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Search-Based Regular Expression Inference on a GPU

MOJTABA VALIZADEH, University of Sussex, UK

MARTIN BERGER,Montanarius Ltd, UK, Huawei R&D UK Ltd, UK, and University of Sussex, UK

Regular expression inference (REI) is a supervised machine learning and program synthesis problem that

takes a cost metric for regular expressions, and positive and negative examples of strings as input. It outputs a

regular expression that is precise (i.e., accepts all positive and rejects all negative examples), and minimal w.r.t.
to the cost metric. We present a novel algorithm for REI over arbitrary alphabets that is enumerative and trades

off time for space. Our main algorithmic idea is to implement the search space of regular expressions succinctly

as a contiguous matrix of bitvectors. Collectively, the bitvectors represent, as characteristic sequences, all

sub-languages of the infix-closure of the union of positive and negative examples. Mathematically, this is a

semiring of (a variant of) formal power series. Infix-closure enables bottom-up compositional construction of

larger from smaller regular expressions using the operations of our semiring. This minimises data movement

and data-dependent branching, hence maximises data-parallelism. In addition, the infix-closure remains

unchanged during the search, hence search can be staged: first pre-compute various expensive operations,

and then run the compute intensive search process. We provide two C++ implementations, one for general

purpose CPUs and one for Nvidia GPUs (using CUDA). We benchmark both on Google Colab Pro: the GPU

implementation is on average over 1000x faster than the CPU implementation on the hardest benchmarks.
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1 INTRODUCTION

This paper answers the following quantitative research question in the affirmative:

Can well-known machine learning approaches, other than neural networks, benefit from
GPU acceleration, in the sense of running at least 2 orders of magnitude faster than
comparable CPU implementations?

What is the technical essence that allowed GPU acceleration of artificial neural networks (ANNs)?

Simplifying a great deal, computer graphics algorithms often have the following characteristics:

− Highly parallel.

− Predictable data movement due to high spatial and temporal data locality.

− Little to no conditional execution based on non-local data.
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Specialising processor architecture to such algorithms avoids the overhead of general purpose CPUs

(e.g., branch prediction, complex cache hierarchies and out-of-order execution) [Dally et al. 2020;

Hennessy and Patterson 2017] and leads to GPUs. Generalised matrix multiplication algorithms

(GeMM) have similar advantages, which explains the popularity of GPUs in scientific computing.

Training and inference of ANNs can also be reduced to GeMM, which we believe is why they can

be accelerated on GPUs. As far as we are aware, few other well-known machine learning (ML)

techniques are currently known to be accelerable on GPUs. Can we change this? In answer to this

question, this paper considers precise and minimal regular expression inference (REI) from positive

and negative examples of strings. REI, the most well-studied form of grammar inference [Wikipedia

contributors 2022a], is one of the oldest approaches to ML [Angluin 1987; Gold 1967]. To the best

of our knowledge, precise and minimal REI is an open problem for ANNs.

Regular expressions are a constrained mechanism for succinct, finite specification of finite and

infinite languages. While all finite languages are definable, regular expressions can only specify

simple infinite languages. Regular expressions are one of the most widely used and well-known

formalisms in computer science, and we assume that the reader is familiar with them. Here is an

example of a regular expression

10(0 + 1)∗

which specifies the language of all strings with characters from {0, 1} that start with 10. We assume

that regular expressions 𝑟 have a cost, written cost(𝑟 ). The exact nature of cost(·) will play a key

role later, for now a naive understanding of cost, for example the length of 𝑟 as a string, is sufficient.

It is often bothersome to write down regular expressions explicitly, so instead we’d like to program

them “by example”: we give a set of positive and negative examples of strings, and get a suitable

regular expression that accepts all positive examples and rejects all negative examples. For example

Positive : 10, 101, 100, 1010, 1011, 1000, 1001

Negative : 𝜖, 0, 1, 00, 11, 010
(1)

should, ideally, lead to the target expression 10(0 + 1)∗. Clearly this is a special case of supervised

learning, and, like all supervised learning, is subject to subtle problems, including that there isn’t a

unique way of generalising from a finite set of examples. The regular expression

10(0∗ + 1∗)∗ + 1000
and infinitely many others, correctly accept all positive examples and rejects all negative examples

from (1). We want a canonical “natural” regular expression to be inferred from the example. But

what does it mean to be canonical and natural? One might argue that the regular expression

10 + 101 + 100 + 1010 + 1011 + 1000 + 1001 (2)

is both, natural and canonical, and indeed minimal in some sense (it accepts exactly the positive

examples and rejects every other string). At the same time it is unlikely to be what the author

of the examples had in mind. Instead, it, in the language of modern ML, overfits on the examples.

The ever-present option to overfit shows that REI is trivial without additional constraints such

as minimality. With regular expressions, overfitting is easy to avoid, an insight we adapt from

[Feser et al. 2015], since we can request a minimum cost regular expression that meets all examples.

We reject (2) as it is much bigger than 10(0 + 1)∗. Such minimisation can be seen as a form of

regularisation, but there are multiple ways of measuring a regular expression’s cost, so minimality

is always relative to a chosen cost measurement. We come back to this later.

The core insight that lets us implement fast REI on a GPU is the following. First, instead of regular

expressions, we search over regular languages, which are certain functions of type 𝑟 : Σ∗ → {0, 1},
where Σ is the ambient alphabet (of arbitrary size), and 𝑟 (𝑤) = 1 iff𝑤 is in the language. Ignoring
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cost, two regular expressions are equal with respect to a pair of sets of positive and negative

examples, 𝑃 and 𝑁 , if their respective languages relate to the members of 𝑃 ∪ 𝑁 in the same way.

Hence, during search, we can restrict our attention to functions (𝑃 ∪ 𝑁 ) → {0, 1}, but, in order to

build up these functions in a compositional way that preserves cost-minimality, we instead search

over a small generalisation:

ic(𝑃 ∪ 𝑁 ) → {0, 1}
Here ic(𝑆) is the infix-closure of a set (𝑤 is an infix, aka substring, of string 𝜎 , if 𝜎 is of the form

𝜎1𝑤𝜎2 for some strings 𝜎𝑖 ). Since computer memory is totally ordered, we can implement each

such function as a bitvector. Since 𝑃 and 𝑁 do not change during each REI run, all bitvectors that

arise during search have the same length, and collectively form a binary matrix in memory. This

representation allows us to implement REImostly usingmatrix operations with little data-dependent

branching, predictable data movement and enables a great deal of parallelism.

Contributions. In summary, our contributions are as follows:

− A data parallel algorithm for precise and minimal REI from positive and negative examples

that is based around succinct representation of data structures and trades off memory for

speed, to minimise data movement and data-dependent branching. Most algorithmic choices

work for general grammar inference, and are not specific to regular expressions.

− Implementations of the algorithm on CPUs and GPUs.

− A parameterised benchmark suite with examples that we believe are useful for evaluating

the performance of REI, beyond the present paper.

− Performance measurements of our implementations showing that both are faster than existing

algorithms and that our GPU version is orders of magnitude faster than the CPU version. All

measurements are available from [Valizadeh and Berger 2023].

− A mathematical foundation for our algorithm based on the well-established theory of formal

power series.

2 MATHEMATICAL PRELIMINARIES

In order to establish terminology, we begin with a condensed review of standard mathematical

concepts used later.

2.1 Background

Definition 2.1. We assume that Nat = {0, 1, 2, ...}. By B we denote the set {0, 1} of Booleans. We

use 0 for falsity and 1 for truth. We write𝔓(𝐴) for the powerset of𝐴. We write #𝑆 for the cardinality

of the set 𝑆 . The characteristic function of a set 𝑆 ∈ 𝔓(𝐴) is the map 1𝐴
𝑆
: 𝐴→ B which maps 𝑎 ∈ 𝐴

to 1 iff 𝑎 ∈ 𝑆 , and otherwise to 0. If 𝐴 can be disambiguated from the context, we write 1
𝑆
for 1𝐴

𝑆
.

By the average of a list 𝑥1, ..., 𝑥𝑛 of numbers we mean their arithmetic mean, i.e.,
1

𝑛
(𝑥1 + · · · + 𝑥𝑛).

Definition 2.2. A monoid is a tuple (𝑀, ◦, 𝜖) such that 𝑀 is a set, ◦ : 𝑀2 → 𝑀 is an associative

function, and 𝜖 ∈ 𝑀 such that: for all𝑚 ◦ 𝜖 =𝑚 = 𝜖 ◦𝑚. A set 𝑆 ⊆ 𝑀 is infix-closed if whenever

𝑎 ◦𝑏 ◦𝑐 ∈ 𝑀 then also 𝑏 ∈ 𝑀 . By ic(𝑆), the infix-closure of a set 𝑆 , we mean the smallest infix-closed

superset of 𝑆 . A semiring is a tuple (𝑆, +, ◦, 0, 1) such that: (𝑆, +, 0) is a commutative monoid, (𝑆, ◦, 1)
is a monoid, the distributive laws hold, i.e., 𝑎 · (𝑏 +𝑐) = (𝑎 ·𝑏) + (𝑎 ·𝑐) and (𝑎 +𝑏) ·𝑐 = (𝑎 ·𝑐) + (𝑏 ·𝑐),
and, finally, 0 · 𝑎 = 0 = 𝑎 · 0. We call ◦ and + the product and sum of the semiring.

