a simple profiling (counting the number of invocations), with α a base type.

profile
def= let x = ref(0) in λyα.(x :=!x+1; f y)

Since x is never exposed, this program should behave precisely as f . We shall derive:

{∀y.{C} f • y = z{C′}@w̃} profile :u {∀y.{C}u• y = z{C′}@w̃} (15)

with x 6∈ fv(C,C′) (by the bound name condition). This judgement says: if f satisfies the
specification E = ∀y.{C} f • y = z{C′}@w̃, then profile satisfies the same specifica-
tion E. Note C and C′ are arbitrary. To derive (15), we first set C0, the invariant, to be
x# f iw̃. As with the previous derivations, we use two subderivations. First, by the axiom
in Proposition 11, we can derive:

{T}λy.(x :=!x+1; f y) :u {∀yi.{C0}u• y = z{C0∧ x#z}@xw̃} (16)

Secondly, again by Prop. 11 we obtain E ⊃ ∀y.{C ∧ x# f w̃} f • y = z{x#zw̃}@w̃. By
this, E being stateless, Prop.7 3-(5) and [Inv-#], we obtain:

{E}λy.(x :=!x+1; f y) :u {∀yi.{C0∧ [!x]C}u• y = z{C′∧ x#z}@xw̃}. (17)

By combining (16) and (17), we can use (AIH), hence done.

6 Related Work and Future Topics

For the sake of space, detailed comparisons with existing program logics and reasoning
methods, in particular with Clarke’s impossibility result, Caires-Cardelli’s spatial logic,
recent mechanisations of reachability predicates [16], as well as other logics such as
LCF, Dynamic logic, higher-order logic, specification logic, Larch/ML, and Extended
ML are left to the long version [1] and our past papers [2, 10, 12, 13]. Below we focus
on work that treats locality and recent work on Hoare logics.

Reasoning Principles for Functions with Local State. There is a long tradition of
studying equivalences over higher-order programs with local state. Meyer and Sieber
[18] present examples and reasoning principles based on denotational semantics. Ma-
son, Talcott and others [14] investigate equational axioms for an untyped version of the
language treated in the present paper, including local invariance. Pitts and Stark [23, 25,
30] present powerful operational reasoning principles for the same ML-fragment con-
sidered here, including reasoning principle for local invariance at higher-order types
[25]. Our axioms for information hiding in § 4, which capture a basic pattern of pro-
gramming with local state, are closely related with these reasoning principles. Our logic
differs in that its aim is to offer a method for describing and validating properties of pro-
grams beyond program equivalence. Equational and logical approaches are complimen-
tary: Theorem 6 offers a basis for integration. For example, we may consider deriving
a property of the optimised version M′ of M: if we can easily verify {C}M :u {C′} and
if we know M ∼= M′, we can conclude {C}M′ :u {C′}, which is useful if M is better
structured than M′.

Program Logics for Aliasing and Higher-Order Functions. Reynolds et al. [28]
present a program logic for aliasing where fresh data generation is represented by a
special conjunction denoting spatial disjointness from the original datum. Their method
can reason many programs with aliasing. The logic studied in the present paper captures
freshness through generic unreachability from arbitrary data in the initial state. Apart
from completeness properties discussed in §3.3, the approach enables uniform treat-
ment of known data types, including product, sum, reference, closure, etc. Reasoning
examples using the present method include those in the present paper as well as higher-
order invariants from [18], objects from [15], circular lists from [16], tree-, dag- and
graph-copy from [5], as presented in [1, § 6]. Birkedal et al. [4] present a typing sys-
tem for a variant of Idealised Algol where types are constructed from formulae of the
logic in [28]. Their typing system uses subtyping calculated via categorical semantics,
the focus of their study. [3] extends the logic in [28] with higher-order frame rules, and
demonstrates reasoning about priority queues. Both works consider neither exportable
fresh reference generation nor higher-order procedures in full generality. In particular,
it would be difficult to validate the examples in § 5.

Nanevski et al [21] studies Hoare Type Theory (HTT) which combines dependent
types and Hoare triples with anchors based on monadic understanding of computa-
tion. HTT aims to provide an effective general framework which unifies standard static
checking techniques and logical verifications. Local store is not treated and left as an
open problem in [21]. Reus and Streicher [27] present a Hoare logic for a simple lan-
guage with higher-order stored procedures, extended in [26]. Soundness is proved with
denotational methods. Completeness is not considered in [26, 27]. Their assertions con-
tain quoted programs, which is necessary to handle recursion via stored functions. Their
language does not allow procedure parameters and general reference creation.

