
Linearity and Bisimulation

Nobuko Yoshida? Kohei Honda† Martin Berger†

Abstract. Exploiting linear type structure, we introduce a new theory
of weak bisimilarity for the π-calculus in which we abstract away not only
τ -actions but also non-τ actions which do not affect well-typed observers.
This gives a congruence far larger than the standard bisimilarity while
retaining semantic soundness. The framework is smoothly extendible to
other settings involving nondeterminism and state. As an application we
develop a behavioural theory of secrecy in the π-calculus which ensures
secure information flow for a strictly greater set of processes than the
type-based approach in [20, 23], while still offering compositional verifi-
cation techniques.

1 Introduction

Linearity is a fundamental concept in semantics with many applications to both
sequential and concurrent computation. This paper studies how a linear type
structure, close to those of Linear Logic [12] and game semantics [6, 22, 24], can
be used to give a powerful extension of a basic process equivalence, bisimilarity.
We use a linear π-calculus introduced in [35], though the framework is adaptable
to various type structures which combine linearity with other elements such as
state and nondeterminism. A central idea is that observables, an underpinning of
any behavioural semantics, can be given a radical change by exploiting the linear
type structure. The resulting bisimilarity is strictly larger than the standard
construction while retaining semantic soundness. As an application we develop
a behavioural theory of secrecy which, via semantic means, ensures secrecy for
a strictly larger set of processes than the type-based approach in [20, 23].

Let us briefly explain the key ideas of the new bisimilarity, using a process
encoding of a λ-calculus. We first recall that the linear π-calculus in [35] can
fully abstractly embed λ()×+, the simply typed λ-calculus with unit, products
and sums. The encoding [[M : α]]u for a λ-term M : α in [35] is a typed version
of Milner’s encoding [26]. We also recall that in λ()×+, the following equation is
semantically sound: Γ ` M1 = M2 : unit for any Γ ` M1,2 : unit. Categorically
this comes from the uniqueness of arrows from each object to the final one.
Operationally this is justified because the closed terms of this type are always β-
equal to its unique constant, which we write ?. For example we have the following
equation:

y : unit⇒unit ` (y?) = ? : unit

If we apply the encoding in [35] to this, we obtain the following two processes:

[[(y?)]]u
def
=!u(c).y(e)e.c [[?]]u

def
=!u(c).c.

? University of Leicester, U.K. † Queen Mary, University of London, U.K.

1

Here x(y) is an input of y via x, x(y) is an (asynchronous) output of a fresh
name y via x, and ! indicates replication. Thus, the first process, [[(y?)]]u, when
invoked at u with a continuation c, first asks at y and, after receiving an answer
at e, returns to c; while [[?]]u immediately answers at the continuation after the
invocation. Because of the obvious difference in these actions, we know [[(y?)]]u 6≈
[[?]]u where ≈ is the standard weak bisimilarity. However, since the encoding is
fully abstract, the contextual equivalence ∼=π in [35] for the linear π-calculus
does equate them. Intuitively, this is because the linear type structure allows us
to abstract away the additional non-τ -actions in the following way:

1. The action y(e) is typed as an output to replication: thus it just replicates
a process in the environment without affecting it.

2. The action e is typed as a linear input: hence it necessarily receives its dual
output, neither receiving nor emitting non-trivial information.

For these reasons, the additional actions in [[(y?)]]u never affect the environment
in a way well-typed observers could detect, and are automatically executable,
so they behave “as if they were τ -actions”, allowing them to be neglected. This
suggests the following principle of behavioural semantics in linear processes.

Categorise some of the typed actions as “non-affecting”, and abstract
away non-affecting actions as if they were τ -actions.

The type structure plays a crucial role in this principle.
Following [7, 11, 14, 18, 33], the linear π-calculus in [35] includes branching/selection,

which correspond to sums in the λ-calculus and additives in Linear Logic [12].
A branching is an input with I-indexed branches of form x[&i∈I(~yi).Pi], while
a selection is an output of form xini(~z)Q. These constructs have the follow-
ing dynamics: x[&i(~yi).Pi]|xinj(~yj)Q −→ (ν ~yj)(Pj |Q). Now consider another

equation in λ()×+, which uses sums this time. Let bool
def
= unit+unit below.

y : bool ` casey of {ini() : in1(?)}i∈{1,2} = in1(?) : bool

These terms are translated as follows:

[[casey of {ini() : in1(?)}i∈{1,2}]]u
def
= !u(c).y(e)e[&1,2.cin1]

[[in1(∗)]]u
def
= !u(c).cin1.

Both processes are equated by ∼=π. Intuitively this is because an input at e in the
first process surely arrives (due to linearity), and whichever branch is selected
it leads to the same selection cin1. We can thus augment the previous principle
as follows.

We may abstract away linear branching inputs as far as they lead to the
same action in all possible branches.

The precise formulation of this idea is given in Section 2.

Application of Linear Bisimilarity. The new bisimilarity can justify the

2

equations mentioned above, as well as many of the general equations over linear
π-terms in [35] which are used for definability arguments (Proposition 5.7 in
[35]). As another application, Section 5 discusses a behavioural theory of secure
information flow for the π-calculus, which uses a secrecy-sensitive bisimilarity
built on the top of linear bisimilarity. The theory ensures secrecy through se-
mantic means for a strictly larger set of processes than the type-based theory in
[23] (which is already powerful enough to embed representative secrecy calculi
such as [3, 32]). For example, the theory can justify the safety of the following
λ-term by encoding (> and ⊥ are high and low secrecy levels, respectively).

case y>
of {ini() : in1(?)}i∈{1,2} : bool⊥

which is untypable in standard secrecy typing systems, cf. [3, 32].

Summary of Contributions. The following summarises our main technical
contributions. To our knowledge the present work is the first to introduce a
consistent theory of bisimilarity for the π-calculus which abstracts away non-τ -
actions. The secrecy analysis in (3) would also be new.

1. The introduction of a novel bisimilarity for the π-calculus that exploits
the linear type structure. While sound, the resulting equivalence is strictly
greater than the standard weak bisimilarity.

2. The establishment of congruency of linear bisimilarity in typed contexts.
The proof is non-trivial due to the abstraction of non-τ -actions and the use
of liveness associated with linearity.

3. An application to secrecy analysis where a secrecy-enhanced version of linear
bisimilarity is used for formulating and analysing secure information flow in
the π-calculus [20, 23], ensuring secrecy for a strictly greater set of processes
than the type-based approaches in [20, 23] while still allowing compositional
verification technique.

We also observe that, while the present work concentrates on the pure linear
π-calculus, the framework is systematically extendible to more complex type
structures which integrate linearity with nontermination, nondeterminism and
state [23], to which we can use the same proof methods to obtain the corre-
sponding results. Such extensions are briefly discussed at the end of Section 5.

Related Work. Since the introduction of Linear Logic [12], linearity has been
studied in various semantic and syntactic contexts. In the setting of the π-
calculus, Kobayashi et al. [25], Yoshida [34] and Sangiorgi [29] studied linearity
and its relationship to process equivalences. The present work introduces, for
the first time, a consistent theory of bisimilarity based on a labelled transition
relation which allows to abstract away non-τ -actions using linear types.

In theories of secure information flow, equality over programs often play a
central role, cf. [2, 3, 10, 13, 30]. Among them, Focardi et al. [9, 10] present a
bisimulation for cryptographic protocols where high-level actions are abstracted
away. In contrast with the present work, [9, 10] are based on CCS without

3

using type structure. Abadi and his colleagues studied several typing systems
and their equivalences for the Spi-calculus and Join calculi in a series of work,
e.g. [1, 2, 4]. In particular in [1] Abadi establishes a secrecy theorem based on a
may-equivalence by using type information for controlling the interface of the
attacker. Abadi, Fournet and Gonthier [5] also study a process calculus with
constructs for authentication and show a full abstraction translation of this cal-
culus into a Join-calculus. The main difference with [1, 2, 5] is that we take more
abstract approach using linearity of communication in order to limit the envi-
ronments of opponent processes without specific security constructors such as
signatures and nonces, and then apply it for information flow analysis by adding
simple security levels to channels. Hennessy and Riely [13] use a secrecy-sensitive
may-equivalence for noninterference in the π-calculus. The present work intro-
duces a theory of bisimilarity based on linearity which is directly applicable to
secrecy of divergent programming languages. This line of study is not developed
in [1, 2, 4, 5, 13]. We also believe our linear bisimilarity technique can be adapted
to advanced security constructs such as cryptography [1, 4], authentication [5]
and access controls [13] where linearity is often vital. This would allow to verify
more protocols compositionally. Finally the first two present authors proposed,
in [20] (with Vasconcelos) and in [23], type systems for the π-calculus which en-
sure secrecy. The present paper gives a semantic theory of secrecy, non-trivially
extending the syntactic theories in [20, 23].

Outline of the paper. Section 2 briefly reviews the linear π-calculus in [35].
Section 3 introduces linear bisimilarity, whose congruency proof is given in Sec-
tion 4. Section 5 discusses an application of the linear bisimilarity to secure
information flow analysis. For details of the syntax and types used in the paper,
the reader may refer to [7, 35].

Acknowledgements. The authors thank Martin Abadi for his comments on an
early version of this paper. The first author is partially supported by by EPSRC
grant GR/R33465/01. The second and the third authors are partially supported
by EPSRC grant GR/N/37633.

2 Preliminaries

2.1 Processes and Channel Types

The set of processes is given by the following grammar [7, 35]. Below and hence-
forth x, y, . . . range over a countable set of names.

P ::= x(~y).P | x(~y)P | x[&i∈I (~yi).Pi] | xini(~y)P | P |Q | (ν x)P | 0 | !P.

x(~y).P (resp. x(~y)P) is a unary input (resp. unary output), while x[&i∈I(~yi).Pi]
(resp. xini(~y)P) is a branching (resp. selection). P |Q is a parallel composition,
(ν x)P is a restriction, and !P is a replication. In !P we assume P is either a unary
or branching input. The definitions of structural equality ≡, given in Appendix A
is standard except for how we ensure output asynchrony. The reduction relation

4

−→ is generated from the following rules, closed under output prefix, restriction
and parallel composition (modulo ≡).

x(~y).P |x(~y)Q −→ (ν ~y)(P |Q)
!x(~y).P |x(~y)Q −→ !x(~y).P |(ν ~y)(P |Q)

x[&i(~yi).Pi]|xini(~yi)Q −→ (ν ~yi)(Pi|Q)
!x[&i(~yi).Pi]|xini(~yi)Q −→ !x[&i(~yi).Pi]|(ν ~yi)(Pi|Q)

Action modes, ranged over by p, . . ., are members of the sets {↓, !} (written
pI, . . .), and {↑, ?} (written pO, . . .). The dual p of p is given by ↓ =↑, ! = ?
and p = p. Then the set of channel types is given by the following grammar. For
simplicity we assume indices i range over a fixed set {1, 2}.

τ ::= τI | τO | ∗ τI ::= (~τO)
pi | [&i ~τOi]

pi τO ::= (~τI)
po | [⊕i ~τIi]

po

Above ~τ denotes a vector of channel types. We define τ , the dual of τ , by dualising
the action modes and exchanging ⊕ and & of τ . md(τ) is ∗ if τ = ∗, else
the outermost action mode of τ . On types � is the least commutative partial
operation such that (1) τ � τ = ∗ (md(τ) =↓), (2) τ � τ = τ (md(τ) = !) and
(3) τ � τ = τ (md(τ) = ?). A branching type is sometimes written [τ1&τ2]

p

and similarly for selection. If τ � τ ′ is defined we say they compose. Following
[7, 22, 35], we assume the following sequentiality constraint, which (together with
IO-alternation and other elements in the linear type structure) comes from game
semantics. We state the constraint only for unary types: for branching/selection
types, we require the same constraint for each summand.

• In (~τ)↓, md(τi) = ? for each 1 ≤ i ≤ n. Dually for (~τ)↑.

• In (~τ)! md(τi) ∈ ? for each 1 ≤ i ≤ n except at most one j for which
md(τj) =↑. Dually for (~τ)? .