Definition 2.3. An alphabet is a finite set Σ, and we often speak of characters when we mean the

elements of Σ. A string of length 𝑛 ∈ Nat over Σ is a map 𝜎 : {0, 1, ..., 𝑛 − 1} → 𝐴. We write ||𝜎 ||
for 𝑛. A string over Σ is a string of length 𝑛 for some 𝑛. We often omit stating the alphabet where
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this is clear from the context. We often write 𝜎𝑖 instead of 𝜎 (𝑖). We write 𝜎 · 𝛾 , or just 𝜎𝛾 for the

concatenation of two strings 𝜎 and 𝛾 . We write 𝜖 for the unique string of length 0. We write Σ∗ for
the set of all strings over Σ, and Σ𝑛 the restriction of Σ∗ to strings of length 𝑛. We write Σ≤𝑛 for the

set of strings of length not exceeding 𝑛.

Definition 2.4. A language over the alphabet Σ is a set of strings over Σ. We have the following

well-known algebraic operations over Σ∗: constants ∅ and 𝜖 (the language containing only the

empty string), negation (aka complement), 𝐿 for Σ∗\𝐿, union (aka disjunction), 𝐿∪𝐿′, concatenation,
𝐿1 · 𝐿2, or just 𝐿1𝐿2, for {𝜎𝛾 ∈ Σ∗ | 𝜎 ∈ 𝐿1, 𝛾 ∈ 𝐿2}, intersection or conjunction, 𝐿1 ∩𝐿2. Finally there
is the Kleene-star, where for all 𝑛: 𝐿0 = {𝜖}, 𝐿𝑛+1 = 𝐿𝑛 · 𝐿 and then 𝐿∗ =

⋃
𝑛≥0 𝐿

𝑛
. Those operations

form various algebras, for example (𝔓(Σ∗),∪, ·, ∅, 𝜖) is a semiring.

Definition 2.5. A partial order is a tuple (𝑃, ⊑) where 𝑃 is a set and ⊑, a subset of 𝑃2
is a binary,

reflexive, anti-symmetric and transitive relation on 𝑃 . We write 𝑝 ⊏ 𝑞 to signify that 𝑝 ⊑ 𝑞 and

𝑝 ≠ 𝑞. We say the order is total if always 𝑝 ⊏ 𝑞, or 𝑞 ⊏ 𝑝 or 𝑝 = 𝑞. If 𝑄 ⊆ 𝑃 then ⊑ also orders

𝑄 by restriction. If a set Σ is ordered by ⊑, then this order can be lifted to Σ∗ using the shortlex
ordering: 𝜎 ⊑ 𝜎 ′ iff either ||𝜎 || < ||𝜎 ′ ||, or for some 𝑖 we have: 𝜎𝑖 ⊑ 𝜎 ′𝑖 and, at the same time, for all

𝑗 < 𝑖 : 𝜎 𝑗 = 𝜎 ′𝑗 . Note that, by restriction, this orders every subset of Σ∗.

Note that anything stored in a computer’s memory is always totally ordered, since the addresses

of memory cells are integers.

Definition 2.6. The regular languages over an alphabet Σ, denoted Reg(Σ), are inductively given

by the following constraints: the empty set is regular; for each 𝑎 ∈ Σ, the language {a} is regular; if
𝐿1 and 𝐿2 are regular then so are 𝐿1 ∪ 𝐿2 and 𝐿1 · 𝐿2.; if 𝐿 is regular then 𝐿∗ is regular.

Definition 2.7. The regular expressions over Σ, short RE(Σ), are given by the following grammar:

𝑟 ::= ∅ || 𝜖 || 𝑎 || 𝑟 · 𝑟 || 𝑟 + 𝑟 || 𝑟 ∗

Here 𝑎 ranges over Σ. We call the ∗, ·, +, ..., ∅ the regular constructors (over Σ) of regular expressions,
where each regular constructor has the obvious arity, e.g., ∗ has arity 1, while + has arity 2. We use

various abbreviations, including 𝑟𝑟 ′ for concatenation 𝑟 · 𝑟 ′, and Σ∗ for (𝑎1 + · · · + 𝑎𝑘 )∗ assuming

that Σ = {𝑎1, ..., 𝑎𝑘 }.

Definition 2.8. With each 𝑟 ∈ RE(Σ) we associate the denotation of 𝑟 , aka the language of 𝑟 ,
abbreviated Lang(𝑟 ), which is defined by the following clauses: Lang(∅) = ∅, Lang(𝜖) = {𝜖},
Lang(𝑎) = {𝑎}, Lang(𝑟 · 𝑟 ′) = Lang(𝑟 ) · Lang(𝑟 ′), Lang(𝑟 + 𝑟 ′) = Lang(𝑟 ) ∪ Lang(𝑟 ′), Lang(𝑟 ∗) =
Lang(𝑟 )∗. This induces an equality on regular expressions: 𝑟 is equivalent to 𝑟 ′ iff Lang(𝑟 ) =
Lang(𝑟 ′), for example 𝑟 + 𝑟 ≃ 𝑟 , or 𝑟 ∗∗ ≃ 𝑟 ∗. Note that each equivalence class has an infinite number

of inhabitants. We write 𝑟? for the regular expression with the same language as 𝜖 + 𝑟 .

2.2 Key Structure: Formal Power Series

Formal power series (FPS) generalise characteristic functions 1Σ
𝐿
: Σ∗ → B of formal languages 𝐿

to functions Σ∗ → 𝑆 where 𝑆 is a semiring. This is interesting for us, because well-behaved sets

of such functions form semirings themselves, so the semiring structure on 𝑆 can be lifted to FPS,

see [Berstel and Reutenauer 1988; Droste and Kuich 2009; Golan 1999; Salomaa and Soittola 1978].

Paresy’s core data structure is a generalisation of FPS.

Definition 2.9. Let Σ be an alphabet and 𝑆 a semiring. A formal power series is a map

𝑟 : Σ∗ → 𝑆
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The support of 𝑟 , written supp(𝑟 ) is the set supp(𝑟 ) = {𝑚 ∈ Σ∗ | 𝑟 (𝑚) ≠ 0} A polynomial is a formal

power series with finite support. We now make the following definitions. Σ∗⟨𝑆⟩ denotes the set of
all formal power series 𝑟 : Σ∗ → 𝑆 . Σ∗⟨⟨𝑆⟩⟩ is the subset of Σ∗⟨𝑆⟩, but restricted to finite support.

We define the following operations on Σ∗⟨𝑆⟩, and, by restriction, on Σ∗⟨⟨𝑆⟩⟩, for 𝜎 ∈ Σ∗.
− 0(𝜎) = 0

− 1(𝜎) =
{
1 𝜎 = 𝜖

0 else

− (𝑟 + 𝑠) (𝜎) = 𝑟 (𝜎) + 𝑠 (𝜎)
− (𝑟 · 𝑠) (𝜎) = ⊕{𝑟 (𝜎1) · 𝑠 (𝜎2) | 𝜎i ∈ Σ∗, 𝜎1 · 𝜎2 = 𝜎}

Here ⊕ is semiring addition lifted to finite sets.We note the formal similarity of 𝑟 ·𝑠 with convolutions.
Under mild restrictions, which hold in our use-cases, we can define Kleene-star on Σ∗⟨𝑆⟩ and Σ∗⟨⟨𝑆⟩⟩,
details omitted for brevity.

While Paresy can be presented as code, we emphasise the connection with well-known mathe-

matical structures, because they give us a shared language: semirings and polynomials are widely

known and they are a minimal ’API’ for grammar synthesis; ANNs are generalised matrix operations

that also form semirings; and, finally, it puts in context what is REI specific (e.g., infix-closure), and

what is not (almost everything else works for arbitrary formal languages).

3 THE PARESY ALGORITHM

This section presents Paresy, our parallel regular expression synthesiser. To save space we omit

details, in particular about low-level optimisations. They can be found in the C++ implementations.

Specifications and cost homomorphisms. The input to the algorithm is a cost homomorphism, defined

below, and a set of positive and negative examples (over an arbitrary alphabet).

Definition 3.1. Given an arbitrary alphabet Σ, a specification (over Σ) is a pair (𝑃, 𝑁 ) where both
𝑃 and 𝑁 are finite subsets of Σ∗. We say a language 𝐿 ⊆ Σ∗ satisfies (𝑃, 𝑁 ), written 𝐿 |= (𝑃, 𝑁 ),
provided 𝑃 ⊆ 𝐿 and 𝑁 ∩ 𝐿 = ∅. We say a regular expression 𝑟 satisfies (𝑃, 𝑁 ), written 𝑟 |= (𝑃, 𝑁 ), if
Lang(𝑟 ) |= (𝑃, 𝑁 ).
Definition 3.2. A cost function is a map cost(·) : RE(Σ) → Nat. It is a cost homomorphism

if there are integer constants, 𝑐1, ..., 𝑐5 > 0, such that cost(∅) = cost(𝜖) = cost(𝑎) = 𝑐1 for all

𝑎 ∈ Σ, cost(𝑟?) = cost(𝑟 ) + 𝑐2, cost(𝑟 ∗) = cost(𝑟 ) + 𝑐3, cost(𝑟 · 𝑟 ′) = cost(𝑟 ) + cost(𝑟 ′) + 𝑐4 and
cost(𝑟 +𝑟 ′) = cost(𝑟 )+cost(𝑟 ′)+𝑐5. We call each 𝑐𝑖 the cost of the corresponding regular constructor.