The logic studied in the present work aims to capture the behaviour of sequen-
tial higher-order programs with local state in the framework of compositional program
logics à la Hoare, stratified on the basis of simpler program logics [2, 10, 12, 13]. The
semantic precision of the logic (cf. Theorem 6), axiomatisation of local invariance, and
uniform extensibility to diverse data types are among those features not found in the
preceding program logics mentioned above.

Meta-Logical Study on Freshness. Freshness of names has recently been studied
from the viewpoint of formalising binding relations in programming languages and
computational calculi. Pitts and Gabbay [6, 24] extend first-order logic with constructs
to reason about freshness of names based on permutations. The key syntactic additions
are the (interdefinable) “fresh” quantifier Nand the freshness predicate #, mediated
by a swapping (finite permutation) predicate. Miller and Tiu [19] are motivated by the
significance of generic (or eigen-) variables and quantifiers at the level of both formulae
and sequents, and split universal quantification in two, introduce a self-dual freshness
quantifier ∇ and develop the corresponding sequent calculus of Generic Judgements.
While these logics are not program logics, their logical machinery may be usable in
the present context. As noted in Proposition 9, reasoning about ↪→ or # is tantamount
to reasoning about B, which denotes the support (i.e. semantically free locations) of
a datum. A characterisation of support by the swapping operation may be interesting
from the viewpoint of axiomatisation of reachability.

References

1. A full version of this paper. http://www.doc.ic.ac.uk/̃ yoshida/local.
2. M. Berger, K. Honda, and N. Yoshida. A logical analysis of aliasing for higher-order imper-

ative functions. In ICFP’05, pages 280–293, 2005.
3. B. Biering, L. Birkedal, and N. Torp-Smith. Bi hyperdoctrines and higher-order separation

logic. In ESOP’05, LNCS, pages 233–247, 2005.
4. L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing and higher-

order frame rules. In LICS’05, pages 260–269, 2005.
5. R. Bornat, C. Calcagno, and P. O’Hearn. Local reasoning, separation and aliasing. In Work-

shop SPACE, 2004.
6. M. Gabbay and A. Pitts. A New Approach to Abstract Syntax Involving Binders. In

Proc. LICS ’99, pages 214–224, 1999.
7. C. A. R. Hoare. An axiomatic basis of computer programming. CACM, 12, 1969.
8. C. A. R. Hoare. Proof of correctness of data representations. Acta Inf., 1:271–281, 1972.
9. C. A. R. Hoare and N. Wirth. Axiomatic semantics of Pascal. Toplas, 1(2):226–244, 1979.

10. K. Honda. From process logic to program logic. In ICFP’04, pages 163–174. ACM, 2004.
11. K. Honda, M. Berger, and N. Yoshida. Descriptive and relative completeness for logics for

higher-order functions. In ICALP’06, volume 4052 of LNCS, pages 360–371, 2006.
12. K. Honda and N. Yoshida. A compositional logic for polymorphic higher-order functions.

In PPDP’04, pages 191–202. ACM, 2004.
13. K. Honda, N. Yoshida, and M. Berger. An observationally complete program logic for im-

perative higher-order functions. In LICS’05, pages 270–279, 2005. Full version is at [1].
14. F. Honsell, I. A. Mason, S. F. Smith, and C. L. Talcott. A variable typed logic of effects. Inf.

Comput., 119(1):55–90, 1995.
15. V. Koutavas and M. Wand. Small bisimulations for reasoning about higher-order imperative

programs. In Proc. POPL, 2006.
16. S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists. In POPL’06,

pages 115–126. ACM, 2006.
17. E. Mendelson. Introduction to Mathematical Logic. Wadsworth Inc., 1987.
18. A. R. Meyer and K. Sieber. Towards fully abstract semantics for local variables. In POPL’88,

pages 191 – 203, 1988.
19. D. Miller and A. Tiu. A proof theory for generic judgments. ACM Transactions on Compu-

tational Logic, 6(4):749–783, 2005.
20. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I and II.