2.2 Typing and Typed Processes

An action type is a finite acyclic directed graph whose nodes have the form x : τ
such that no names occur twice and each edge is of form x : τ → x′ : τ ′ with
either md(τ) =↓ and md(τ ′) =↑, or md(τ) = ! and md(τ ′) = ?. We write A(x)
for the channel type assigned to x occurring in A. The partial operator A�B is
defined iff channel types in common names compose and the adjoined graph do
not have a cycle. If so, the result is a graph in which intermediate edges are taken
away from the adjoined graph (see Appendix B for detailed formal definitions).
To avoid divergence, this operator ensures that processes never exhibit circular
dependency in actions. For example, x : τ1 → y : τ2 and y : τ2 → x : τ1 are not
composable. fn(A) and md(A) denote the sets of free names and modes in A,
respectively. A � B indicates A � B is defined.

Sequents of the linear typing have the form ` P . A.1 The rules are given in
Appendix C. The system is identical with [35] except that we assume a linear

1 In [35] we used a different main sequent, Γ ` P .A. This is equivalent to the present
one by adjoining Γ to the right-hand side.

5

input does not suppress more than one linear output.2 If ` P .A is derivable, we
say P is typable with A. For brevity we sometimes write P A instead of ` P . A.
Typable processes are often called linear processes.

Example 1. (linear processes)

1. ` x . x : ()↑ and ` x.0|x . x : ∗. The former can also be typed with x : ()? .
2. `!u(c).c . u : (()↑)! and `!u(c).x(e)e.c . u : (()↑)! →x : (()↓)? .
3. Let B = [ε⊕ε]↑ (where ε is the empty vector). Then `!u(c).x(e)e[.cin1&.cin2].

u : (B)! → x : (B)? . Other terms typable with this type include !u(c).cin1

and !u(c).x(e)e[.cin1&.cin1] as well as their symmetric variants.

The following properties of typed terms are from [35]. (3) is a consequence of
strong normalisability of linear processes and will play an important role later.

Proposition 1.

1. (subject reduction) If ` P . A and P −→ Q then ` Q . A.
2. (one-step confluence) If ` P . A and P −→ Qi (i = 1, 2) then Q1 ≡ Q2 or

Qi −→ R (i = 1, 2) for some R.
3. (liveness) Let ` P . A⊗x : τ with md(τ) =↑ and md(A) ⊆ {!, ∗} (⊗ is the

graph union). Then P −→∗ P ′ such that P ′ ≡ x(~y)R or P ′ ≡ xinj(~y)R.

2.3 Contextual Congruence and Bisimilarity

A relation R over typed processes is typed when P A1
1 RP A2

2 implies A1 = A2.
We write P1 R

A P2 when P A
1 and P A

2 are related by a typed relation R. A
typed congruence is a typed relation which is an equivalence closed under all
typed contexts. The contextual congruence ∼=π is the maximum typed congruence
satisfying the following condition (B appeared in Example 1).

If P ⇓i
x and P ∼=x:B

π Q, then Q ⇓i
x (i = 1, 2)

where P ⇓i
x means P −→∗ xini(~y)P ′. The relation is maximally consistent in

the sense that any addition of equations leads to inconsistency.
The congruence ∼=π may be considered as giving the maximal meaningful way

to equate processes. A more restricted and more tractable equality is obtained
using labelled transition. Let l, l′, . . . be given by:

l ::= τ | x(~y) | x(~y) | xini(~y) | xini(~y)

bn(l) denotes bound names in l. If l 6= τ , we write sbj(l) for the initial free

name of l. Using these labels, the typed transition P A l
−→ QB is defined as in

Appendix D. The weak bisimilarity induced by the transition is denoted ≈.
As indicated in the introduction, ∼=π is strictly greater than ≈. One of the

aims of the present work is to fill the gap between ≈ and ∼=π, at least partially,
without loosing the ease of reasoning of ≈.
2 This condition, which we call unique-answer-per-thread, is essentially the same con-

dition as the one used for sequentialisation in Proposition 5.6 in [35], and leads to
a more elegant technical development of the theory of linear bisimilarity without
sacrificing basic expressiveness of the calculus.

6

3 Linear Bisimilarity

3.1 Categorising Actions

We begin our path towards the definition of linear bisimilarity with classifying
types according to the following criteria: whether typable actions affect the en-
vironment non-trivially; and whether these actions are guaranteed to take place.

Definition 1. (affecting and enabled types)

1. τ is affecting iff there exist ` P1,2 . x : τ and a typed context C[·] such that
` C[Pi] . u : B, C[P1] ⇓1

u and C[P2] ⇓2
u.

2. τ is enabling iff ` P . x : τ implies P −→∗ P ′ l
−→ such that sbj(l) = x. τ is

enabled if τ is enabling.

Example 2. (affecting and enabled types)

1. B, (B)! and ((B)!)↑ are affecting but ((B)!)? and (((B)!)?)↓ are not. It is
notable that no τ such that md(τ) ∈ {?, ↓} is affecting.

2. Any τ such that md(τ) ∈ {↓, ↑, !} is enabling, while any τ such that md(τ) =
? is not. Hence all and only types that are enabled are those with outermost
modes ↓, ↑, ?.

As suggested in the above example, we have an easy rule to determine whether
a type is affecting or not, based on the shape of types.

Proposition 2. Define Aff as the smallest set of types satisfying the following
conditions.

– [⊕i=1,2~τi]
↑ ∈ Aff.

– (τ1..τn)↑ ∈ Aff when τi ∈ Aff for some i (1 ≤ i ≤ n).
– (τ1..τn)! when τi ∈ Aff for some i (1 ≤ i ≤ n).
– [&i=1,2τi1..τini

]! ∈ Aff when τij ∈ Aff for some i and j (i ∈ {1, 2}, 1 ≤ j ≤
ni).

Then τ is affecting iff τ ∈ Aff.

Note that τ such that md(τ) ∈ {?, ↑} is never in Aff by definition. Below and
henceforth we say P is prime with subject x if either (1) P is input-prefixed with
subject x or (2) P has form x(y1..yn)ΠiRi or xini(y1..yn)ΠiRi where each Ri is
prime with subject x.

Proof. (τ ∈ Aff implies τ affecting) By induction on the generation rules
above. We use the following fact: to differentiate ` P1,2 . x : τ , we can always
choose a context (ν x)(R|[]) where R is a prime term with subject x, typed as τ ,
such that (ν x)(R|P1) is distinguishable from (ν x)(R|P2). This is a consequence
of the Context Lemma and, in addition, operational reasoning based on the type
structure, as noted in [35] for linear processes. A detailed proof for affine types
is given in [7]. The case of [⊕i=1,2~τi]

↑ ∈ Aff is obvious. Of the remaining cases
we only present one as the others are similar. Take, for simplicity, (τ)! with τ

7

affecting. Take the context (ν x)(R|[]) which differentiates between ` P1,2.x : τ .

Now let P ′
i

def
=!u(x).Pi (i = 1, 2). Clearly ` P ′

1,2 . x : (τ)! . These agents can now

be distinguished by (ν u)(u(x)R|[]), showing (τ)! is affecting.

(τ affecting implies τ ∈ Aff) We establish the contrapositive by noting that
the complement of Aff is generated in a similar way.

Remark 1. It is worth noting that, in the following technical development,
we may as well classify all linear unary types as affecting, with no change in
the resulting bisimilarity. However the behavioural notion of affecting types in
Definition 1 motivates our construction on a uniform basis.

The classification of types given above induces the classification of actions. First,
an action annotated with an action type, say lA, is called a typed action if the
shape of l conforms to A. For example, if l = xin1 then lA is a typed action iff
A(x) = B. τ

A is a typed action for an arbitrary A. If l 6= τ and lA is typed, the
type of lA is A(sbj(l)). Then we say:

Definition 2. (affecting and enabled typed actions) lA is affecting if l 6= τ and
the type of lA is affecting; lA is non-affecting if it is not affecting. Further lA is
enabled if l = τ or the type of lA is enabled.

Table 1 illustrates how typed actions are classified, writing τ , ↓(), ↑(), ↓&, ↑⊕,
! and ? for (respectively) the τ -action, unary linear input, unary linear output,
linear branching, linear selection, replicated unary/branching input, and its dual
output.3

τ ↓ () ↑ () ↓& ↑⊕ ! ?

affecting no no yes no yes yes no

enabled yes yes yes yes yes no yes

Table 1. Classification of Actions

We can now introduce invisibility under linear type structure which dictates
the “τ -like” nature of certain non-τ -actions in the typed setting. Below and
henceforth ∆, Γ, . . . range over finite sets of names. fn(l) is the set of free names
in l while bn(l) is the set of free names in l.

Definition 3.

1. (invisible actions) A typed action lA is ∆-invisible (∆-i.) when either fn(l)∩
∆ = ∅ or, if not, lA is an output which is non-affecting.4 If lA is ∆-invisible
and, moreover, is enabled, then lA is ∆-strongly invisible (∆-s.i.).

3 We classify unary linear outputs ↑ () as affecting in Table 1 even though they are
sometimes not, as is seen from Proposition 2. An example is ()↑.

4 We can consistently abstract away linear input at ∆. For simplicity and because this
may not significantly change the resulting relation, we use the present definition.

8

2. (abstracted transitions) P A l̂
−→∆ QB when either: (1) P A l

−→ QB or (2)

B = A, Q = P and lA is ∆-invisible. P A =⇒∆ QB denotes P A l1...ln−→ QB

(n ≥ 0) where each li is strongly ∆-invisible; then P A l
=⇒∆ QB denotes

P A =⇒∆
l

−→∆=⇒∆ QB; finally P A l̂
=⇒∆ QB denotes either P A l

=⇒∆ QB

or P A =⇒∆ QB where l is invisible and fn(B) ∩ bn(l) = ∅. If P A =⇒∆ QB

is induced by P A l1...ln−→ QB , we say the latter underlies the former.

Note that the standard abstracted transitions are a special case of those defined

above. For example, P A l̂
=⇒∆ QB means P A l1..ln−→

l̂
−→∆

l′1..l′m−→ QB for some ∆-
strong invisible l1..ln and l′1..l

′
m; if we restrict all of l1..n and l′1..m to τ -actions,

and use
l̂

−→ instead of
l̂

−→∆, then we obtain the standard notion of abstracted
transition. Note also there may be more than one sequences of non-τ -actions
which underly a given abstracted transition.

3.2 Semi-typed Relation and Branching Closure

The invisibility of non-τ -actions necessitates one fundamental change in the no-
tion of bisimulation. As an illustration we go back to the initial example in the
introduction. The two typed processes concerned were !x(c).cA and !x(c).y(e)e.cA

with A = x : (()↑)! → y : (()↓)? . After the common initial action, the typing
becomes A⊗ c : ()↑. But if y(e)e.cA has an output action (which should and
can be abstracted away), then e becomes free in the residual and appears in its
type environment. This state should be related to the other process which still
has type A⊗ c : ()↑. Consequently, a bisimulation needs to relate processes with
distinct action types.

Definition 4. A relation R on typed processes is semi-typed when P ARQB

implies that the projections of A and B on fn(A) ∩ fn(B) coincide. We write
P AR∆QB if R is semi-typed and fn(A) ∩ fn(B) = ∆, in which case we say P A

and QB are related by R at ∆. The maximum typed subrelation of a semi-typed
R is called its centre.

Using semi-typed relation, a natural way to define a bisimulation would be as
follows: a semi-typed R such that, whenever P A1

1 RP A2
2 with ∆ = fn(A1) ∩

fn(A2), we have the following and its symmetric case:

whenever P A1

1
l

−→ QB1

1 , there is P A2

2
l̂

=⇒∆ QB2

2 such that QB1

1 RQB2

2 .

However the following example shows that congruency is lost if we allow branch-
ing.

Example 3. xinx:B
1 and yiny:B

1 are bisimilar at ∅ in the above definition. Simi-
larly x[&1,2zini] and y[&1,2zini] are bisimilar at z. However when we compose
them in pairs, (xin1|x[&1,2zini]) and (yin2|y[&1,2zini]) are not bisimilar: in
fact these terms can be regarded as, up to redundant reduction, zin1 and zin2,
which would not be equated under any reasonable semantic criteria.

9

The problem in this example is in the second equation: intuitively, x[&1,2zini]
and y[&1,2zini] cannot be equated because, at the disparate interfaces (here x
and y), we should expect anything can happen: thus it is possible, at x, the
first process receives the left selection, while, at y, the second process receives
the right selection (which is precisely what happens in the composition). This
indicates that we should say “for all possible branching at disparate channels,
the behaviours of two processes at common channels coincide.” This idea is
formalised in the following definition. Below t, ti, . . . range over sequences of
typed transitions. A branching variant of, say, xin1(~y) is xin2(~z) (conforming
to the given typing), taken up to α-equality.