We write, e.g., cost(∗) for 𝑐3 and likewise for the other costs. From now on, whenever we

present a 5-tuple of numbers, e.g., (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5), this is short for the cost homomorphism

(cost(𝑎), cost(?), cost(∗), cost(·), cost(+)) in this exact order, e.g., in (5, 2, 7, 2, 19), the cost of the
Kleene-star is 7. Note that we allow cost(𝑟?) ≠ cost(𝜖) + cost(𝑟 ), this is for convenient com-

parison with related work later. As long as all costs remain strictly positive, more complex cost

homomorphisms can easily be accommodated, e.g., different costs for different alphabet characters.

Core intuitions. REI is a search problem over RE(Σ), the syntax of regular expressions. We have to

decide how to represent the search space RE(Σ) in an implementation. The natural answer, using

RE(Σ) itself, is wasteful for several reasons.
− Redundancy: each regular language is denoted by infinitely many regular expressions. For

example 00 + 1 and 1 + 00 denote the same language.

− Not succinct: each regular expression is a tree (i.e., requiring additional pointers).

− Slow contains-check: the search will carry out many contains-checks, to determine if a

candidate expression accepts or rejects a given string. Depending on implementation details,

this amounts to expensive ’walking’ of the tree representing the candidate.
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In order to avoid those inefficiencies, we represent regular expressions, simplifying a bit, by their

languages, i.e., the search space is (a subset of) Lang(Σ). In memory, we could represent each

language 𝐿 by its characteristic function

1𝐿 : Σ∗ → B
which is formal power series in the sense of Def. 2.9. Mathematically, a function is an unordered

set of pairs. Since computer memory is a totally ordered sequence of bits, we get a total order on

Σ∗ (e.g., using the shortlex order to lift a chosen total order on Σ). Hence we can represent 1
𝐿
as a

list of 0s and 1s in memory. We call this list characteristic sequence (CS). This turns every language

into a bitvector, albeit infinitely long. Fortunately, we only need to implement a finite segment of

these characteristic functions: the algorithm returns an 𝑟 with 𝑟 |= (𝑃, 𝑁 ). As we represent regular
expressions by 𝐿, that means we need to check 𝐿 |= (𝑃, 𝑁 ), i.e., only words in 𝑃 ∪ 𝑁 , a finite set.

Hence we can represent languages as finite functions

1𝐿 : (𝑃 ∪ 𝑁 ) → B
which amounts to a bitvector of length #(𝑃 ∪ 𝑁 ). In the rest of this text we will not carefully

distinguish between a language 𝐿, and its representations as function 1
𝐿
: (𝑃 ∪ 𝑁 ) → B, bitvector

or CS.

We need not just synthesise a regular expression meeting the target specification, but a minimal

one. In order to do this we lift the ambient cost function to regular languages.

Definition 3.3. Given cost(·), we set cost(𝐿) to cost(𝑟 ) for a minimal 𝑟 with Lang(𝑟 ) = 𝐿.

We now present a key insight that does not seem to appear in the extensive literature on formal

power series and semirings, the mathematics behind our implementation.

Lemma 3.4. Assume cost(·) is cost homomorphism, then for all 𝐿, 𝐿1, 𝐿2 ∈ Reg(Σ): cost(𝐿∗) ≤
cost(𝐿) + cost(∗), cost(𝐿?) ≤ cost(𝐿) + cost(?), cost(𝐿1 · 𝐿2) ≤ cost(𝐿1) + cost(𝐿2) + cost(·),
cost(𝐿1 + 𝐿2) ≤ cost(𝐿1) + cost(𝐿2) + cost(+).

This lemma enables compositional, bottom-up construction of regular languages with increasing

cost: in order to construct a regular languagewith cost 𝑐 , we choose an outermost regular constructor,

subtract its cost, and recurse. E.g., for + we split the remaining cost 𝑐 − cost(+) into suitable pairs

𝑐𝑙 and 𝑐𝑟 and find all languages 𝐿𝑙 of cost 𝑐𝑙 and 𝐿𝑟 of cost 𝑐𝑟 . Then 𝐿𝑙 + 𝐿𝑟 has target cost not
exceeding 𝑐 . Computing the sum of two languages is just bitwise-or over the corresponding two

bitvectors. Then we check if 𝐿𝑙 + 𝐿𝑟 meets the specification. If not we continue to search, if yes,

we reverse engineer a corresponding regular expression (see below) and return it. Kleene-star and

concatenation are somewhat more complex and discussed next.

First space-time trade-off: infix-closure. There is a problem with using characteristic sequences

(𝑃 ∪ 𝑁 ) → B for concatenation and Kleene-star. Recall from Def. 2.9 that the product of formal

power series, understood as mappings from Σ∗ into some semiring, is given as

(𝑟 · 𝑠) (𝜎) = ⊕{𝑟 (𝜎1) · 𝑠 (𝜎2) | 𝜎𝑖 ∈ Σ∗, 𝜎1 · 𝜎2 = 𝜎}
We emphasise the underlined part: if we define, for 𝑟, 𝑠 : (𝑃 ∪ 𝑁 ) → B

(𝑟 · 𝑠) (𝜎) = ⊕{𝑟 (𝜎1) · 𝑠 (𝜎2) | 𝜎1 · 𝜎2 = 𝜎}
the question arises: what do 𝜎1, 𝜎2 range over? The answer cannot be: over 𝑃 ∪ 𝑁 . Consider the

specification ({01}, ∅). Paresy works bottom-up, starting from the lowest cost CS, as we will see

below. The only way to construct (the CS corresponding to) 0 · 1 is as concatenation of (the CS

corresponding to) 0 and (the CS corresponding to) 1, both of which are lower cost than 0 · 1. But
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the set of functions on (𝑃 ∪ 𝑁 ) → B corresponding to the alphabet characters 0, 1 is empty. One

might say: 𝑃 ∪ 𝑁 is incomplete for bottom-up synthesis! We are looking for a smallest but finite

superset of 𝑃 ∪ 𝑁 that is closed under regular operations. This motivates the next definition.

Definition 3.5. Let 𝑆 be a semiring, and 𝐼 ⊆ Σ∗ be finite and infix-closed. An infix power series
(IPS) is a map

𝑟 : 𝐼 → 𝑆

We denote the set of all IPS by 𝐼 ⟨𝑆⟩𝑖𝑐 . We define the following operations on 𝐼 ⟨𝑆⟩𝑖𝑐 , for 𝜎 ∈ 𝐼 .
− 0(𝜎) = 0.

− 1(𝜎) =
{
1 𝜎 = 𝜖

0 else

.

− (𝑟 + 𝑠) (𝜎) = 𝑟 (𝜎) + 𝑠 (𝜎).
− 𝑟 ∗ (𝜎) = ⊕∞𝑛=0𝑟𝑛 (𝜎).
− (𝑟 · 𝑠) (𝜎) = ⊕{𝑟 (𝜎1) · 𝑠 (𝜎2) | 𝜎1, 𝜎2 ∈ 𝐼 , 𝜎1 · 𝜎2 = 𝜎}

Here 𝑟 0 is the characteristic function of the language {𝜖} and 𝑟𝑛+1 = 𝑟𝑛 · 𝑟 . It is straightforward
to show that ⊕∞𝑛=0 is well-defined because ic(𝑃 ∪ 𝑁 ) is finite, see [Droste and Kuich 2009] for the

more complex general case. Boolean operations like negation or conjunction are similarly easy to

define, and omitted for brevity.

Noting that (B,∧,∨, 0, 1) forms a semiring, this gives us Paresy’s search space: ic(𝑃 ∪ 𝑁 )⟨B⟩𝑖𝑐 . In
other words functions 𝑟 : ic(𝑃 ∪ 𝑁 ) → B, which, with the assumed total order on ic(𝑃 ∪ 𝑁 ), give
us bitvectors. The 𝑖-th element of each bitvector corresponding to 𝑟 stores the value 𝑟 (𝑤), where𝑤
is the 𝑖-th element of ic(𝑃 ∪ 𝑁 ).

Example 3.6. Consider the specification 𝑃 = {1, 011, 1011, 11011} and 𝑁 = {𝜖, 10, 101, 0011}. Then
ic(𝑃 ∪ 𝑁 ) is

11011, 1101, 110, 11, 1011, 101, 10, 1, 011, 01, 0011, 001, 00, 0, 𝜖

Assume ic(𝑃 ∪ 𝑁 ) is ordered as above, and consider the regular expression 𝑟 = (0?1)∗1. The
intersection of Lang(𝑟 ) with ic(𝑃 ∪ 𝑁 ) is {11011, 1011, 011, 11, 1}. This can be represented as CS,

relative to ic(𝑃 ∪ 𝑁 ):

Here binary strings in green are in 𝑃 , red means 𝑁 , and grey indicates strings that arise from

infix-closure. The 𝑖th bit is 1 (dark blue square) exactly when the language contains the 𝑖th word of

ic(𝑃 ∪ 𝑁 ). Putting multiple CSs contiguously in memory yields a matrix.

Recovering a regular expression from a regular language. The algorithm sketched above computes

formal languages, but not regular expressions. If we build up minimal-cost regular languages until

we find the first 𝐿 that is compatible with (𝑃, 𝑁 ), we cannot efficiently, from 𝐿 alone, produce a

minimal regular expression 𝑟 such that Lang(𝑟 ) = 𝐿. We solve this problem by associating with

each bitvector 𝑏𝑣 enough information to be able to reverse-engineer a suitable regular expression.