Info. & Comp., 100(1):1–77, 1992.
21. A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separation in Hoare type

theory. In ICFP06, pages 62–73. ACM Press, 2006.
22. B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
23. A. M. Pitts. Reasoning about local variables with operationally-based logical relations. In

Algol-Like Languages, volume 2, chapter 17, pages 173–193. Birkhauser, 1997.
24. A. M. Pitts. Nominal logic, a first order theory of names and binding. Information and

Computation, 186:165–193, 2003.
25. A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local state. In Higher

Order Operational Techniques in Semantics, pages 227–273. CUP, 1998.
26. B. Reus and J. Schwinghammer. Separation logic for higher-order store. In Proc. CSL,

volume 4207 of LNCS, pages 575–590, 2006.
27. B. Reus and T. Streicher. About Hoare logics for higher-order store. In ICALP, volume 3580

of LNCS, pages 1337–1348, 2005.
28. J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In LICS’02.

29. J. C. Reynolds. Idealized Algol and its specification logic. In Tools and Notions for Program
Construction, 1982.

30. I. Stark. Names and Higher-Order Functions. PhD thesis, University of Cambridge, 1994.

A Appendix: Proof Rules
The following presents compositional proof rules. We omit the rules for the sum and
products. The rule for the reference can be found in the main section.

[Var] −
{C[x/u]} x :u {C}

[Const] −
{C[c/u]} c :u {C}

[Succ] {C}M :m {C′[m+1/u]}
{C}Succ(M) :u {C′}

[Abs] {C∧A-xĩ} M :m {C′}
{A} λx.M :u {∀xĩ.{C}u• x= m{C′}} [App]

{C} M :m {C0}
{C0} N :n {C1∧{C1} m•n = u {C′}}

{C} MN :u {C′}

[If] {C} M :b {C0} {C0[t/b]} M1 :u {C′} {C0[f/b]} M2 :u {C′}
{C} if M then M1 else M2 :u {C′}

[Deref] {C} M :m {C′[!m/u]}
{C} !M :u {C′} [Assign] {C} M :m {C0} {C0} N :n {C′{|n/ !m|}}

{C} M := N {C′}

[Rec] {A-xi∧∀ j � i.B(j)[x/u]} λy.M :u {B(i)-x}
{A} µx.λy.M :u {∀i.B(i)}

[Cons-Eval]
{C0} M :m {C′

0} ∀ĩ.{C0}x• ()=m{C′
0} ⊃ ∀ĩ.{C}x• ()=m{C′} x fresh, ĩ auxiliary

{C} M :m {C′}

We assume that judgements are well-typed in the sense that, in {C} M :u {C′} with
Γ;∆ ` M : α, Γ,∆,Θ `C and u :α,Γ,∆,Θ `C′ for some Θ s.t. dom(Θ)∩ (dom(Γ,∆)∪
{u}) = /0. In the rules, C-x̃ indicates fv(C)∩{x̃}= /0. Symbols i, j, . . . range over auxil-
iary names. We demand the postconditions of the proof rules [App, If] to be thin, where
we say C is thin iff for each M and for each y∈ fv(M)\fv(C), M |=C implies M/y |=C
(a syntactic characterisation of thinness is discussed in [1]).

In [Abs, Rec], A,B denote stateless formulae given in §4.2.Syntactically C is state-
less when: (1) each dereference !y only occurs either in pre/post conditions of evalua-
tion formulae or under [!y]; (2) (un)reachability predicates occur in pre/post conditions
of evaluation formulae; and (3) evaluation formulae and content quantifications never
occur negatively (using the standard notion of negative/positive occurrences).

[Assign] uses logical substitution C{|e2/!e1|} which is built with content quantifi-
cation to represent substitution of content of a possibly aliased reference [2]. This is
defined as: C{|e2/!e1|}

def= ∀m.(m = e2 ⊃ [!e1](!e1 = m ⊃C)). with m fresh. Intuitively
C{|e2/!e1|} describes the situation where a model satisfying C is updated at a memory
cell referred to by e1 (of a reference type) with a value e2 (of its content type), with e1,2
interpreted in the current model. [Cons-Eval] is a strengthened version of the standard
consequence rule [Conseq].

The proof rules for the located judgement is given just as [2], adding the following
rule for the reference, with i, X fresh.

[Ref]
{C} M :m {C′}@ẽ x /∈ fpn(ẽ)∪ fv(ẽ)

{C} ref(M) :u {νx.(u# iX ∧u = x∧C′)}@ẽ