Definition 5. (branching closure) A set {P A ti−→ QBi

i }i∈I of sequences of typed
transitions is ∆-branching closed (∆-b.c.) iff: whenever ti = sls′ ∈ S with l being
a linear branching input such that fn(l) ∩ fn(∆) = ∅, there is tj = sl′s′′ (j ∈ I)
for each branching variant l′ of l.

Accordingly we say {P A l̂
=⇒∆ QBi

i }i∈I is ∆-branching closed if there exists a

∆-branching closed set {P A ti−→ QBi

i }i∈I where P A ti−→ QBi

i underlies P A l̂
=⇒∆

QBi

i for each i. Similarly for other forms of abstracted transitions.

3.3 Linear Bisimulation

We can now introduce a new bisimilarity on linear processes, which we call linear
bisimilarity.

Definition 6. (linear bisimulation) A semi-typed R is a linear bisimulation
when P A1

1 RP A2
2 with ∆ = fn(A1) ∩ fn(A2) implies the following and its sym-

metric case: whenever P A1
1

l
−→ QB1

1 , there is a ∆-closed {P A2
2

l̂
=⇒∆ QB2i

2i }i∈I

such that QB1
1 RQB2i

2i for all i ∈ I . The maximum linear bisimulation exists,
denoted ≈L.

Simple examples of (non-)bisimilarity follow. Below and henceforth we omit ob-
vious type annotations, assuming all processes are well-typed. We often annotate
≈L as ≈x,y

L (which follows Definition 4) to make intersecting channels explicit.

Example 4. 1. x.0 ≈∅
L
0 and !x.0 ≈∅

L
0 and x|x ≈x

L
x ≈x

L
0.

2. x.yin1 ≈y
L yin1. Intuitively this is because an output at x will surely arrive

in which case the former process has the same observable as the latter.
3. Because of the lack of branching closure, we have x[&1,2zini] 6≈z

L
y[&1,2zini].

On the other hand, we have x[&1,2zin1] ≈z
L

y[&1,2zin1] ≈z
L

zin1.

We prove the following result in the next section.

Theorem 1. The centre of ≈L is a congruence.

Since an action of B-type is always visible, we immediately obtain:

10

Corollary 1. The centre of ≈L is a subrelation of ∼=π.

We give simple applications of the linear bisimilarity. Below (1) says processes
which are entirely typed with ?-types are equated with the inaction (pA means
md(A) = {p}). (2) says there is essentially a unique inhabitant in the unit type
of λ-calculi. (3) uses (2) to derive the equality over unit-type λ()×+-terms.

Proposition 3.
1. (innocuous actions, cf. [20]) If ` P . ?A then P ≈

fn(A)
L 0.

2. (unit inhabitation, 1) ` P . A with A = x : (()↑)! →A0 implies P≈L

x!x(c).c.
3. (unit inhabitation, 2) If Γ ` M : unit in λ()×+ then Γ ` M ∼= ? : unit

where ∼= is the standard contextual equivalence in λ()×+.

Proof. For (1), let R be a semi-typed relation given by: P ARΓ0 iff (i) Γ ⊂ fn(A)

and (ii) x ∈ Γ implies md(A(x)) = ?. Assume P A l
−→ QB . If l 6= τ and

sbj(l) ∈ Γ then the type of lA is ?-mode, so lA is Γ-invisible. If not, obviously
lA is Γ-invisible. So in both cases 0 simulates this by the inaction. Since Γ-part
of B is identical with that of A, we are done. For (2), by P ≡!x(c).P ′|R with
` R . ?A0, (1) and Theorem 1, we can safely ignore R. So assume P ≡!x(c).P ′.
Again by Theorem 1 it is enough to show P ′ ≈c

L
c. Since all actions on both sides

are invisible we are done. (3) is immediate from (2) and Theorem 1 together with
Theorem 5.9 (full abstraction) in [35].

Other applications include a simple proof of the equations for sequentialisation
used in [35], as well as a behavioural theory of secrecy which we develop in
Section 5.

4 Properties of Linear Bisimilarity

4.1 Preparation

The purpose of this section is to establish congruency of (the centre of) ≈L.
We shall use the following basic properties of typed transitions. The proofs are
straightforward and are omitted. Below in (1, 2), the index of an action is the
least subterm(s) that the action originates from (cf. [7, Appendix F]).

Proposition 4.

1. If P A li−→ QBi

i (i = 1, 2) with l1 = τ and l2 6= τ . Then the indices of these
two actions are distinct.

2. (confluence) Let P A li−→ QBi

i (i = 1, 2) such that the indices of these two

actions are distinct. Then QB1
1

l2−→ RC and QB2
2

l1−→ RC for some RC.

3. (input availability) Let md(A(x)) ∈ {↓, !}. Then P A l
−→ where l is input

with subject x. Hence if P A l
=⇒∆ QB with l input then P A l

−→=⇒∆ QB.
4. (strengthening) If lA is Γ-(s.)i. and ∆ ⊆ Γ then lA is ∆-(s.)i. Hence if

P A l̂
=⇒Γ QB and ∆ ⊆ Γ with fn(l) ⊂ fn(∆), then P A l̂

=⇒∆ QB.

5. (weakening) Let P A l
−→ and x 6∈ fn(P) ∪ Γ. Then if lA is Γ-(s.)i, then lA

is Γ · x-(s.)i. Hence if P A l̂
=⇒Γ QB and x 6∈ fn(P) ∪ Γ, then P A l̂

=⇒Γ·x QB.
6. (disjointness) P A ≈L QB for any P A, QB such that fn(A) ∩ fn(B) = ∅.

11

4.2 Bisimulation over Unary Processes

We first summarise a property of linear bisimulation over unary processes, i.e.
processes without branching or selection. We denote this subset of linear pro-
cesses by P() and use ≈L() for the linear bisimilarity over P(). In the following,
A1 ./ A2 means A1 � Γ = A2 � Γ where Γ = fn(A1) ∩ fn(A2).

Proposition 5. Let ` Pi .Ai (i = 1, 2) such that A1 ./ A2. Then P A1
1 ≈L() P A2

2 .

Proof. We show the set of such pairs is a bisimulation. First we note that P A l
−→

QB implies A ./ B. Take P A1
1 and P A2

2 as above and let ∆ = fn(A1) ∩ fn(A2).

Let P A1
1

l
−→ QB1

1 . If l is invisible this is emulated by inaction. If l is visible,
then (by P1 being unary) l is an replicated input at ∆, with B1 = A1⊗C for

some C. By A1 ./ A2 and Proposition 4 (3), we know P A2
2

l
−→ QA2⊗C

1 . Since
A1⊗C ./ A2⊗C, we are done.

Using this lemma, it is easy to prove the compatibility of ≈L() under all typed
operators since ./-related processes always result in ./-related processes by each
typed operation (for example, if ` Pi . Ai and ` Qi . Bi with Ai � Bi, A1 ./ A1

and B1 ./ B1, then we have ` P1 | Q1 . A1 � B1, ` P2 | Q2 . A2 � B2 and
(A1 � B1) ./ (A2 � B2)). Hence we have:

Corollary 2. 1. Let ` Pi . A (i = 1, 2). Then P A
1 ≈L() P A

2 .
2. ≈L() is a congruence over P(), and ≈L() = ∼=π in P().

This corollary says that any two unary processes of the same type are seman-
tically equal. This is reminiscent of the following property of a simply typed
λ-calculus: any two terms of a type generated from the unit type by applying
the function space and the product zero or more times, are semantically equal
(which in turn corresponds to the fact that all objects generated from a final
object by product and exponentiation are again final).

4.3 Congruency of ≈L (1)

As seen in Example 4, Proposition 5 is not valid in the full calculus (e.g. xin1 6≈L

xin2). The proof for a closure of the full calculus is non-trivial due to the strong
invisibility and branching-closure. First, we state the following lemma related to
the branching-closedness.

Lemma 1.

1. (concatenation) Assume {P
l̂1=⇒Γ P ′

k} and {P ′
k

l̂2=⇒Γ P ′′
jk
} are Γ-b.c. Then

{P
l̂1·l̂2=⇒Γ P ′

jk
} are Γ-b.c.

2. (split) Assume {P =⇒Γ Pk
l

−→ P ′
k =⇒Γ P ′′

kj
} is Γ-b.c. Then {P =⇒Γ Pk}

and {P ′
k =⇒Γ P ′′

kj
} are Γ-b.c.

12

3. (restriction) {P A l̂
=⇒∆·x QBi

i } is ∆ · x-b.c. with sbj(l) 6= x and md(A(x)) ∈

{!, ∗} iff {(ν x)P A/x l̂
=⇒∆ (ν x)Q

Bi/x
i } is ∆-b.c.

Proof. (1) Obvious by definition.

(2) Suppose {P =⇒Γ Pk
l

−→ P ′
k =⇒Γ P ′′

kj
} is Γ-b.c. Assume towards a contra-

diction that {P =⇒Γ Pk}k∈K is not a Γ branching-closed. Suppose P
lk,1...lk,n
−→ Pk

underlines P =⇒Γ Pk. Then there is a transition sequence P
lk+1,1...lk+1,n

−→ Pk+1

such that lk+1,m is a branching variant of lj,m for some 1 ≤ m ≤ n and j ∈ K.

But this contradicts the assumption that {P =⇒Γ Pk
l

−→ P ′
k =⇒Γ P ′′

kj
} is

branching closed. We can similarly prove branching-closure of {P ′
k =⇒Γ P ′′

kj
} for

each k.

(3) Mechanical by the definition of
l

−→.

Now we show that ≈L is transitive on its centre.

Proposition 6. (transitivity) Suppose P A1
1 ≈Γ

L
P A2

2 and P A2
2 ≈∆

L
P A3

3 such
that fn(A1) ∩ fn(A3) = Γ ∩ ∆. Then P A1

1 ≈Γ∩∆
L

P A3
3 .

Proof. The proof uses Proposition 4 (4) and Lemma 1 (1). We show the generated
relation to be a bisimulation. Let P A1

1 ≈Γ
L

P A2
2 and P A2

2 ≈∆
L

P A3
3 s.t. fn(A1) ∩

fn(A3) = Γ ∩ ∆. Let P A1
1

l
−→ QB1

1 . By assumption and by Lemma 1 (1):

{P A2
2

l1···ln−→
l̂

−→∆
l′1···l

′

m−→ QB2i

2i } with QB2i

2i ≈L QB1
1

where each of li and l′j is strongly ∆-invisible. Again by assumption:

{P A3
3

l̂1=⇒Γ ..
l̂n=⇒Γ

l̂
−→Γ

l̂′1=⇒Γ ..
ˆl′m=⇒Γ Q

B3ik

3ik
} with Q

B3ik

3ik
≈L QB2i

2i

Note that this is again ∆-b.c. by Lemma 1 (1). We now observe that, by Propo-

sition 4 (4), strongly Γ-invisible actions involved in each of
l̂i=⇒Γ and

l̂′j
=⇒Γ are

all strongly Γ ∩ ∆-invisible. Similarly li and l′j are (strongly ∆-invisible hence)
strongly Γ ∩ ∆-invisible. Thus we know

{P A3
3

l̂
=⇒Γ∩∆ Q

B3ik

3ik
} with Q

B3ik

3ik
≈L QB2i

2i

as required.

Remark 2. Proposition 6 does not hold in general if the side condition on free
names in the statement (which comes from the renaming theory over processes in
[16]) is taken off. In the light of theory in [16], we may as well require semi-typed
relations to be renaming closed, in which case this side condition is not restrictive
when, for example, we compose two semi-typed relations. The theories [15, 16]
also gives a basic framework for treating composability of two typed processes
related by (semi-typed) linear bisimilarity, which is implicit in the following
technical development.

13

Since ≈L is immediately reflexive and symmetric, it is an equivalence relation.
We can also show ≡⊂≈L by checking each equation. For example (ν x)(P |Q) ≈L

(ν x)P | Q with x 6∈ fn(Q), follows from Proposition 4 (4,5). For compatibility,
closure under prefixes is easy. For restriction, by Lemma 1 (3), we can immedi-
ately show:

Proposition 7. (restriction) Let P A1
1 ≈Γ·x

L
P A2

2 with md(A(x)) ∈ {∗, !}. Then

(ν x)P A1/x ≈Γ
L

(ν x)P
A2/x
2 .