Simplifying at bit, it means we track the outermost regular constructor used to construct 𝑏𝑣 and

pointers to the component bitvectors. We store bitvectors produced using the same outermost

regular constructor consecutively, and track, in a lightweight manner, the information about block

beginning / end in a small external table. This allows us, recursively, to construct a regular expression

corresponding to the 𝑏𝑣 , on demand. Details are fiddly and can be found in the implementation.
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Second space-time trade-off: bitvector length. How long should bitvectors representing languages

be? If 𝑛 = #ic(𝑃 ∪ 𝑁 ), then 𝑛 bits suffice, but instead we choose the smallest power-of-2, not below

𝑛. We make this space-time trade-off because the instruction sets of all modern processors are

designed for operations working on power-of-2 sized data, typically 8, 16, 32, 64 bits, sometimes

128 bits. All other bit-widths must be expressed in terms of those, and hence are much slower.

Third space-time trade-off: caching. If we implement our algorithm naively, lower cost languages will

be recomputed repeatedly when computing higher-cost languages. We prevent this with dynamic
programming in the sense of [Fisler et al. 2022]: we construct all needed languages bottom-up, from

lower to higher cost, and keep the constructed languages in memory for later re-use in a matrix

that we describe below. This caching is our third space-time trade-off. It is one of the main reasons

for the performance of our algorithm, but, because the number of regular languages increases

exponentially with increasing cost, makes available memory the scalability limit. We will see in

Sec. 4 that on a modern GPU the algorithm can solve virtually all synthesis tasks in at most a few

seconds, provided they fit in memory.

Matrix representation: language cache. During each Paresy run, 𝑃 and 𝑁 are fixed, and so is the size

of ic(𝑃 ∪𝑁 ). Hence each potential language, i.e., all bitvectors that arise during the search, have the

same length. We store all next to each other in memory, ordered by increasing cost. This amounts

to a matrix called language cache, the core data structure of Paresy. Ordering the language cache
by increasing cost, and noting that each individual bitvector is itself a one-dimensional matrix,

that means the language cache is a matrix of matrices of matrices, where the 𝑐-th entry contains

exactly the languages of cost 𝑐 . The complex, yet regular structure of the language cache allows us

to implement REI mostly using matrix operations with little data-dependent branching, predictable

data movement and enables a great deal of parallelism. For (𝑃, 𝑁 ) from Example 3.6, the language

cache could contain something like the blue squares in the figure below.

We annotate every row with a regular expression accepting the language of the row. Assuming (1,

1, 1, 1, 1) as cost function, the regular expression is minimal for (𝑃, 𝑁 ). The costs on the right show

the language cache naturally decomposes into clusters of equal cost.

Uniqueness checking. The compositional construction of languages is not injective: target languages

might be constructed more than once. For example a union of languages {001} + {𝜖} results in the

same language as {001, 𝜖} + {𝜖}. In order to avoid the performance penalty from this duplication

we remove them as soon as possible. Unlike other operations of our algorithm, uniqueness is a
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global property: as soon as a new CS is constructed, we compare it to all previously constructed

CS. We add it to the matrix only if it is genuinely new. Several things are noteworthy about our

approach to uniqueness checking:

− The performance of uniqueness checking is crucial to performance.

− It works on all formal languages. It is not tied to regular languages.

− It is subtly different from the pruning techniques proposed in e.g., [Lee et al. 2016a], in the

sense that they prune paths in their search space before constructing regular expressions.

We remove languages after we construct them. Pruning before construction is an interesting

direction for further work.

− Computing global properties like uniqueness efficiently on GPUs is challenging. Our unique-

ness checker is a modified form of the HashSet class from WarpCore [Jünger 2022; Jünger

et al. 2020], a CUDA library for high-performance hashing of 32 and 64 bit integers. We can

use WarpCore because we represent as (sequences of) unsigned integers (powers-of-2, see

above).

Staging: guide table. We have seen how easy it is to compute the union of two formal languages

by bitwise-or. Fast computation of concatenation or the Kleene-star is harder because of the

convolutional nature of concatenation, which the Kleene-star iterates. Recall that the product in

𝐼 ⟨𝑆⟩𝑖𝑐 is defined abstractly as follows:

(𝑟 · 𝑠) (𝑤) = ⊕{𝑟 (𝜎1) · 𝑠 (𝜎2) | 𝜎1, 𝜎2 ∈ 𝐼 , 𝜎1 · 𝜎2 = 𝑤}
In our case of characteristic sequences ic(𝑃 ∪𝑁 ) → B, the check 𝜎1 ·𝜎2 = 𝑤 is somewhat expensive,

and, if our algorithm was implemented naively, would have to be re-run every time we construct a

new characteristic sequence from old using concatenation or Kleene-star. Fortunately 𝑃, 𝑁 remain

constant, and we pre-compute all ways in which a word𝑤 can be split. This amounts to a function

𝑔𝑡 : ic(𝑃 ∪ 𝑁 ) → 𝔓(ic(𝑃 ∪ 𝑁 )2)
that returns 𝑔𝑡 (𝑤) = {(𝜎1, 𝜎2) | 𝜎1 · 𝜎2 = 𝑤}. The concrete implementation is the guide table, an
array of arrays of pairs of offsets into the language cache, and we omit details for brevity.

OnTheFly mode. Space-time trade-offs make the algorithm memory intensive. This is the main

scaling limitation. The OnTheFly mode alleviates the problem somewhat, without compromising

on minimality and precision. The insight enabling OnTheFly is that, depending on cost function,

computing a regular language of target cost might make reference only to lower cost CSs that

are still cached, e.g., if the cost of all regular constructors is > 55, then the algorithm needs only

CSs of target cost minus 55. That means, even when we have run out of language cache space,

the algorithm can continue for a while, creating new CSs from old CSs still in the language cache,

but these new CSs are neither cached, not checked for uniqueness. Avoiding uniqueness checks

makes OnTheFly much faster. Our algorithm automatically switches to OnTheFly mode when the

language cache is full. Eventually, OnTheFly mode needs access to CSs that are no longer cached,

then synthesis stops without having found a suitable regular expression. Our implementation and

measurements in Sec. 4 refer to this as out-of-memory error.

GPU language cache implementation. The explanations so far used mathematical concepts, because

we wanted to separate low-level implementation details from high-level abstract structural ideas.

However, the block matrix structure of the language cache, essentially a matrix of matrices of

matrices, is itself interesting, and, especially on GPUs where locality of memory access matters,

important for performance.
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The figure below sketches how a new cost-level is built put. Grey parts are temporary data,

while blue is permanent data. L and R denote auxiliary data, allowing the conversion of a CS to a

corresponding regular expression. In (a) we see how a new cost level is built up from data already

in the language cache. The newly constructed CS are first held in temporary storage. Only CS in

temporary memory that passes the uniqueness check is then copied into the language cache in (b)

filling the new cost level. The use of intermediate temporary storage enables parallelism on GPUs.

The overall structure of the algorithm is simple:

− Allocate the language cache as contiguous array of bytes (which need not be initialised, as the

rest of the algorithm guarantees that the first read always happens after the first assignment).

The internal structure of the language cache as contiguous array emerges during search.

− During searching, the language cache is filled in a single sweep from left to right, in a write-

once manner. No element of the language cache is ever removed or even changed, once in

the language cache.

− The cost of CSs stored in the language cache is never decreasing.

− A newly created CS is not directly stored in the language cache.

− Search terminates only if the algorithm finds a solution to the specification, or OnTheFly has

exhausted the language cache’s supply of CSs.

The pseudocode below adds more detail. For simplicity, pseudocode models the language cache

as an list of fixed size entries, indexed by cost: accessing the 𝑖-th language cache entry returns a list

of CSs with cost 𝑐 , we ignore the aforementioned auxiliary information.

Algorithm 1Main function of synthesis algorithm

1: Input Positive and negative examples (P,N) , 𝑐𝑜𝑠𝑡 ,𝑚𝑎𝑥𝐶𝑜𝑠𝑡

2: Output A minimal RE w.r.t. cost and𝑚𝑎𝑥𝐶𝑜𝑠𝑡 and consistent with (P,N) , otherwise "not_found"
3:

4: if P == {} then return ∅
5: if P == {””} then return 𝜖

6: 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒𝐶𝑎𝑐ℎ𝑒 = [list of CSs of alphabet] ⊲ 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒𝐶𝑎𝑐ℎ𝑒 is global variable

7: for 𝑐 ← 𝑐𝑜𝑠𝑡 (𝜖 ) + 1 to𝑚𝑎𝑥𝐶𝑜𝑠𝑡 do
8: 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 = buildQuestionMark( 𝑐 - 𝑐𝑜𝑠𝑡 (?))
9: 𝑠𝑡𝑎𝑟𝑠 = buildStar(𝑐 − 𝑐𝑜𝑠𝑡 (∗) )
10: 𝑐𝑜𝑛𝑐𝑎𝑡𝑠 = buildConcat(𝑐 − 𝑐𝑜𝑠𝑡 ( ·) )
11: 𝑢𝑛𝑖𝑜𝑛𝑠 = buildUnion(𝑐 − 𝑐𝑜𝑠𝑡 (+) )
12: 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒𝐶𝑎𝑐ℎ𝑒 [𝑐 ] = questions ++ stars ++ concats ++ unions ⊲ ++ is concatenation

13: return "not_found" ⊲ Procedures in loop will return solution directly to caller of main, if found
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Alg. 1 shows the overall structure of Paresy. Lines 4 and 5 handle trivial specifications. Line

6 fills the initial language cache with the initial CSs, corresponding to characters of the alphabet

Σ, at index 𝑐𝑜𝑠𝑡 (𝑎)). The loop then sweeps over all allowed costs, with increasing cost. For each

cost 𝑐 , it considers all CSs of cost 𝑐 , first with question mark as outermost constructor, then with

Kleene-star, then with concatenation, and finally union. Each returns either a regular expression

that solves (𝑃, 𝑁 ) and the algorithm terminates (we don’t model the trivial details), or else a list

of all new CSs. Line 12 then concatenates all those new CSs, and makes them the language cache

entry for cost 𝑐 . As mentioned above, we omit details about having a single contiguous cache, this

is straightforward, but fiddly. (We access the language cache through a layer of indirection that

translates cost into memory offsets, using a data-structure called startPoints that is dynamically

updated. This is made easy by the write-once nature of the language cache.)