4.4 Congruency of ≈L (2): Parallel Composition

Suppose we wish to prove the relation R
def
= {(P1 |Q1, P2 |Q2) | P1 ≈ P2, Q1 ≈

Q2} to be a bisimulation up to restriction [27] in order to show that ≈ is closed

under |. Assume P1 | Q1
l

−→ P ′
1 | Q1; then by assumption, there exists P2

l̂
=⇒

P ′
2 ≈ P ′

1, hence in the standard proof, we easily have: P2 | Q2
l̂

=⇒ P ′
2 | Q2,

and P ′
1 | Q1 R P ′

2 | Q2. However, due to strong invisibility, the same reasoning
does not work for ≈L even in the above trivial case. Recall the example in the

Introduction, P1
def
=!u(x).xin1 and P2

def
=!u(x).y(e)e.xin1. Then we know P1 ≈L

P2 because y(e) and e are both invisible, so we have P1
u(x)
−→uy P ′

1
def
= xin1 |P1 and

P2
u(x)
=⇒uy P ′

2
def
= xin1 | P2 with P ′

1 and P ′
2 bisimilar. Suppose we compose them

with Q
def
=!y(e).Q0 for some Q0 such that P1 |Q and P2 |Q are typable. Then we

have P1 |Q
u(x)
−→uy P ′

1 |Q, while we cannot have P2 |Q
u(x)
=⇒uy P ′

2 |Q, because the

only possible transition is P2 | Q
u(x)
−→

τ

−→ (ν e)(e.xin1 | Q0) | P2 | Q. In order to

achieve P ′
2

def
= xin1 | P2 from this process, e.xin1 needs an acknowledgement e

from Q0. Now we use a liveness property which extends Proposition 1 (3): if Q0

has a linear output type at e, then there always exist a finite sequence of strong

invisible transitions to emit e such that Q0
e

=⇒uy Q′
0 and Q ≈L Q′

0 | Q.
In the following we define such a chain, called call-sequence. Let us assume

P
l1·l2=⇒ Q. We write: l1 yb l2 (l1 binds l2) when the subject of l1 is bound by l2

(e.g. x(y) yb y) and l1 yp l2 (l1 prefixes l2) when the action l1 is input-prefixed

by l2 (e.g. x(y) yp z in x(y).z). Define y=yb ∪ yp. We write τ y l1 if P
l2=⇒ Q

and P has subterms Q1 and Q2 such that Q1
l

=⇒ Q′
1 and Q2

l·l2=⇒ Q′
2 with l y l2;

similarly we define l1 y τ ; we extend this to a chain l1 y τ
∗ y l2 and denote it

l1 y+ l2 ([7, Appendix F] gives a detailed definition using occurrences of terms).
Then a call-sequence (c.s.) to l under A has the following shape.

(l0 y+) l1 yb l2 y+ l3 yb l4 y+ · · · y+ l2n−1 yb l2n yp l

where md(lA2k−1) = ? and md(lA2k) =↓.

Lemma 2. (call-sequence) Let P be typable below.

1. (permutation) P
l

−→
l′

−→ P ′ with l 6y l′ implies P
l′

−→
l

−→ P ′.

14

2. (shortest c.s.) Suppose P
l

=⇒Γ with l output. Then there is a shortest

c.s. l1 y · · · y ln to l such that P
l1···ln−→

l
−→ .

3. (extended liveness) Suppose ` P.A⊗e : τ with md(τ) =↑. Then P =⇒A⊗e:τ
l

−→
with sbj(l) = e.

4. (branching-closed c.s) Suppose P
l

=⇒Γ P ′ with l linear output. Then there is

∆-branching-closed call sequences to l such that {P =⇒Γ Pk} with Pk
lk−→ P ′

k

and sbj(lk) = sbj(l).

Proof. From the following, we sometimes write τ as (l, l) explicitly if τ is done
by interaction between (the indices of) l and l.

(1) is obvious.

(2) By (1), we know there is a shortest transition sequence P
l1···ln−→

l
−→ such that

l1 y l2 · · · ln−1 y ln y l and li is Γ-s.i. Suppose md(lA) ∈ {?, ↑}. Then exactly
one of the following must be true: (a) md(ln) =↓ with sbj(ln) 6∈ Γ, or (b) ln = τ ,
since if md(ln) = !, then ln is not Γ-s.i. and ln should be input or τ .

Suppose case (a) holds. Then we have either (1) ln = l1 or (2) ln−1 yb ln
with md(ln−1) = ? since by the sequentiality constraint, linear outputs cannot
directly carry linear inputs. We then set n = n− 1, and apply the same routine.

Now suppose case (b) holds. Then we have τ
def
= (l′n, ln

′
) with md(l′n) ∈ {?, ↑}.

If ln−1 y l′n, then we just repeat the same routine by setting n = n−1. Suppose
ln−1 y ln. By input typing rules, ln−1 yb ln. Then obviously ln−1 = τ =

(l′n−1, ln−1
′
) yb ln with ln−1

′
yb ln. Hence we can use the same routine by

setting n = n − 1. We repeat this procedure until we arrive at n = 1.

(3) First, given ` P . A ⊗ e : τ , there always exists a prime ` R . B such that

B � A and A�B closed. Then by Proposition 1 (3), P |R →→
l

−→ with sbj(l) = e.

By (1), there is the shortest transitions P
l1···ln−→

l
−→ such that l1 y l2 · · · ln−1 y

ln y l. By the same reasoning as above, l1 y l2 · · · ln−1 y ln is a call sequence,
so all subjects of li with md(li) =↓ are bound by li−1 except i = 1. Hence if
md(l1) = ?, we are done. So suppose md(l1) =↓. If sbj(l1) = x ∈ fn(P), then by
definition of �, P should have a type x : τ ′ → e : τ . This obviously contradicts
the assumption P is typed by A ⊗ e : τ .

(4) By (2) and (3).

Note (3) does not restrict the shape of A, cf. Proposition 1 (3). Together with
(2), we know there is always a shortest strongly invisible call sequence to each
linear output.

We also use the following lemma. Below (1) is a basic up-to technique. (2,
3) say ?-actions can be safely neglected. (4) essentially says ≈L is closed under
injective renaming. (5,6) say that τ -actions, replicated inputs, linear outputs
and unary linear inputs can be neglected up to ≈L.

Lemma 3.
1. (up to restriction) Let a semi-typed R satisfy that P A1

1 RP A2
2 with ∆ =

fn(A1)∩fn(A2) implies the following and its symmetric case: whenever P A1
1

l
−→

15

(ν ~x)Q
B1/~x
1 , there is a ∆-b.c. closed {P A2

2
l̂

=⇒∆ (ν ~x)Q
B2i/~x
2i }i∈I such that

QB1
1 RQB2i

2i for all i ∈ I. Then R is a bisimulation.
2. (innocuousness of ?) Suppose ` P |Ri.A⊗Bi where ` P.A and ` Ri.?Ai⊗Bi

with Ai � A (i = 1, 2) and fn(B1) ∩ fn(B2) = ∅. Then (P | R1)
A⊗B1 ≈L

(P | R2)
A⊗B2 .

3. (renaming on ?) Suppose ` P.?A � B and σ is an injective renaming such

that dom(σ) = fn(A) and cod(σ) ∩ fn(P) = ∅. Then P A�B ≈
fn(B)
L PσAσ�B .

4. (renaming) Suppose Q ≈∆
L

P and σ is an injective renaming such that (a)
dom(σ) ∩ ∆ = ∅, and (b) cod(σ) ∩ (fn(P) ∪ fn(Q)) = ∅. Then Q ≈∆

L
Pσ.

5. (negligible actions) Suppose ` P . A and P
l

−→ P ′ with l = τ or md(lA) ∈
{!, ↑}. Then P ≈L P ′.

6. (linear unary input) Suppose ` P .A and P
x(~y)
−→ P ′ with md(A(x)) =↓. Then

P ≈Γ
L

P ′.

Proof. See Appendix F.1.

In the following lemma, (5) says that if a process moves via a subject which is
not in ∆, it does not change its meaning at ∆; (7) says that a ∆-closed call
sequences in which every branch gives the same answer (i.e. linear output) can
be regarded as a single thread of the standard weak transition, i.e. =⇒.

Lemma 4.

1. Let ` P . A. Assume P ≈∆
L

Q and P
l

−→ P ′ where l satisfies either (1)
l = τ , (2) md(lA) ∈ {!, ↑} with sbj(l) 6∈ ∆, or (3) l = x(~y) and md(lA) =↓
with sbj(l) 6∈ ∆. Then P ′ ≈∆

L
Q.

2. Suppose {P =⇒∆ Pj} is ∆-b.c and Pj ≈∆
L

Q for all j with ∆ = fn(P)∩fn(Q).
Then P ≈∆

L
Q.

3. Suppose P ≈∆
L

Q and P
l

−→ P ′ with l = xini(~y) with sbj(l) 6∈ ∆. Then
P ′ ≈∆

L
Q.

4. Suppose P ≈∆
L

Q and P
l

−→ P ′ with md(l) = ? with sbj(l) 6∈ ∆. Then
P ′ ≈∆

L
Q.

5. Suppose P ≈∆
L

Q and P
l

−→ P ′ where l is ∆-invisible with sbj(l) 6∈ ∆. Then
P ′ ≈∆

L
Q.

6. Suppose P ≈∆
L

Q. Assume P
l1···ln=⇒

l
−→ P ′ where l1 · · · ln is a ∆-strong invis-

ible call sequence to l such that sbj(l) 6∈ ∆. Then P ′ ≈∆
L

Q.
7. Suppose P ≈∆

L
Q. Assume {P =⇒∆ Pj} is ∆-branching closed call se-

quences, and for all j, we have Pj
l

−→ P ′
j with l linear output. Then Q ≈∆

L

Pj .

Proof. See Appendix F.2.

Using Lemma 4 (2), we can reduce the task of checking a bisimulation closure
in linear processes.

16

Lemma 5. Suppose R is a semi-typed relation such that when P A1
1 RP A2

2 with
∆ = fn(A1) ∩ fn(A2) implies the following and its symmetric case: whenever

P A1
1

l
−→ QB1

1 , there is a ∆-closed {P A2
2 =⇒∆

l̂
−→∆ QB2i

2i }i∈I such that QB1
1 RQB2i

2i

for all i ∈ I. Call such a relation a restricted bisimulation. Then the maximum
restricted bisimulation coincides with ≈L.

Proof. Let
◦
≈L be the maximum restricted bisimulation. First, obviously

◦
≈L⊆≈L.

For the reverse inclusion we show that ≈L is a restricted bisimulation. Let us as-

sume P1 ≈L P2 and P A1
1

l
−→ QB1

1 . Then there is a ∆-closed {P A2
2

l̂
=⇒∆ QB2i

2i }i∈I

such that QB1
1 ≈L QB2i

2i for all i ∈ I . First, we can write P A2
2 =⇒∆

l̂
−→∆

QB2ki

2ki =⇒∆ QB2i

2i by definition. Then by the Split Lemma (Lemma 1 (2)),

{Q
B2ki

2ki
=⇒∆ QB2i

2i } is ∆-b.c. for each ki. Then by Lemma 4 (2), QB1
1 ≈L QB2i

2i

implies QB1
1 ≈L Q

B2ki

2ki
for each ki. Hence ≈L is a restricted bisimulation, that is

≈L⊆
◦
≈L, as required.

By the following result, we can further reduce the conditions needed for a bisim-
ulation closure. The reduction comes from Proposition 4 (3)) (input availability)
and Lemma 4 (5). The form of the resulting relation, as stated in the follow-
ing proposition, is similar to the branching bisimulation studied in (untyped)
confluence processes [28].

Lemma 6. Suppose R is a semi-typed relation such that when P A1
1 RP A2

2 with
∆ = fn(A1) ∩ fn(A2) implies the following and its symmetric case:

– whenever P A1
1

l
−→ QB1

1 where l is ∆-invisible and sbj(l) 6∈ ∆, then P A2
2 RQB1

1 .

– whenever P A1
1

l
−→ QB1

1 with l input such that sbj(l) ∈ ∆, then there is

P A2
2

l
−→∆ QB2

2 such that QB1
1 RQB2

2 .

– whenever P A1
1

l
−→ QB1

1 with l ∆-visible linear output such that sbj(l) ∈ ∆,

then there is a ∆-closed call sequences to l {P A2
2 =⇒∆

l
−→ QB2i

2i }i∈I such

that QB1
1 RQB2i

2i for all i ∈ I.

– whenever P A1
1

l
−→ QB1

1 with md(lA1) = ? and sbj(l) ∈ ∆, there is a ∆-
closed call sequence to l, {P A2

2 =⇒∆ QB2i

2i }i∈I , such that either QB1
1 RQB2i

2i

or QB2i

2i
l

−→ Q′
2i

B′

2i such that QB1
1 RQ′

2i
B′

2i .

Then the maximum such relation, denoted by
•
≈L, coincides with ≈L.

Proof. By Lemma 5, we shall show
•
≈L coincides with

◦
≈L. Obviously

•
≈L⊆

◦
≈L.

Hence we show
◦
≈L⊆

•
≈L by showing

◦
≈L is a (further) restricted form of bisimula-

tion given in Lemma 6. Assume P1
◦
≈L P2.

Case 1: Suppose P1
l

−→ Q1 where l is τ or l is ∆-invisible and sbj(l) 6∈ ∆.

By Lemma 4 (1,5), we always have P2
◦
≈L Q1. Hence by P2

ε
=⇒ P2, we have

P2
◦
≈L Q1.

17

Case 2: Suppose P1
l

−→ Q1 with sbj(l) ∈ ∆ and l input, and there is a ∆-b.c.

{P A2
2

l
=⇒∆ QB2i

2i }i∈I such that QB1
1

◦
≈L QB2i

2i . Then by (permutation) and (in-

put availability), we always have P A2
2

l
−→ P A3

3 =⇒∆ QB2i

2i . Then by Lemma 4

(2), P A3
3

◦
≈L P A2

2 as in the proof of Lemma 5.

Case 3: Suppose P1
l

−→ P2 with sbj(l) ∈ ∆ and l linear output, and there

is a ∆-b.c. {P A2
2

l
=⇒∆ QB2i

2i }i∈I such that QB1
1 ≈L QB2i

2i . Then by (permuta-
tion) and Lemma 2 (2, shortest c.s.), we always have a ∆-closed call-sequence

{P A2
2 =⇒∆ R

C2j

2j }j∈J such that R2j
l

−→ R′
2j =⇒∆ QB2i

2i . Then we use Proposi-

tion 4 (2) as in the above cases in order to obtain Q1
◦
≈L R′

2j .

Case 4: Suppose P1
l

−→ P2 with l a replicated output. This case is the same as
Case 3 above by using (permutation), Lemma 2 (2) and Proposition 4 (2).

This exhaust all cases, hence we know
◦
≈L⊆

•
≈L.

Lemma 7. (composition) Suppose ` P . A and ` Qi . Bi with Q1 ≈∆ Q2,
A � Bi and fn(A) ∩ fn(B1) ⊇ fn(A) ∩ fn(B2) = ∆. Moreover the linear output
outside of ∆ is not suppressed by a linear input at ∆. Assume {P =⇒∆ Pk}
is ∆-b.c. Then there exists a ∆-b.c. {(P | Q1) =⇒∆ (ν ~wj)(P

′
j | Qj)} such that

Qj ≈∆
L

Q2 and P ′
j ≈L Pk for some k.

Proof. See Appendix F.3.

We are ready to prove the closure under parallel composition.

Proposition 8. (parallel composition) Let P A
1 ≈L P A

2 and QB
1 ≈L QB

2 such that
A � B. Then P1|Q

A�B
1 ≈L P2|Q

A�B
2 .

Proof. We use the characterisation of ≈L in Lemma 6. Let R be generated by:
(ν ~w1)(P

A1
1 | QB1

1) R (ν ~w2)(P
A2
2 | QB2

2) iff P1 ≈∆1
L

P2, Q1 ≈∆2
L

Q2, ∆ =
∆1 ∪ ∆2, (∆ \ ∆i) ∩ (fn(Pi) ∪ fn(Qi)) = ∅, {~wi} = (fn(Pi) ∩ fn(Qi)) \ ∆ such
that any linear output outside of ∆ is not suppressed by a linear input at ∆.

We show R is a bisimulation. First suppose (ν ~w1)(P1 | Q1)
l

−→ (ν ~w1)(P
′
1 | Q1)

with P1
l

−→ P ′
1.

Case 1: Suppose sbj(l) ∈ ∆ and l is an input. Then by assumption, we have

P2
l

−→∆ P ′
2 ≈L P ′

1. Also obviously x : τ ∈ |A2 � B2| with md(τ) ∈ {↓, !}. Hence

by (input availability), (ν ~w2)(P2 | Q2)
l

−→ (ν ~w2)(P
′
2 | Q2), as required.

Case 2: Suppose sbj(l) 6∈ ∆ and l is invisible. Then by assumption, we have

P2 ≈L P ′
1. Hence we have (ν ~w2)(P2 |Q2)

ε
=⇒ (ν ~w2)(P2 |Q2) R (ν ~w1)(P

′
1 |Q1).

Case 3: Suppose sbj(l) ∈ ∆ and l is a ∆-visible linear output. Then by as-
sumption, there exits a ∆-branching closed call sequence {P2 =⇒∆ P ′

2i} such

that P ′
2i

l
−→ P ′

3i ≈L P ′
1. Then by Lemma 7, we have a ∆-branching closed

call sequences {(ν ~w2)(P2 | Q2) =⇒∆ (ν ~w2
′)(P ′′

2k | Q2k)} such that Q2k ≈L Q1,

P ′′
2k ≈L P ′′

2i, and P ′′
2k

l
−→ P ′′

3k. By Lemma 4 (2), P ′′
3k ≈L P ′′

3i. Hence noting

18

fn(P ′′
3k) ∩ fn(P3i) ∩ fn(P ′

1) = fn(P ′′
3k) ∩ fn(P ′

1), we use transitivity to obtain
P ′′

3k ≈L P ′
1. Hence (ν ~w2

′)(P ′′
3k | Q2k) R (ν ~w1)(P

′
1 | Q1), as required.

Case 4: Suppose l is a replicated output. This case is similar to the above using
Lemma 7 again.

For the condition of suppression, we check that it is maintained during any

transition P
l

−→ P ′ in general. This is straightforward by the typing rules. For

example, suppose P A⊗x:τ l
−→ P ′A⊗y:τ ′→x:τ with md(τ ′) =↓. By y ∈ bn(l), l is a

replicated output, and obviously y 6∈ fn(P). Hence if x 6∈ ∆ is not suppressed by
the input at ∆ from the beginning as in the assumption of R, it is maintained
during any transitions. Hence we are done.

Case 5: If l = τ then P ′
1 ≈L P1 by Lemma 3 (5). Hence by transitivity the

inaction can simulate this as in Case 2.

Second, if only Q1 has an action, this is the same as P1. Finally the case when

P1|Q1
τ

−→ (ν ~w)(P ′
1|P

′
2) from P1

l
−→ P ′

1 and Q1
l

−→ Q′
1 is the standard reason-

ing except that we apply the same technique as above for processing additional
invisible actions. Assume, without loss of generality, that l is output. If l is at
∆ and this action is not invisible, then (since its dual input is always possible)
we can reason precisely as above. If l is done at ∆ but it is invisible, then it is
possible that a subset of the simulating b.c. set abstract away l. In this case,
however, the dual action is negligible by Lemma 3 (5) and (6), which gives us
the required closure. If l is not at ∆ then the closure is immediate using Lemma
6. This exhausts all cases.

Thus we conclude the centre of ≈L is a congruence. Since the observability pred-
icate given in § 2.3 is easily satisfied by ≈L, we also know ≈L ⊆∼=π.

Remark 3. The basic framework of the above proof for closure under parallel
composition extends to the settings where we combine such elements as state,
nontermination and nondeterminism with linearity (though certain simplifica-
tion in the proof above is possible due to the pure linear structure, in particular
the use of reduced conditions for bisimulation, given in Lemmas 6 and 5). The es-
sential properties we need for this is those of call-sequences, as given in Lemma 2.
As examples of such combination, the reader may refer to [23]. See also Remark
4 at the end of Section 5.

5 Applications to Secrecy

In linear bisimilarity, we abstract away non-affecting typed actions as if they
were τ -actions. If we assign a secrecy level to each channel and stipulate a level
of observation, then we can further abstract away those actions which should
not be visible from the stipulated level. For example, from a low-level viewpoint,
actions at high-level channels should be invisible. The technical development of
this secrecy enhancement closely follows that of the linear bisimilarity, and offers
a powerful tool for reasoning about secrecy in processes.

19

Assume given a complete lattice of secrecy levels (s, s′, . . .) with the ordering
v. > (the most secret) and ⊥ (the most public) denote the top and bottom of
the lattice, respectively. Channel types are annotated with these levels:

τ ::= τI | τO | ∗s τI ::= (~τO)
pi

s | [&i∈I ~τOi]
pi

s τO ::= (~τI)
po

s | [⊕i∈I ~τIi]
po

s

The same constraints as before apply to channel types. In τ , we require each
dualised occurrence to own identical secrecy levels. Action types are given pre-
cisely as before, using secrecy annotated types. ` P . A (or P A) is derived by
the same rules as in Appendix B (the secrecy annotations on types do not affect
the derivation of typing judgements). We set:

1. lA is s-affecting if it is affecting in the preceding sense and, if l is a linear
selection, then sec(A(x)) v s (sec(τ) is the outermost secrecy level of τ).

2. lA is s-∆-invisible when either fn(l)∩∆ = ∅ or, if not, lA is an output which is
not s-affecting. If lA is s-∆-invisible and, moreover, is enabled, then lA is s-∆

strongly invisible. The abstracted transitions P A =⇒∆,s QB , P A l
=⇒∆,s QB

and P A l̂
=⇒∆,s QB and the associated underlying transitions are defined

accordingly.

In (1) we only count linear selections because in the linear type structure no
other types directly emit information. We can now introduce the bisimulation.

Definition 7. (s-bisimulation) A semi-typed relationR is a s-bisimulation when
P A1

1 RP A2
2 with ∆ = fn(A1) ∩ fn(A2) implies the following and its symmetric

case: whenever P A1
1

l
−→ QB1

1 , there is a ∆-closed {P A2
2

l̂
=⇒∆,s QB2i

2i } such that

QB1
1 RQB2i

2i . The maximum s-bisimulation exists for each s, which we write ≈s.

By definition, P A ≈L QB implies P A ≈s QB for any s. Further P A ≈> QB

implies P A ≈L QB . A simple example of s-bisimilarity:

Example 5. (s-bisimilarity) ` xin1 . x : B> 6≈>` xin2 . x : B> but we have
` xin1 . x : B> ≈⊥` xin2 . x : B>.

A basic observation on ≈s is that it alone does not form a coherent notion of
process equivalence.

Fact 1. The centre of ≈s is not closed under parallel composition.

Proof. Take xinx:τ1

i (i = 1, 2) with τ1 = B>. Then xin1 ≈⊥ xin2. However
if we compose these processes with x[.uin1&.uin2]

x:τ2→u:τ3 where τ2 = τ1 and
τ3 = B⊥, then (ν x)(P1|Q)u:τ3 6≈⊥ (ν x)(P2|Q)u:τ3 .

The example in the proof above suggests that, for regaining compositionality in
≈s, we need to restrict the set of processes to those which do not transfer infor-
mation at some high-level to lower levels. In other words, we require information
flow in processes to be secure. Below we say lA is receiving at s if lA is a linear
branching and moreover sec(A(sbj(l))) = s.

20

Definition 8. (behavioural secrecy) A set of typed processes S is a secrecy

witness if the following holds: whenever P A ∈ S and P A l
−→ QB , we have (1)

QB ∈ S and (2) if lA is receiving at s then P A ≈s′ QB for each s′ such that
s 6v s′. P A is behaviourally secure iff P A is in some secrecy witness.

Only linear branching counts as “receiving”, which is an exact dual of ≈s (where
we consider abstraction by secrecy levels only for linear selection). Intuitively, a
process is behaviourally secure iff, whenever it receives non-trivial information
at some level, it behaves, to a lower-level observer, as if the action had not taken
place. Some examples of (non-)secure processes follow.

Example 6. 0∅ is secure. If P A is secure and (ν x)P A/x is well-typed, the

latter is secure. If P ~y:~τ⊗?A is secure and !x(~y).P x:(~τ)!→A is well-typed, the latter

is secure. Finally, given A
def
= x : B>→y : B⊥, x[.yin1&.yin2]

A is not secure but

x[.yin1&.yin1]
A is secure (the latter is because x[.yin1&.yin1]

A ≈y
⊥ yin

A/x
1).

The following is proved precisely as Theorem 1 except that the use of s-invisibility
is compensated by behavioural secrecy.

Proposition 9. The centre of ≈s over behaviourally secure processes is com-
patible with all operators except linear branching.