Alg. 2 is pseudocode for constructing CSs with concatenation as outermost constructor. It relies

on the guide table, described earlier, which pre-computes all the ways each string𝑤 can be split

into strings from ic(𝑃 ∪ 𝑁 ). In code we access the guide table with the index of the target word

in ic(𝑃 ∪ 𝑁 ), rather than the word itself. Line 5 splits the available cost 𝑐 into all pairs (𝐿, 𝑅) of
costs that sum up to 𝑐 . The next two lines then retrieve all CSs of costs 𝐿 and 𝑅 from the language

cache. On GPUs this is done in parallel. For each pair (𝑙𝐶𝑆, 𝑟𝐶𝑆) Line 10 loops over all words in
ic(𝑃 ∪ 𝑁 ). Here 𝑤 is the index of the word in ic(𝑃 ∪ 𝑁 ), which we assume to be totally ordered.

Line 9 initialises the local variable 𝑛𝑒𝑤𝐶𝑆 which is the CS we are constructing. It is initialised to the

empty language. Line 8 initialises 𝑖 , the ’pointer’ into 𝑛𝑒𝑤𝐶𝑆 at the position of𝑤 . This lets us set

the bit at the right place to 𝑛𝑒𝑤𝐶𝑆 . In Line 11 we start searching through all guide table entries for

𝑤 , the (index of the) current word we are interested in. Let’s say the guide table entry contains (𝑙, 𝑟 ).
If 𝑙𝐶𝑆 contains the 𝑙-th word and 𝑟𝐶𝑆 contains the 𝑟 -th word (that is checked in Line 12), then that

means𝑤 is in the CS under construction, so Line 13 sets the relevant bit 𝑖 . Once we have finished

with the current𝑤 , we update our ’pointer’ 𝑖 (by logical left shift) in Line 14, and process the next

word. Once 𝑛𝑒𝑤𝐶𝑆 is constructed, we check if it was already constructed previously. If yes, we try

with new choices for 𝑙𝐶𝑆 and 𝑟𝐶𝑆 . If not, we check if it solves the specification (𝑃, 𝑁 ) and if it does,
the program converts it into a minimal cost RE, and terminates. Otherwise we add 𝑛𝑒𝑤𝐶𝑆 to the

language cache. For brevity we omit the pseudocode for 𝑏𝑢𝑖𝑙𝑑𝑆𝑡𝑎𝑟 which just iterates concatenation

a finite number of times, and 𝑏𝑢𝑖𝑙𝑑𝑈𝑛𝑖𝑜𝑛 and 𝑏𝑢𝑖𝑙𝑑𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑀𝑎𝑟𝑘 which are straightforward.

Algorithm 2 Pseudocode for concatenation (𝑏𝑢𝑖𝑙𝑑𝐶𝑜𝑛𝑐𝑎𝑡 procedure in Alg. 1)

1: Input cost 𝑐 , globals used: languageCache, P, N
2: Output A list of new CSs generated by concatenation
3:

4: outList← []

5: for all L, R such that L + R = c do
6: for all 𝑙𝐶𝑆 ∈ 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒𝐶𝑎𝑐ℎ𝑒 (𝐿) do
7: for all 𝑟𝐶𝑆 ∈ 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒𝐶𝑎𝑐ℎ𝑒 (𝑅) do
8: 𝑖 ← 1

9: 𝑛𝑒𝑤𝐶𝑆 ← 0

10: for 𝑤 ← 0 to #ic(𝑃 ∪ 𝑁 ) − 1 do
11: for all pair (𝑙 , 𝑟 ) ∈ gt[𝑤] do
12: if (𝑙𝐶𝑆 & 𝑙 ) ≠ 0 and (𝑟𝐶𝑆 & 𝑟 ) ≠ 0 then
13: 𝑛𝑒𝑤𝐶𝑆 ← 𝑛𝑒𝑤𝐶𝑆 | 𝑖
14: 𝑖 ← 𝑖 ≪ 1

15: 𝑖𝑠𝑈𝑛𝑖𝑞𝑢𝑒 ← hashSet.insert(𝑛𝑒𝑤𝐶𝑆)

16: if 𝑖𝑠𝑈𝑛𝑖𝑞𝑢𝑒 then
17: if 𝑛𝑒𝑤𝐶𝑆 |= (𝑃, 𝑁 ) then
18: print 𝑛𝑒𝑤𝐶𝑆 and terminate program

19: outList.insert(𝑛𝑒𝑤𝐶𝑆)

20: return outList
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The image below visualises how the guide table speeds up concatenation.

Checking if𝑤 ∈ ic(𝑃 ∪ 𝑁 ) is accepted by 𝑟1 · 𝑟2 means checking, for all possible splits𝑤1 ·𝑤2 = 𝑤 ,

if𝑤𝑖 is accepted by 𝑟𝑖 . This amounts to folding (in the sense of functional programming) over all

splits. As pairs𝑤1,𝑤2 are infixes of𝑤 , fast access to infixes is crucial, and the reason why our CS

have domain ic(𝑃 ∪ 𝑁 ) rather 𝑃 ∪ 𝑁 . If, given language cache entries 𝑙𝐶𝑆 and 𝑟𝐶𝑆 , we want to

compute 𝑙𝐶𝑆 · 𝑟𝐶𝑆 , the CS representing concatenation of 𝑙𝐶𝑆 and 𝑟𝐶𝑆 , we have to compute this fold

for each word𝑤—more precisely for each bit 𝑘 in the new bitvector 𝑙𝐶𝑆 · 𝑟𝐶𝑆 . The loop starting on

Line 10 does this. Each row in the guide table corresponds to, and is created as soon as (𝑃, 𝑁 ) is
available, from words𝑤 . Each row in the guide table is a contiguous list, hence bitvector, of pairs
(𝑖, 𝑗) corresponding to a split 𝑤 = 𝑤𝑖 ·𝑤 𝑗 . Here 𝑖 is the position of 𝑤𝑖 in CSs, and 𝑗 the position

of 𝑤 𝑗 . (This indexing uses a power-of-two representation aka one-hot [Wikipedia 2023], details

omitted.) The image highlights the word 𝑤 = “110” at index 10 in the language cache, and the

guide table row for “110”. The guide table entry (6, 1) corresponds to splitting “110” into “11” and

“0”. Here 6 is the index of “11” in each CS (read from 𝑙𝐶𝑆) while 1 is the index of “0” (read from

𝑟𝐶𝑆). Line 12 computes if this particular split generates𝑤 , and Line 13 computes the disjunction

with other possible splits (we fold over all splits, as fast exits are data-dependent branching and

problematic on GPUs).

Relationship between CPU and GPU implementation. One purpose of the present work is to un-

derstand the speed-ups over CPUs that can be gained by a GPU-friendly implementation of REI.

Alas, there was no suitable existing reference implementation, so we had to produce one ourselves.

Ideally, we’d like to implement the algorithm only once, and run it on both, CPU and GPU. But we

found CUDA programming in a GPU friendly manner leads to unnatural CPU code, that would

probably perform badly on a CPU. So we implemented the algorithm twice, once for CPUs and

once for Nvidia GPUs. Note that many modern CPUs offer GPU-like features, e.g., Intel’s streaming

extensions [Wikipedia contributors 2022c] or Arm’s Scalable Vector Extension [Stephens et al.

2017]. We explicitly avoided using those, since they are blurring the lines between CPUs and GPUs,

making the comparison less informative.

4 EVALUATION OF ALGORITHM PERFORMANCE

Contemporary ML is an empirical field, and new algorithmic approaches ought to be evaluated

on reproducible benchmarks. To keep measurement and contributions focused, our evaluation

centres on the speed of our algorithm on a GPU. We’d like to compare our work with existing

comparable precise and minimal REI, on widely agreed upon benchmarks. This proved difficult:

all existing implementations of REI we consider compromise on precision or minimality (often
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both). Existing benchmarks are unsuitable because they are either much too easy for Paresy or

they use large alphabets and long strings that lead to out-of-memory errors in our implementation.