Proof. The essence of the proof is the same as that of Proposition 8, using the
corresponding properties. The only difference is in the following points: assume,
as in the proof of Proposition 8, that (ν ~w1)(P2|Q2) simulates an action by
(ν ~w1)(P1|Q1).

1. When only P1 has an action, we simply replace all statements “∆-invisible”
and “∆-visible” with “s-∆-invisible” and “s-∆-visible”, respectively. Using
the corresponding lemmas, the same reasoning gives the required results.

2. When P1 and Q1 interact, it is possible that, say, P1 has a linear selection
which can be neglected at level s. Then P2 may not simulate this action, but
it is compensated by Q1 not changing its semantics by the receiving action
up to ≈L: thus P2|Q2 can simulate this action by the inaction, resulting in
the same closure.

The second case crucially uses behavioural secrecy for composability.

Combined with a secure version of the linear branching rule,5 Proposition 9
offers a framework for fully compositional reasoning about secrecy in linear pro-
cesses. Via embeddings, it can be used for analysing secrecy for λ-terms [3] and,
with extensions to the type structure, for sequential and concurrent imperative
programs [8, 31, 32].

To investigate the relationship with the type-based approach in [23], we intro-
duce tamp(A) (the lowest possible effect level of A) and ∼=s (a secrecy-sensitive
contextual congruence), both from [23].
5 Given ` Pi . Ci where Ci = ~yi : ~τi⊗ ↑A-x⊗?B-x (i = 1, 2), the rule requires that, in

the antecedents, P Ci
i ≈s′ P

Cj

j for any s′ such that s 6v s′, in order to conclude that

` x[&i(~yi).Pi] . (x : [&i~τi]
↓
s→A)⊗B.

21

Definition 9. (tamper level, [23]) The tamper level of τ , denoted tamp(τ), is
defined as follows. We assume ~τ = τ1..τi..τn and ~τi = τi1..τij ..τini

.

1. tamp(τ) = > if τ is not affecting.

2. tamp((~τ)↑s) = uitamp(τi), tamp([⊕i~τi]
↑
s)

def
= s, tamp((~τ)!s)

def
= uitamp(τi),

tamp([&i~τi]
!
s)

def
= uij tamp(τij).

Then we set tamp(A)
def
= u{tamp(τ) | x : τ occurs in A for some x}.

Observe tamp(τ) = > whenever τ is not affecting.

Definition 10. (secrecy-sensitive contextual equality) For each s, s-contextual
congruence ∼=s is defined as the maximum typed congruence satisfying the fol-
lowing condition.

If P ⇓i
x and P ∼=x:Bs′

π Q with s′ v s, then Q ⇓i
x (i = 1, 2)

Proposition 10. All secrecy typing rules in Appendix E are valid when typa-
bility is replaced with behavioural secrecy. Securely typed linear processes are a
proper subset of behaviourally secure linear processes.

Proof. By induction on the derivation of typing judgements in the secure typ-
ing system of Appendix E. The only non-immediate case is (Bra↓). Let the
behavioural security of Pi be witnessed by Si(i ∈ I). Define

S = {x[&i(~yi)Pi]} ∪
⋃

i∈I

Si.

To see that S is a secrecy witness it is clearly sufficient to show that R ∪ ≈s is
an s-bisimulation where R is given by: x[&i(~yi)Pi]

A R P B
i for all i ∈ I . Clearly

R ∪ ≈s is semi-typed. Let ∆ = fn(A) ∩ fn(B). If

x[&i(~yi)Pi]
l

−→ Pj where l = xinj(~yj),

fn(l)∩∆ = ∅, because x /∈ fn(B). So l is s-∆ strongly invisible. This means that

P B
j

l̂
−→ P B

j and hence P B
j

l̂
=⇒∆,s P B

j for all j ∈ I . But {P B
j

l̂
=⇒∆,s P B

j }j∈I is
∆-branching closed and, by assumptions, Pj ≈s Pk for all j, k ∈ I , so we have
indeed found a matching set of transitions.

Conversely, if P Ai

i
l′

−→ QB then x[&i(~yi)Pi] =⇒∆,s Pj for all j ∈ I by the
s-∆ strong invisibility of l. As Pj ≈s Pi, we can find ∆-branching closed sets

{Pj
l̂′

=⇒∆,s Qjk}j,k∈I . Using Lemma 1(1) {x[&i(~yi)Pi] =⇒∆,s Pj
l̂′

=⇒∆,s Qjk} is
a matching ∆ branching closed set of transitions.

As an illustration of how to deal with the remaining rules, we now consider
(Par). Assume ` Pi . Ai ∈ Si(i = 1, 2) and define

S = {(ν ~x)(Q1|Q2)
B | QBi

i ∈ Si}.

22

Assume that (ν ~x)(Q1|Q2)
l

−→ R. Induction on the derivation of that transition
has essentially two cases. The first is this one.

Q1
l

−→ Q′
1

Q1|Q2
l

−→ Q′
1|Q2

...

(ν ~x)(Q1|Q2)
l

−→ (ν ~x)(Q′
1|Q2)

By (IH), Q′
1 ∈ S1 and Q1 ≈s′ Q′

1 whenever s 6v s′ and l is receiving at s.
Hence (ν ~x)(Q′

1|Q2) ∈ S and, repeatedly using Proposition 9, (ν ~x)(Q1|Q2) ≈s′

(ν ~x)(Q′
1|Q2) whenever l is receiving at s and s 6v s′.

The other case, communication between Q1 and Q2, is dealt with just as
straightforwardly.

Proposition 10 allows us to consistently integrate the secrecy typing of [20, 23]
and the present behavioural theory, for the secrecy analysis in processes and, via
embedding, in programs. For example, given a λ()×+-term MN , we can check the
secrecy of [[M]]m by typing, [[N]]n by behavioural secrecy, and finally verify their
combination using typing. Another consequence of Proposition 10 is a simple
proof of the following noninterference result, first given in [23]. We first start
from the following lemma.

Lemma 8. Assume that ` P1,2 . A and tamp(A) 6v s then P A
1 ≈s P A

2 .

Proof. We define

R = {(P B , QC) | B ./ C, tamp(B � fn(B) ∩ fn(C)) 6v s}.

Clearly R is semi-typed. To see that it is an s-bisimulation let (P B , QC) ∈ R,

P B l
−→ P ′B

′

where x is the subject of l. Let ∆ = fn(B)∩fn(C). If x /∈ fn(C) then

l is ∆-invisible and hence s-∆-invisible. Then QC l̂
−→ QC and thus QC l̂

=⇒∆,s

QC . Clearly this transition is also ∆-branching closed. Easily, B ′ ./ C. But
because the name we loose in the transition, x, is not in fn(C) and the new

ones we import by l are fresh P ′B
′

R QC , as required. If x ∈ fn(C) we must
distinguish two cases.

– If l is an output, then it is s-∆-invisible. The reason for this depends on
whether l is linear or not. In the former case, by assumptions, sec(B(x)) 6v s
because tamp(B) 6v s. In the latter case s-∆-invisibility is a consequence of
∆-invisibility which in turn follows from l being non-affecting. In either case

then QC l̂
−→ QC and we can proceed as in the case above where x /∈ fn(C).

– If l is an input, we use input availability (Lemma 4 (3) to infer the existence

of a transition QC l
−→ Q′C

′

). In this case easily B′ ./ C ′, i.e. P ′B
′

R Q′C
′

,
as required.

23

Corollary 3. (noninterference) Let ` P1,2 . A be typable by the secrecy typing
rules in Appendix E and tamp(A) 6v s. Then ` P1

∼=s P2 . A.

Proof. By Lemma 8 and Propositions 10 and 9.

We conclude this section by an example of reasoning about the secure λ-term
mentioned in the introduction.

Example 7. (secrecy via encoding) Let M
def
= casey>

of {ini() : in1(?)}i∈{1,2}.

We show [[M : bool>]]u
def
=!u(c).y(e)e[.cin1&.cin1] . u : (B⊥)! →y : (B>)? is se-

cure. By Proposition 9, it suffices to show e[.cin1&.cin1] . e : B> → c : B⊥ is
secure. But this has already been shown in Example 6, hence done.

Remark 4. (extensions to other type structures) We have presented a theory
of behavioural secrecy focussing on the pure linear π-calculus. The framework
is systematically extendible to other type structures which integrate linearity
with affinity (nontermination) [7], statefulness (references) [23], control [17] and
nondeterminism [20]. In each case, the only necessary extensions are (1) the
incorporation of a new s-affecting action into s-bisimilarity and its dual receiving
action into behavioural secrecy, and (2) when affinity (nontermination) is in the
type structure, we change Definition 1 as follows: B becomes ()↑A (↑A indicates
possibly diverging, or affine, output), and the condition “C[P1] ⇓1

u and C[P2] ⇓2
u”

becomes “C[Pi] ⇓x and C[Pj] ⇑x with i 6= j” (here ⇓x iff P −→∗ x|P ′ for some
P ′, and ⇑x iff not ⇓x). Except for these two changes, Definitions 1–8 can be used
without change. To elaborate further:

• To extend this calculus to the affine type structures of [7], we first check
Definition 1, redefined as above. Clearly, any unary affine output is affecting,
hence both unary and branching affine outputs are categorised as affecting
in the same way as linear branching output in Table 1. They are however
not enabling, hence affine inputs are not enabled, unlike linear inputs. At
the level of secrecy, this means we abstract away, in ≈s, affine outputs with
high secrecy levels, just as linear selection; dually, affine inputs is taken care
of in behavioural secrecy. We also note that mixing linearity and affinity in
a single type structure is easily done consistently, see [23].

• To extend the present theory to non-determinism [20], we add reference
agents [23] or, equivalently, recursion [20] and incorporate stateful replicated
inputs/outputs which are given to (in the case of references) “write” actions.
Using Definition 1 or its affine version mentioned above, we can show that
stateful replicated outputs are affecting and enabled. The secrecy refinement
works as in the previous example. This allows us to infer, via an embedding,
that the following imperative program is behaviourally secure (assuming
⊥ � s � >):

if ws
then z> :=!x⊥; y⊥ := 1 else y⊥ := 1

The encoding of this program, given in [20, 23], allows to neglect the low-
level “reading” action at x and the high-level writing at z because they

24

are categorised as (non-stateful) replicated output. On the other hand, the
action at y which is stateful and hence affecting at ⊥, leads to the same
effect in both branches so the two branches are s-bisimilar. This warrants
us to conclude that the encoding is behaviourally secure. Equational and
operational correspondence allows to lift this result to the source program,
so it must be secure.

Mixing linearity with other type structures (cf. [23]) can be done so that we
can ensure the same liveness property for call sequences (Lemma 2 (3)) in each
extension, which allows us to apply the same proof methods to obtain the cor-
responding results such as Theorem 1 and Proposition 9. Together with full
abstraction, the framework offers a basis for uniform behavioural analysis of
secrecy in programming languages.

References

1. Abadi, M., Secrecy by typing in security protocols. Journal of the ACM, 46(5):749–
786, 1999.

2. Abadi, M., Secrecy in programming-language semantics, MFPS XV, ENTCS, 20
(April 1999).

3. Abadi, M., Banerjee, A., Heintze, N. and Riecke, J., A core calculus of dependency,
POPL’99, ACM, 1999.

4. Abadi, M. and Gordon, D., A Bisimulation Method for Cryptographic Protocols,
Nordic Journal of Computing 5, 4 (Winter 1998), 267-303.

5. Abadi, M., Fournet, C. and Gonthier, G., Authentication Primitives and their
Compilation, POPL’00, 302-315, ACM, 2000.

6. Abramsky, S., Jagadeesan, R. and Malacaria, P., Full Abstraction for PCF.
Info. & Comp. 163 (2000), 409-470.

7. Berger, M., Honda, K. and Yoshida, N., Sequentiality and the π-Calculus, TLCA01,
LNCS 2044, pp.29-45, Springer, 2001.

8. Boudol, G. and Castellani, I., Noninterference for Concurrent Programs, ICALP01,
LNCS, Springer, 2001.

9. Focardi, R. and Gorrieri, R., The compositional security checker: A tool for the
verification of information flow security properties. IEEE Transactions on Software
Engineering, 23(9), 1997.

10. Focardi, R., Gorrieri, R. and Martinelli, F., Non-interference for the analysis of
cryptographic protocols. ICALP00, LNCS 1853, Springer, 2000.

11. Gay, S. and Hole, M., Types and Subtypes for Client-Server Interactions, ESOP’99,
LNCS 1576, 74–90, Springer, 1999.

12. Girard, J.-Y., Linear Logic, TCS, Vol. 50, 1–102, 1987.
13. Hennessy, M. and Riely, J., Information flow vs resource access in the asynchronous

pi-calculus, ICALP00, LNCS 1853, 415-427, Springer, 2000.
14. Honda, K., Types for Dyadic Interaction. CONCUR’93, LNCS 715, 509-523, 1993.
15. Honda, K., Composing Processes, POPL’96, 344-357, ACM, 1996.
16. Honda, K., Elementary Structures in Process Theory (1): Sets with Renaming,

Journal of Mathematical Structures in Computer Science (2000), Vol. 10, Cam-
bridge University Press, October, 2000.

17. Honda, K., Notes on the linear π-calculus and LLP, June, 2001.

25

18. Honda, K., Kubo, M. and Vasconcelos, V., Language Primitives and Type Disci-
pline for Structured Communication-Based Programming. ESOP’98, LNCS 1381,
122–138. Springer-Verlag, 1998.

19. Honda, K. and Tokoro, M. An object calculus for asynchronous communication.
ECOOP’91, LNCS, 1991.

20. Honda, K., Vasconcelos, V. and Yoshida, N., Secure Information Flow as Typed
Process Behaviour, ESOP’00, LNCS 1782, 180–199, 2000. Full version: MCS report
2000-01, University of Leicester, available at www.mcs.ac.uk/̃ nyoshida.

21. Honda, K. and Yoshida, N. On Reduction-Based Process Semantics. TCS. 151,
437-486, 1995.

22. Honda, K. and Yoshida, N., Game-theoretic analysis of call-by-value computation.
TCS, 221 (1999), 393–456, 1999.

23. Honda, K. and Yoshida, N., A uniform type structure for secure information flow,
To appear in POPL’02, ACM, 2002.

24. Hyland, M. and Ong, L., ”On Full Abstraction for PCF”: I, II and III.
Info. & Comp. 163 (2000), 285-408.

25. Kobayashi, N., Pierce, B., and Turner, D., Linear types and π-calculus, POPL’96,
358–371, 1996.

26. Milner, R., Functions as Processes. MSCS, 2(2), 119–146, CUP, 1992.
27. Milner, R., Parrow, J.G. and Walker, D.J., A Calculus of Mobile Processes,

Info. & Comp. 100(1), pp.1–77, 1992.
28. Philippou, A. and Walker, D., On confluence in the π-Calculus, ICALP’97, LNCS

1256, 314–324, Springer, 1997.
29. Sangiorgi, D., The name discipline of uniform receptiveness, ICALP’97, LNCS

1256, 303–313, Springer, 1997.
30. Sabelfield, A. and Sands, D. A per model of secure information flow in sequential

programs. ESOP’99, LNCS 1576, Springer, 1999.
31. Smith, G., A New Type System for Secure Information Flow, CSFW’01, IEEE,

2001.
32. Smith, G. and Volpano, D., Secure information flow in a multi-threaded imperative

language, pp.355–364, POPL’98, ACM, 1998.
33. Vasconcelos, V., Typed concurrent objects. ECOOP’94, LNCS 821, pp.100–117.

Springer, 1994.
34. Yoshida, N. Graph Types for Mobile Processes. FST/TCS’16, LNCS 1180, pp.371–

386, Springer, 1996. The full version as LFCS Technical Report, ECS-LFCS-96-350,
1996.

35. Yoshida, N., Berger, M. and Honda, K., Strong Normalisation in the π-Calculus,
LICS’01, IEEE, 2001. The full version as MCS technical report, 2001-09, University
of Leicester, 2001. Available at www.mcs.le.ac.uk/˜nyoshida.

A Structural Equality

The relation ≡ is the least congruence generated by ≡α and the following equa-
tions.

P |0 ≡ P P |Q ≡ Q|P (P |Q)|R ≡ P |(Q|R)

(ν x)0 ≡ 0 (ν xy)P ≡ (ν yx)P ((ν x)P)|Q ≡ (ν x)(P |Q) (x 6∈ fn(Q))

(xini(~y)P)|Q ≡ xini(~y)(P |Q) if {~y} ∩ fn(Q) = ∅

(ν z)xini(~y)P ≡ xini(~y)(ν z)P if z 6∈ {x~y}

xini(~y)zinj(~w)P ≡ zinj(~w)xini(~y)P if z 6∈ {~y} and x 6∈ {~w}

26

We omit rules for unary prefixes since they are subsumed by those for branch-
ing/selection.

B Action Types

We first reiterate the definition of action types. An action type, denoted A, B, . . .,
is a finite directed graph with nodes of the form x : τ , such that:

• no names occur twice; and

• edges are of the form x : τ → y : τ ′ such that either (1) md(τ) =↓ and
md(τ ′) =↑ or (2) md(τ) = ! and md(τ ′) = ?.

We write x → y if x : τ → y : τ ′ for some τ and τ ′, in a given action type. If
x occurs in A and for no y we have y → x then we say x is active in A. |A|
(resp. fn(A), sbj(A), md(A)) denotes the set of nodes (resp. names, active names,
modes) in A. We often write x : τ ∈ A instead of x : τ ∈ |A|, and write A(x) for
the channel type assigned to x in A. A\~x is the result of taking off nodes with
names in ~x from A. A⊗B is the graph union of A and B, with the condition
that fn(A) ∩ fn(B) = ∅.

The symmetric partial operator � on types is already given in Section 2. We
then write A � B iff:

• whenever x : τ ∈ A and x : τ ′ ∈ B, τ � τ ′ is defined; and

• whenever x1 → x2, x2 → x3, . . . , xn → xn+1 (alternately in A and B), we
have x1 6= xn+1.

Then A � B, defined iff A � B, is the following action type.

• x : τ ∈ |A � B| iff either (1) x ∈ (fn(A)\fn(B)) ∪ (fn(B)\fn(A)) and x : τ
occurs in A or B; or (2) x : τ ′ ∈ A and x : τ ′′ ∈ B and τ = τ ′ � τ ′′.

• x → y in A � B iff x = z1 → z2, z2 → z3, . . . , zn−1 → zn = y alternately in
A and B (n ≥ 2) and, moreover, for no w we have w → x and for no w′ we
have y → w′ in A or B.

We can easily check that � is a symmetric and associative partial operation on
action types with unit ∅.

C Typing Rules

A〈~y : ~τ〉 indicates each yi : τi occurs in A. x : τ → A adds new edges from x : τ
to the non-suppressed nodes in A. A-x indicates x 6∈ fn(A). We assume ↑A in
(In↓) and (Bra↓) is either a singleton or empty (“unique-answer-per-thread”).

(Zero)

−

` 0 .

(Par)

` Pi . Ai (i =1, 2)

A1 � A2

`P1|P2 . A1�A2

(Res)

` P . A〈x : τ 〉

md(τ) ∈ {∗, !}

` (ν x)P . A/x

(Weak-∗,?)

` P . A-x

md(τ) ∈ {∗, ?}

` P . A⊗x : τ

27

(In↓)

` P . ~y : ~τ ⊗ ↑A-x⊗?B-x

` x(~y).P . (x : (~τ)↓→A)⊗B

(In!)

` P . ~y : ~τ⊗?A-x

`! x(~y).P . x : (~τ)!→A

(Out) (p ∈ {↑, ?})

` P . C〈~y : ~τ〉

C/~y =A�x : (~τ)p

` x(~y)P . A � x : (~τ)p

(Bra↓)

` Pi . ~yi : ~τi ⊗ ↑A-x⊗?B-x

`x[&i(~yi).Pi] . (x : [&i~τi]
↓→A)⊗B

(Bra!)

` Pi . ~yi : ~τi⊗?A-x

`! x[&(~yi).Pi] . x : [&i~τi]
!→A

(Sel) (p ∈ {↑, ?})

` P . C〈~y : ~τj〉

C/~y =A�x : [⊕i~τi]
p

` xinj(~y)P . A � x : [⊕i~τi]
p

D Transition Rules

We assume all l.h.s. processes are well-typed. A allows l unless: (1) A(sbj(l)) = ∗
or (2) l is output and md(A(sbj(l))) = !, cf. [7]. n(l) is the set of names in l.

x[&i~yi.Pi]
A xini(~yi)−→ P

~yi:~τi⊗A/x
i (x : [&~τi]

↓ ∈ A)

!x[&i~yi.Pi]
A xini(~yi)−→ !x[&i~yi.Pi]|P

~yi:~τi⊗A
i (x : [&~τi]

! ∈ A)

xini(~y)P A xini(~y)
−→ P ~y:~τi⊗A/x (x : [⊕i~τi]

↑ ∈ A)

xini(~y).P A xini(~y)
−→ P ~y:~τi⊗A (x : [⊕i~τi]

? ∈ A)

P ′
1 ≡α P1 P A1

1
l

−→ P A2
2 P2 ≡α P ′

2

P ′
1

A1 l
−→ P ′

2
A2

P A1
1

l
−→ P A2

2 x 6∈ n(l)

(ν x)P
A1/x

1
l

−→ (ν x)P
A2/x
2

P A1
1

l
−→ P A2

2 A1 � B allows l

P1|Q
A1�B l

−→ P2|Q
A2�B

P A1
1

l
−→ P A2

2 QB1
1

l
−→ QB2

2

P1|Q
A1�B1
1

τ
−→ (ν bn(l))(P2|Q2)

A2�B2/bn(l)

P A1
1

l
−→ P A2

2 n(l) ∩ {~y} = ∅

xini(~y)P
A1/~y�x:[⊕i~τi]

p

1
l

−→ xini(~y)P
A2/~y�x:[⊕i~τi]

p
i

2

P A1
1

xini(~z)
−→ P A2

2

xini(~y)P
A1/~y�x:[⊕i~τi]

p

1
τ

−→ (ν ~y)P2{~y/~z}A2/~z

We omit rules for unary actions and symmetric case of |. The rules are well-typed

in the sense that if P A1
1 is well-typed and P A1

1
l

−→ P A2
2 then P A2

2 is well-typed.

E Secrecy Typing

We first give the typing rules in which (1) annotated channel types are used,
and (2) no secrecy is incorporated into the typing rules. Thus the set of typable
terms are precisely the same as those given by Appendix C, and the secrecy
properties (e.g. noninterference) are not ensured. The notations are as before.

28

(Zero)

−

` 0 .

(Par)

` Pi . Ai (i =1, 2)

A1 � A2

`P1|P2 . A1�A2

(Res)

` P . A〈x : τ 〉

md(τ) ∈ {∗, !}

` (ν x)P . A/x

(Weak-∗,?)

` P . A-x

md(τ) ∈ {∗, ?}

` P . A⊗x : τ

(In↓)

` P . ~y : ~τ ⊗ ↑A-x⊗?B-x

` x(~y).P . (x : (~τ)↓s→A)⊗B

(In!)

` P . ~y : ~τ⊗?A-x

`! x(~y).P . x : (~τ)!s→A

(Out) (p ∈ {↑, ?})

` P . C〈~y : ~τ 〉

C/~y =A�x : (~τ)p
s

` x(~y)P . A � x : (~τ)p
s

(Bra↓)

` Pi . ~yi : ~τi ⊗ ↑A-x⊗?B-x

`x[&i(~yi).Pi] . (x : [&i~τi]
↓
s→A)⊗B

(Bra!)

` Pi . ~yi : ~τi⊗?A-x

`! x[&(~yi).Pi] . x : [&i~τi]
!

s→A

(Sel) (p ∈ {↑, ?})

` P . C〈~y : ~τj〉

C/~y =A�x : [⊕i~τi]
p
s

` xinj(~y)P . A � x : [⊕i~τi]
p
s

In the linear type structure, the secrecy of processes is ensured simply by replac-
ing the rule (Bra↓) above by the following one. Other rules remain the same.

(Bra↓)

` Pi . ~yi : ~τi ⊗ ↑A-x⊗?B-x s v tamp(A)

`x[&i(~yi).Pi] . (x : [&i~τi]
↓
s→A)⊗B

We call the resulting set of processes, securely typed processes.

F Proofs in Section 4

F.1 Proofs for Lemma 3

In the following, we often denote l ≡α l′ if they originates from the same index
and ≡ denotes the structure equivalence (hence P ≡ Q ⇒ P ≈L Q).

(1) Standard.

(2) Let ∆ = fn(A). Assume R = {((P |R1), (P |R2)) | P and Ri as in Lemma 3 (2)}.
We prove R is a bisimulation using Lemma 3 (1).