(Other approaches that benchmark with large alphabets and long strings compromise on precision,

so solve a much easier problem.) In short: there is no comparable CPU implementation, and no

suitable benchmark suite. We solve both problems by implementing our algorithm on a CPU and

a GPU, and developing suitable benchmarks. All measurements and related artefacts necessary

for reproducing our measurement are available from [Valizadeh and Berger 2023]. For brevity, the

paper discusses only the most interesting observations.

4.1 Hardware and Software Used for Benchmarking

Benchmarks in Sections 4.3 and 4.3 run on Google Colab Pro [Google 2022]. We use Colab Pro

because it is a widely used industry standard for running ML workloads. Another reason is that we

did not have access to modern GPUs outside the cloud. Colab CPU parameters: Intel Xeon (“cpu

family 6, model 79”), 2.20 GHz, RAM: 25 GB, running Ubuntu. We use the g++ compiler, version

7.5.0, with the -O3 optimisation setting. We use std::unordered_set [C++ Standards Committee

2022] to implement uniqueness checking. From now on we will refer to this as Colab-CPU. Colab
GPU parameters: Nvidia A100-SXM4-40GB, Driver: Nvidia-SMI460.32.03, RAM: for comparison,

we restricted the program’s memory usage to the 25 GB available on the Colab-CPU, CUDA Version:

11.2. We use the nvcc Nvidia CUDA compiler driver, with CUDA compilation tools version 11.2.152.

We use theWarpCore library Version 1.0.0-alpha.1 [Jünger 2022] to implement uniqueness checking.

From now on we will refer to this as Colab-GPU. Benchmarks in Sec. 4.3 runs on a MacBook Pro.

Laptop CPU parameters: with a 2.5 GHz Quad-Core Intel Core i7, with 16 MB RAM. We compile

CPU C++ code using Apple clang version 11.0.3. We compile AlphaRegex using version 4.12.0 of

the Ocaml system. We compile with the native-code compiler (ocamlopt). From now on we will

refer to this as Laptop-CPU.

4.2 Threats to Validity

Benchmarking is fraught with methodological difficulties that we are intimately aware of, see

[Barrett et al. 2017; Dehghani et al. 2021; Gregg 2018; Hooker 1995] for a discussion. A comparison

between CPU and GPU is intrinsically apples-to-oranges, and there are numerous ways in which

our measurements could be improved.

− It is unclear to what extent GPU, CPU on Google Colab Pro are virtualised. This may affect

the reproducibility of measurements.

− For the Colab-CPU we could neither determine the exact version of the processor nor the

version of Ubuntu.

− Our benchmarks are largely random strings, and those are likely quite different from strings

that we expect to see in practically relevant REI. We conjecture that random strings over an

alphabet Σ tend to be more difficult for grammar inference than more structured, human

written examples.

− Benchmarking against AlphaRegex compares a C++ with Ocaml, which could be seen as

disadvantaging the AlphaRegex. On the other hand, AlphaRegex does not always return a

minimal regular expression, so solves a simpler problem.

− We were hampered by a “measurement threshold” of around 0.2 seconds, a minimal time the

Colab-GPU would take on any task, including toy programs that do nothing at all on the

GPU. We believe that this might be GPU latency [Wilper et al. 2020], possibly compounded

by the Colab framework. This stood in the way of evaluating the performance of Paresy on

small benchmarks.
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We believe the speedups we find are unlikely only the effect of measurement bias. We encourage

others to replicate our experiments and improve our measurement methodology.

4.3 Benchmark Construction

A good benchmark suite should be tunable by a small number of explainable parameters that

allows users to achieve hardness levels, from trivial to beyond the edge-of-infeasibility, and any

point in-between. The benchmarks should be suitably random to reduce biasing measurements,

yet remain fully reproducible. We are interested in both, space and time complexity, since our

algorithm make a space-time trade-off, and quickly solves virtually every problem instance that

fits in the available memory. That means we need to be able to fine-tune benchmarks to target

memory availability. Paresy’s memory usage is governed by the size of ic(𝑃 ∪ 𝑁 ), which, in turn

depends on two related factors: the length of the longest strings in 𝑃 ∪ 𝑁 , and what might be

called the heterogeneity of infixes: e.g., ic({𝑎𝑎𝑎, 𝑎𝑎}) = {𝑎𝑎𝑎, 𝑎𝑎, 𝑎, 𝜖} is smaller than ic({𝑎𝑏𝑐, 𝑑𝑒}) =
{𝑎𝑏𝑐, 𝑎𝑏, 𝑏𝑐, 𝑑𝑒, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝜖}, despite both being computed from two strings of identical lengths.

This suggest a reproducible way of constructing benchmarks with the following natural parameters.

− Alphabet Σ,
− 𝑙𝑒 is the maximal length of example strings,

− 𝑝 and 𝑛, the numbers of positive and negative examples, respectively.

With those parameters, we define two complementary benchmark generation schemes. Both create

instances (𝑃, 𝑁 ) by sampling uniformly from two different spaces of random strings.

− Type 1: {(𝑃, 𝑁 ) ∈ Σ≤𝑙𝑒 × Σ≤𝑙𝑒 | ∀𝑤 ∈ 𝑃 ∪ 𝑁 .#𝑃 = 𝑝, #𝑁 = 𝑛, 𝑃 ∩ 𝑁 = ∅}
− Type 2: {((𝑃0, ..., 𝑃𝑙𝑒 ), (𝑁0, ..., 𝑁𝑙𝑒 )) ∈ 𝑌 × 𝑌 | Σ𝑖#𝑃𝑖 = 𝑝, Σ𝑖#𝑁𝑖 = 𝑛,∀𝑖 .𝑃𝑖 ∩ 𝑁𝑖 = ∅}

Here 𝑌 is𝔓(Σ0) × · · · ×𝔓(Σ𝑙𝑒 ), and the benchmark corresponding to ((𝑃0, ..., 𝑃𝑙𝑒 ), (𝑁0, ..., 𝑁𝑙𝑒 )) is
(⋃𝑖 𝑃𝑖 ,

⋃
𝑖 𝑁𝑖 ). Type 1 and Type 2 have different flavour: since there are exponentially more long

strings than short, Type 1 specifications are dominated by long strings. In order also to be able to

study the effects of short strings in specifications, Type 2, gives each length the same chance of

occurring in positive or negative examples. Hence short strings, like 𝜖 , are likely to be in most Type

2 specifications. Our main benchmarks, used below, are generated using the following parameter.

The alphabet is {0, 1}. The remaining parameters have been chosen to be as hard as possible on

the GPU while avoiding running out of memory. Type 1 benchmarks: 𝑝 and 𝑛 both range over 8

to 12, and 𝑙𝑒 over 0 to 7. Type 2 benchmarks: 𝑝 and 𝑛 both range over 7 to 14, and 𝑙𝑒 over 0 to 10.

While Paresy can deal with arbitrary alphabets (with the expected increase in search space size),

we restrict our attention to {0, 1} because our main point of comparison, AlphaRegex, can only

handle binary alphabets.

Measurement (1): impact of cost functions. How big is the impact of cost function on run time?

Intuitively, it should be strong, since any specific cost function induces a search order, and the

solution to a given synthesis problem can come earlier or later in the search process depending on

that order. Figure 1 hones in on, and quantifies the effect of search order on synthesis performance.

Themeasurements were donewith the Colab-GPU.We run and time 5160 benchmarks (200 examples

from Type 1, and 230 from Type 2, all with 12 different cost functions), on the Colab-GPU 3 times,

and take the average of those three runs for each benchmark. We plot those examples that don’t

timeout within 5 seconds at least for one of the cost functions). We do not run the measurements on

a CPU because that would be too time-consuming (order of weeks). Since the algorithm is the same

on CPU and GPU, and Table 1 indicates that, indeed, search order affects CPU and GPU similarly,

we conjecture that we would see similar effects with CPUs. Here is a summary of observations.
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Fig. 1. Plotting 3325 benchmarks with 12 different cost functions on the Colab-GPU. The x-axis are the

benchmark names, sorted by increasing duration of each named benchmark using the (1, 1, 1, 1, 1) cost
function. Benchmarks that run more than 5 seconds (only 3.62%), or run out of memory, are omitted.

− Measurements cluster on the bottom left of the figure, meaning that slow benchmarks are

the exception rather than the rule: 60% of benchmarks run in under 1 second and 73% under

2 seconds. We discuss outliers briefly at the end of this section.

− The (1, 1, 1, 1, 1) cost function shows a clean and steep increase in synthesis time, which we

do not see for other cost functions. This is partly a consequence of the fact that the x-axis is

benchmarks, ordered by increasing time using (1 1 1 1 1) (details of sorting in case of tie are

in [Valizadeh and Berger 2023]).

− The (1, 1, 10, 1, 1) cost function which makes the Kleene-star expensive, is often fast. This

might be surprising since the Kleene-star is the one mechanism regular expressions have

to ’generalise’, to exploit patterns. Our benchmarks use random strings, so it’s unlikely that

we get many opportunities that make the Kleene-star useful. Therefore cost functions that

avoid the cost of the Kleene-star are likely to be faster. It would be interesting to use this

cost function on benchmarks with a lot of repetition.

− The (1, 1, 1, 1, 10) cost function that makes union expensive is usually the slowest one. We

can infer from long running-times that the algorithm does not run out of memory. This is

only possible if most newly generated CSs fail their uniqueness checks.