The case P | R1
l

−→ P ′ | R1 with P
l

−→ P ′ is trivial.

The case P | R1
l

−→ P | R′
1 with R1

l
−→ R′

1. First, suppose l = x(~y) with
md(lA) =↑. Then we have ` R′

1 . A1 ⊗ B1/x ⊗ ~y : ~τ . Obviously sbj(l) 6∈ ∆, so l
is invisible. Next, since fn(P) ∩ {~y} = ∅, P and R′

1 only share replicated output
names. Set B′

1 = B1/x ⊗ ~y : ~τ . Then we can check fn(B′
1) ∩ fn(B2) = ∅. Now

by P | R1
ε

=⇒∆ (P | R2), we have (P | R2) R (P | R′
1), as desired. As such, we

can easily check if R1
l

−→ R′
1, l is invisible, and moreover it satisfies the side

29

condition.

The case P | R1
τ

−→ (ν ~x)(P ′ | R′
1) with P

l
−→ P ′ and R1

l
−→ R′

1. Then by
definition, md(l) = ! and md(l) = ?. Let us assume l = a(~x). Then we can

write down P ≡ (ν ~w)(!a(~x).P0 | Q) and R1 ≡ a(~x)R01. Hence P | R1
τ

−→≡
(ν ~w)(!a(~x).P0 |Q | (ν ~x)(P0 |R01)). Note that (ν ~x)(P0 |R01) only share ?-names

with !a(~x).P0 |Q. By appropriate renaming on R2, we have P |R1
ε

=⇒∆ (P |R2) ≡
(ν ~w)(!a(~x).P0 | Q | R′

2) and (!a(~x).P0 | Q | R′
2) R (!a(~x).P0 | Q | (ν ~x)(P0 | R01)).

Hence by applying (1), we conclude the proof.6

(3,4) Similar with Proposition 3 (1).

(5) Case τ : We show R = {(P, P ′) | P
τ

−→ P ′}∪ ≡α is a bisimulation.

Suppose P
l

−→ R. Then if l 6= τ or indices of two tau actions are distinct, then

by Proposition 4 (1,2), we know P
l

−→ R′ with R
τ

−→ R′ RR, as required. If
l = τ and indices of two tau actions are the same, then R′ ≡α P ′, hence done.

Next suppose P ′ l
−→ R. Since τ is strongly invisible, P

l
=⇒ R ≡α R, as required.

Case md(l) = !: Suppose P
l

−→ P ′. Then we can easily check (P, P ′) is in the
relation defined in (2), by assigning R1 ≡α 0. Hence done.

Case md(l) =↑: We show R
def
= {(P, P ′) | P

a(~x)
−→ P ′}∪ ≈L is a bisimulation.

There are two interesting cases. Other cases are just similar with the case for τ .
Let Γ = fn(P) ∩ fn(P ′).

Suppose P
a(~x′)
−→ P ′{x′

i/xi} where two actions are occurred at the same indices,
i.e. P gets different bound names xi and x′

i from the outside. Then we can write
down P ′ ≡ (ν ~w)(

∏
i Qi | R) and P ′{x′

i/xi} ≡ (ν ~w)(
∏

i Qi{x′
i/xi} | R) with

Ri ≡!xi(~wi).Q
′
i or !xi[&(~wij).Q

′
ij]. Then we can apply Lemma 3 (2), defining

P
def
= R, R1

def
=

∏
i Qi and R2

def
=

∏
i Qi{x′

i/xi}. Hence P ′ ≈L P ′{x′
i/xi}. Since a

is a linear output name, a 6∈ fn(P ′), so a 6∈ Γ. Thus a(~x) is a Γ invisible. Hence

by P ′ ε
=⇒ P ′, we have P ′{x′

i/xi}RP ′, as desired.

Suppose P ′ l
−→ R for some l. If a(~x) 6y l, then we finish the proof by conflu-

ence. So assume a(~x) y l. Then obviously P
a(~x)
−→ P ′ l

−→ R. We need to show

P
l

=⇒Γ R. Since a is a linear output name, a 6∈ fn(P ′), so a 6∈ Γ. Thus a(~x) is a

Γ-strong invisible. Moreover P
l

=⇒Γ R is a Γ-branching closed. Hence by RRR,
we have closed this case. The case aini(~x) is just similar.

(5) We show R
def
= {(P, P ′) | P

a(~x)
−→ P ′}∪ ≈L is a bisimulation. Just similar

with the case of ↑ above by using confluence, except the following case, which

6 While we can use (5) for the case of τ , the given proof has an advantage in that
it is adaptable to the setting where we extend the calculus to the one with non-
determinism and state.

30

corresponds to the former case of ↑ above. Suppose P
a(~x′)
−→ P ′{x′

i/xi} where two
actions a(~x) and a(~x′) are the same indices, i.e. P gets different bound names xi

and x′
i from the outside. Then this time, we can write down P ′ ≡ (ν ~w)(

∏
i Qi |R)

and P ′{x′
i/xi} ≡ (ν ~w)(

∏
i Qi{x′

i/xi} |R) with Ri ≡ xi(~wi).Q
′
i or xiinj(~wj).Q

′
j .

This time we can apply Lemma 3 (3), hence we have P ′ ≈L P ′{x′
i/xi}. The rest

is the same as the former case of ↑ above.

Remark 5. The above lemma does not hold for the branching input. Consider

the case P
aini(~x)
−→ P ′ and P ′ l

−→ R for some l such that a(~x) 6y l. Then by the

same reasoning as the linear output case, we have P
l

=⇒Γ R since the action
aini(~x) is invisible. However this transition is not always branching closed, since

we may have P
ainj(~x)
−→ P ′

j

lj
−→ P ′′

j with lj 6= l (i.e. lj is a selection valiant of l).

F.2 Proofs for Lemma 4

(1): Suppose ` P . A. Assume P ≈∆
L

Q and P
l

−→ P ′ where l satisfies either
(1,2,3) in (1). Then by Lemma 3 (5) and (6), we always have P ≈L P ′. Note, for
each case, we can easily verify that ∆ ⊆ fn(P) ∩ fn(P ′) and ∆ = fn(P ′) ∩ fn(Q),
as similar with the proofs in Lemma 3 (5) and (6). Hence by the transitivity, we
have Q ≈L P ′, as required.

(2): We show R
def
= {(P, Q) | as in Lemma 4 (2)}∪ ≈L is a bisimulation.

Case 1: Assume P
l

−→∆ P ′ with l not ∆-s.i. First, by confluence, Pj
l

−→ P ′
j .

Then by assumption, Pj ≈∆
L

Q, there exists a ∆-b.c. such that {Q
l̂

=⇒∆ Qk}

with Qk ≈∆′

L
P ′

j . We can easily check ∆′ def
= fn(P ′) ∩ fn(Qk) = fn(P ′

j) ∩ fn(Qk)
for each j. Hence P ′RQk for each k, as required.

Case 2: Assume P =⇒∆ Pj
def
⇔ P

l1jlnj

−→ Pj and P
l

−→∆ P ′ with l ≡α lij for

some 0 ≤ i ≤ n. Then by (permutation lemma, Lemma 2 (1)), P
lij

−→=⇒∆ Pj .
Hence by definition of the transition relation, there exists an injective renam-

ing σ such that P
l

−→ P ′ =⇒∆ Pjσ with (a) dom(σ) ∩ ∆ = ∅, and (b)
cod(σ) ∩ (fn(P) ∪ fn(Q)) = ∅. We also note that {P =⇒∆ Pjσ} is a ∆-b.c. and
Pkσ ≈L Q for each k by Lemma 3 (4). Note that ∆ = fn(Q) ∩ fn(Pjσ). Hence

with Q
ε

=⇒ Q, we have P ′RQ, as required.

Case 3: Suppose Q
l

−→∆ Q′. Then by assumption, for all j, we have {Pj
l̂

=⇒∆

Pji} with Pji ≈∆′

L
Q′. Then by Lemma 1 (1), {P =⇒∆ Pj

l̂
=⇒∆ Pji} is again

∆-b.c. Hence by Pij
ε

−→ Pji, we have Q′RPji, since the side condition of names
is vacuously satisfied (by ∆′ = fn(Pji) ∩ fn(Q′)).

(3) Suppose P1
l

−→ P2 with sbj(l) 6∈ ∆ and l linear branching input. Then there
is a ∆-b.c. {P A2

2 =⇒∆ QB2i

2i }i∈I such that QB1
1 ≈◦

L
QB2i

2i . Then by Lemma 4 (2)

above, we have QA1
1 ≈◦

L
P A2

2 , as desired.

31

(4) Just similar as (3).

(5) By (1, 3, 4).

(6,7): Similarly with (2) using Lemma 2 (4) and Lemma 3 (4).

F.3 Proofs for Lemma 7

First we can easily check the side condition, “the linear output outside of ∆
is not suppressed by the linear input at ∆”, is always maintained as proved in
the end of the proof of Proposition 8. Hence we only have to check ∆-b.c. and
bisimulation. We assume P , Q1 and Q2 in the following is the same as in (7).

Case A: Let {P
l1k=⇒ Pk}k∈K . Then md(l1k) =↑. Let sbj(lk1) = e.

Case 1: Suppose sbj(l1k) 6∈ fn(Q1). Then obviously P | Q1 =⇒∆ Pk | Q1, as
desired.

Case 2: Suppose sbj(l1k) ∈ fn(Q1). Then we have either B1 = e : τ ⊗ B′ or
B1 = c : τ ′ → e : τ ⊗ B′ for some c 6∈ ∆. For both cases (since c 6∈ ∆ in
the latter case), by Lemma 2 (3,4), we have a ∆-branching closed sequences
{Q1 =⇒∆ Q1i}i∈I where

(A) for all i ∈ I , Q1i
li−→ Q′

1i ≈
∆
L

Q2 by Lemma 4 (6), and

(B) for all n ∈ I , there exists k ∈ K such that ln = lk1 because {P
lk1−→ Pk} is a

branching closed.

Let us assume Q1 =⇒∆ Q1i
def
⇔ Q1

l1i···lni−→ ∆ Q1i and sbj(lj) 6∈ ∆. Note that, if
so, for all j ∈ I , any names in transitions in Q1 =⇒∆ Q1j are not overlapped
with ∆. Then we have:

(a) {(P | Q1) =⇒∆ (P | Q1i)}i∈I is ∆-b.c. by (A) above.

(b) for all i ∈ I , there exists k ∈ K such that (P | Q1i)
τ

−→ (Pk | Q′
1i) by (B)

above.
(c) for each i ∈ I , {(P | Q1i)

τ

−→ (Pk | Q′
1i)} is is ∆-b.c.

Hence by (a) and (c) above, together with Lemma 1 (1), {(P |Q1) =⇒∆ (Pk|Q′
1i)}i∈I

is ∆-b.c. Then by Lemma 4 (6), we have Q′
1i ≈L Q1 as required.

Case B: Let {P
l2=⇒ P ′ l1k−→ Pk} with md(l2) = ? and md(l1k) =↑ with l2 yb l1k.

The case sbj(l2) 6∈ fn(Q1) is the same as above. So suppose sbj(l2) ∈ fn(Q1). Then

by (input availability), we always have Q1
l2−→ Q′

1 with md(l2) = !. By Lemma

2 (5), we know Q1 ≈L Q′
1. Note that {P | Q1

τ

−→ (ν ~w)(P ′ | Q′
1)} is ∆-b.c. Set

P = Q′
1 and Q1 = P ′. Then by applying the same reasoning as above starting

from Q′
1 | P

′, we can get a desirable ∆-b.c., again using Lemma 1 (1).

We can easily observe that Cases A and B can be extended to {P
l1···l1k=⇒ Pk} if

all subjects in call-sequences from Q1 are not overlapped with fn(P) by Lemma

32

1 (1).

Case C: Next suppose subjects in a ∆-branching closed sequences {Q1 =⇒∆

Q1i}i∈I in Case (A-2) overlapped with fn(P). If replicated output names are
overlapped, then we can use Lemma 2 (5) as we proved in Case B. Suppose a

linear input name in {Q1 =⇒∆ Q1i}i∈I is overlapped with fn(P). I.e. Q1

li1···lini=⇒
Q1i with li1 linear input with sbj(li1) ∈ fn(P). Then by Lemma 2 (3, extended

liveness), we have P =⇒∆ Pm
li1−→. Then we can repeat the same argument as

Case A. Note by (extended liveness), this routine (call sequences from P |Q1) is
always finite, so we finish the proof.

33