Measurement (2): CPU vs GPU versions of our algorithm. Table 1 compares Paresy on a CPU and a

GPU. Our choice of benchmark parameters resulted in benchmarks that can fit into Colab-GPU, but

take on average about 1 hour each on the Colab-CPU. For each pair of (type, cost-function), we chose

from the previous benchmark the longest-running benchmark that neither ran out-of-memory nor

timed out. We run and time these 24 benchmarks 3 times, and report the average of those three

runs for each benchmark. Here is a summary of core observations.

− Our GPU is three orders of magnitude faster than our CPU version of the same algorithm,

and the speed-up does not depend on the chosen cost function.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 160. Publication date: June 2023.



160:16 Mojtaba Valizadeh & Martin Berger

Table 1. Comparison of Paresy on hardest examples, using the Colab-CPU and Colab-GPU.

Input CPU GPU

Type No # P # N Cost Function Sec Sec Speed-up # REs

1 50 10 12 (1, 1, 1, 1, 1) 5080.7850 4.9512 1026x 26,774,099,142

1 51 12 9 (10, 1, 1, 1, 1) 4699.8137 4.4966 1045x 23,824,118,297

1 73 10 11 (1, 10, 1, 1, 1) 5805.2168 3.7144 1562x 22,703,639,676

1 20 9 9 (1, 1, 10, 1, 1) 2893.4835 2.8935 1000x 13,567,472,188

1 73 10 11 (1, 1, 1, 10, 1) 2901.9297 2.9504 983x 11,706,686,339

1 31 8 9 (1, 1, 1, 1, 10) 5856.6925 3.9973 1465x 14,210,157,835

1 57 12 10 (10, 10, 10, 10, 1) 2804.6793 3.4322 817x 14,163,906,090

1 50 10 12 (10, 10, 10, 1, 10) 4519.9456 4.9096 920x 23,349,552,935

1 57 12 10 (10, 10, 1, 10, 10) 4301.8548 4.5243 950x 20,257,045,497

1 97 12 12 (10, 1, 10, 10, 10) 5608.7286 4.7782 1173x 19,680,542,658

1 61 12 10 (1, 10, 10, 10, 10) 2915.0938 3.0532 954x 14,322,039,866

1 88 12 9 (20, 20, 20, 5, 30) 6899.0045 4.6904 1470x 25,193,577,825

2 88 14 8 (1, 1, 1, 1, 1) 3783.9772 4.2462 891x 23,697,549,545

2 150 14 12 (10, 1, 1, 1, 1) 4228.2773 4.4120 958x 23,125,803,623

2 158 12 14 (1, 10, 1, 1, 1) 2975.9956 2.4887 1195x 11,432,891,412

2 136 11 14 (1, 1, 10, 1, 1) 3374.8873 3.6080 935x 18,241,755,827

2 107 12 12 (1, 1, 1, 10, 1) 2432.4320 4.4120 551x 24,954,272,802

2 32 10 7 (1, 1, 1, 1, 10) 7400.8135 4.6482 1592x 16,729,795,052

2 136 11 14 (10, 10, 10, 10, 1) 2907.9182 3.9689 732x 17,476,988,322

2 200 13 8 (10, 10, 10, 1, 10) 9687.7952 4.5366 2135x 6,037,014,423

2 107 12 12 (10, 10, 1, 10, 10) 3383.1937 4.5071 750x 20,697,274,025

2 81 8 14 (10, 1, 10, 10, 10) 3497.9013 4.6699 749x 21,869,903,022

2 88 14 8 (1, 10, 10, 10, 10) 3405.5536 4.1602 818x 21,889,508,744

2 158 12 14 (20, 20, 20, 5, 30) 5804.8112 4.9228 1179x 23,163,079,580

Average 4465.4493 4.1238 1077x 19,127,861,447

− Almost half of Type 1 examples in Table 1, contain 𝜖 . This is surprising, because Type

1 strongly favours long strings. Indeed, we created Type 2 only so that we can also run

benchmarks with specifications contain short strings, including, in particular 𝜖 . So 𝜖 seems

to make inference disproportional harder. We conjecture that this is an effect of using regular

expressions, rather than an artefact of our algorithm.

Measurement (3): comparison with AlphaRegex. We compare our algorithm against AlphaRegex,

the state-of-the-art REI system. We use the Laptop-CPU because we could not get Ocaml, required

for AlphaRegex, to run on the Colab-CPU. We do not run our own benchmarks because, after

informal experiments, we felt AlphaRegex would take too long. Moreover, most of our benchmarks

contain 𝜖 , which AlphaRegex does not handle. Instead we use the benchmark from [Lee et al. 2016a,

2017] (slightly adapted): because AlphaRegex solves those quickly. We run these benchmarks only

use the CPU version of Paresy since almost all are solved on the Colab-GPU by Paresy below

the measurement threshold. We adapt some benchmarks because AlphaRegex uses the “wild

card” heuristic, which Paresy does not support: we replace ’X’ by 0 + 1, the meaning intended

by AlphaRegex. In order to mitigate the methodological problems arising from comparing C++

and Ocaml, we report the regular expressions checked by both for compliance with the ambient

specification, as those depend only on the algorithm. Here is a summary of observations.
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Table 2. Running Paresy and AlphaRegex on the laptop-CPU. Benchmarks labelled with † replace the

“wild card” 𝑥 with the intended 0 + 1, since Paresy does not support their “wild card” heuristic. Cost

bold and underlined is not minimal. On the Colab-GPU, Paresy does not accept no6 and no9, because

they require 128 and 256 bits for their respective ic(𝑃 ∪ 𝑁 ), which WarpCore does not currently support; no9

needs > 256 bits which even our CPU version does not currently support. All but three examples that we can

run on the Colab-GPU, finish in approx. 0.2 seconds, i.e., below the measurement threshold.

Running Times (sec) Cost(RE) # REs

No 𝛼R Paresy Speed-up 𝛼R Paresy 𝛼R Paresy Increase

no1
†

0.0092 0.0054 2x 85 85 27 77 2.85x

no2
†

0.0402 0.0042 10x 155 110 704 470 0.67x

no3
†

52.6748 24.1921 2x 280 280 282,815 32,329,412 114.31x

no4
†

0.0277 0.0051 5x 155 140 520 3,821 7.35x

no5
†

50.5782 3.144 16x 265 265 292,115 9,960,260 34.10x

no6
†

231.4295 4.1491 56x 240 240 659,702 4,731,056 7.17x

no7 7.211 0.5716 13x 230 225 92,702 581,659 6.27x

no8 0.0673 0.0096 7x 160 160 1,318 7,776 5.90x

no9
†

>20000 N/A N/A N/A N/A N/A N/A N/A

no10 1.4267 0.0057 250x 155 155 21,457 6,772 0.32x

no11 0.01 0.0041 2x 85 85 92 77 0.84x

no12 0.1614 0.0137 12x 185 185 3,721 23,675 6.36x

no13 1.105 0.1961 6x 220 220 17,957 483,161 26.91x

no14
†

>20000 116.5046 N/A N/A 310 N/A 261,293,189 N/A

no15
†

25.9066 0.2952 88x 240 240 187,484 1,721,174 9.18x

no16
†

3.8588 0.0594 65x 205 205 32,039 225,377 7.03x

no17 2.1345 0.326 7x 230 225 31,476 659,386 20.95x

no18 0.1004 0.0074 14x 155 155 1,710 8,010 4.68x

no19
†

0.0207 0.0057 4x 130 130 164 1,867 11.38x

no20
†

25.6899 0.0192 1338x 160 160 97,510 21,135 0.22x

no21 0.8064 0.1993 4x 225 225 18,887 481,762 25.51x

no22
†

68.6433 1.1519 60x 265 265 495,783 6,202,349 12.51x

no23 1.5421 0.028 55x 210 180 22,411 32,068 1.43x

no24 10.7292 0.0491 219x 200 200 127,893 109,433 0.86x

no25 19.182 3.7642 5x 265 240 260,104 3,205,741 12.32x

− AlphaRegex does not always return minimal-cost regular expressions in nearly 25% of their

own benchmarks. This is surprising, given the abstract of [Lee et al. 2016a]. We believed this

is a direct consequence of their heuristics
1
.

− AlphaRegex’s pruning heuristics often work well, and can sometimes decrease the number

of regular expressions checked by an order or two of magnitude. Surprisingly, and despite

their pruning heuristics, in about 20% of benchmarks AlphaRegex checks more regular

expressions than Paresy. In all benchmarks, Paresy is faster despite generating and checking

many more regular expressions.

1
In passing we note that sometimes the lower-cost regular expression we synthesise does not meet the corresponding

English language description in [Lee et al. 2016a]. For example, in benchmark “no25”, the description in English is “at most

one pair of consecutive 1s”. We synthesise 0 + ( (1 + 00) (0 + 1) )∗, which is lower cost than the solution AlphaRegex finds,

and meets their all positive and negative examples, but accepts strings like 1111.
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− AlphaRegex is always slower than the CPU version of Paresy, in an extreme case by more

than three orders of magnitude.

− The benchmark running out-of-memory with Paresy (“no9”) can be executed by AlphaRegex,

albeit not within 20000 sec
2
.

A note on outliers. We have repeatedly stated that Paresy solves virtually all benchmarks (that fit

into memory at all) in a few seconds. However, there is a small number of outliers that take much

longer. The table below quantifies outliers w.r.t. the full benchmark suite.

Duration (sec) <2 <3 <4 <5 <10 <25 <50 <100 <200 <400 <800

% of benchmarks 89.48 94.06 95.71 96.38 98.14 98.84 99.28 99.59 99.83 99.91 100.00

Performance evaluation. Paresy is exponential in (asymptotic) space and time complexity. Paresy

terminates no later than with the maximally overfitted regular expression𝑤1 + ... +𝑤𝑖 for (𝑃, 𝑁 ),
assuming 𝑃 = {𝑤1, ...,𝑤𝑖 }, see (2) from the introduction. Let𝑋 be the number of regular expressions

with cost not exceeding that of𝑤1 + ... +𝑤𝑖 , then 𝑋 is an upper bound on the number of generated

CSs. Regarding space complexity, we store only unique CSs. Let 𝑌 be the number of unique CSs

in the language cache, so 𝑌 ≤ 𝑋 . Each CS uses approx. 𝑘 bits where 𝑘 is size of ic(𝑃 ∪ 𝑁 ). We

use additional memory for uniqueness checking and reconstructing concrete regular expressions

from CSs: overall approx. 3 · 𝑘 bits for each CS. This bound works regardless of alphabet size.

Hence the worst-case size of the language cache is 3 · 𝑘 · 𝑌 ≤ 3 · 𝑘 · 𝑋 bits. Getting tighter average

and worst-case bounds on the number of unique CSs for a given specification is an interesting

open problem. We leave a detailed investigation of the performance overheads of cache misses,

data-depended branching and hardware synchronisation overhead (e.g., insertion of unique CSs

into the shared language cache) as future work.

Summary of evaluation. We believe, that, despite the difficulties with measurement methodology

we noted, the speed-ups we are seeing from running Paresy, especially on GPUs, are not just an

effect of measurement bias. We believe that the main reason for the performance improvement we

are seeing, is that our algorithm is GPU-friendly.

5 CONCLUSION

The present work combines three main themes: ML, GPU programming and algorithms & data

structures. Each is vast and we could not possibly do justice to those fields here. Instead, we

highlight some key works that have influenced our thinking.

5.1 Related Work

Program synthesis techniques. FlashFill [Gulwani 2011] reinvigorated program synthesis a decade

ago. While FlashFill does not do REI but synthesises string transformers, there is conceptual overlap

with Paresy, in that both return minimal solutions w.r.t. a cost function (size(·) in FlashFill), and

that both make crucial use of infixes. The main differences are: (i) FlashFill represents infixes of

strings with a syntactic construct e.g., SubStr(s, 2, 5), resp. a DAG, and explicitly represents start-

and end-positions of infixes as numbers. In contrast, infixes are implicitly represented as bits in

our CS and accessed by position. (ii) Paresy runs on GPUs, while, to the best of our knowledge,

FlashFill is implemented only for CPUs.We don’t believe the FlashFill algorithm can be implemented

efficiently on GPUs without substantial re-engineering. (iii) Unlike our use of semirings which

2
AlphaRegex solves it quickly using the “wild card” heuristic.
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immediately also generalise to context-free, and, indeed, all formal languages, FlashFill’s data

structures are not related to abstract mathematics, making it difficult to see how they generalise.

(iv) FlashFill’s cost function is not configurable. (v) FlashFill is used as an incremental synthesis

tool in Microsoft Excel. Paresy is currently not incremental.

Our CSs are a variation on the theme of observational equivalences, a standard technique to

mitigate the cost imposed on synthesis by the redundancies of syntax: intuitively, programs are

equivalent if they have the same behaviour in all contexts, e.g., 𝑟 ∗ and 𝜖 + 𝑟 ∗𝑟 . An ideal synthesis

mechanism searches over canonical representatives of programs quotiented by this equivalence,

alas observational equivalence is not computable in general. When synthesising programs from

examples, it is natural to consider programs equivalent if they relate to the examples in the

same manner, FlashFill [Gulwani 2011] and TRANSIT [Udupa et al. 2013] do this. Paresy does

something subtly different: we do not identify regular expressions w.r.t. to words in the examples,

but instead over-approximate and identify them if they have the same CS over the infix-closure of the

examples. This over-approximation is vital for fast bottom-up synthesis of regular expressions. Other

work instead under-approximates: this is a heuristic for quickly discarding obviously unsuitable

candidates, e.g., the “fingerprints” in superoptimisation [Bansal and Aiken 2006]. Similar techniques

are used in e.g., equality saturation [Nandi et al. 2021].

Regular expression synthesis from examples. AlphaRegex [Lee et al. 2016a,b] works from positive

and negative examples, and a configurable (albeit only by editing and recompiling source code)

cost homomorphism. AlphaRegex uses top-down, exhaustive search over regular expressions

extended with a concept of ’hole’. The cleanmathematical semantics of extended regular expressions

enables elegant pruning heuristics. All synthesised regular expressions are precise. [Lee et al. 2016a]

claims that synthesised regular expressions are minimal (“the method automatically synthesizes the
simplest possible regular expression that ...” ), but we found several counterexamples (see Table 2).

AlphaRegex has two main restrictions: binary alphabet only, and examples must not contain the

empty string (Paresy has neither restriction). FlashRegex [Li et al. 2020] presents an interesting

twist on regular expression synthesis: regular expressions are often used in security sensitive

applications, and, if chosen naively, can enable denial-of-service attacks, called ReDOS [Wikipedia

contributors 2022b]. FlashRegex optimises for generating regular expressions from positive and

negative examples that are not susceptible to ReDOS. Since this work is optimising in a different

direction from ours, the two approaches are not directly comparable. However, an interesting

research problem is to investigate if Paresy can be extended so it guarantees lack of ReDOS

vulnerability in addition to, or instead of minimality.

A widespread use of regular expressions is for information extraction: extract(𝑟,𝑤) returns all
substrings 𝑤 ′ of 𝑤 such that 𝑤 ′ ∈ Lang(𝑟 ). Examples include extracting URLs from a web-page.

Much research has been done on inference of regular expressions for information extraction, often

in the context of XML, or linguistics. We mention only [Bartoli et al. 2014, 2016; Bex et al. 2010; Li

et al. 2008], where the reader can find more references. The learning problem in those papers is the

same as ours: from given positive and negative examples, construct a suitable regular expression.

The resulting regular expression is not guaranteed to be minimal and it also not, in general, precise.

The papers use genetic programming as search mechanism.

Often input to REI changes only gradually and incrementalising this problem is an appealing

proposition. Several papers consider this problem. We mention two: [Pan et al. 2019] design

a heuristic algorithm called RFixer that repairs a regular expression with given positive and

negative examples. When the regular expression is incorrect on the examples, RFixer automatically

synthesises the syntactically smallest repair of the original regular expression that is correct on

the given examples. This can be seen as a incremental regular expression synthesis. [Wang et al.
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2016] considers the widespread use of regular expressions for data filtering, for example to ’zoom

in’ on relevant data in a spreadsheet. This can be done with regular expressions: “show me only

the strings that start with something matching regular expression 𝑟”. Since construction of suitable

regular expressions is considered hard, it should be learned from examples. Like us [Wang et al.

2016] consider positive and negative examples, but they consider only the star-free subset of

regular expressions, making the search space much easier. We can already search in the star-free

fragment, by setting cost(∗) high enough, however, our algorithm is not incremental. In either case,

incrementality typically requires sophisticated support data structures to work well. We leave the

question of incrementalising our algorithm as important future work.

We are reluctant to compare with deep-learning based regular expression synthesis, because

existing implementations like [Li et al. 2021; Locascio et al. 2016; Park et al. 2019; Zhong et al. 2018]

all work from natural language specification and make neither minimality nor precision guarantees.

Indeed, given the intrinsic ambiguity of natural language, what would such guarantees even mean?

In order to fill this notable lacuna, the present authors are preparing a comparison between Paresy

and REI on generative pre-trained transformers [Vaswani et al. 2017].

Acceleration of regular expression contains-checking. Regular expressions are widely used, and

performance-critical for many applications. So it is not surprising that there is work on accelerating

regular expressions with GPUs or even dedicated hardware. It is crucial to understand that this

existing work is accelerating a subtly different problem, which we call the contains-check for regular
expressions (also known under different terms, including, but not limited to matching, pattern

matching, evaluation, language containment). The table below summarises the difference.

REI Contains-check

Input Sets of strings String

Output Regular expression True/False

It is not clear that accelerating REI is automatically also advantageous for contains-checking,

or vice-versa. Be that as it may, we briefly survey existing work on the acceleration of regular

expression contains-checking.

Much has been written about implementing fast regular expression contains-checking on CPUs.

We mention only [Qiu et al. 2021], which presents two ideas that might be interesting on GPUs, too:

the problem with contains-checks, from the point of view of parallelism, is that the contains-check

appears to be sequential. In order to parallelise contains-checking of string𝑤 , we could break𝑤

into parts, e.g., to check if 𝑟1𝑟2 contains 𝑤 , we could break 𝑤 into 𝑤 = 𝑤1𝑤2 and then check in

parallel if 𝑟1 contains 𝑤1 and 𝑟2 contains 𝑤2. The problem is that’s it’s not easy to know where

to split 𝑤 . [Qiu et al. 2021] suggests doing this speculatively, and perform a ’rollback’ in case of

miss-speculation. Contains-check acceleration on GPUs is a relatively new field, not surprising

given that GPUs are relatively recent and hard to program. The first work to do so was [Cascarano

et al. 2010]. The paper exploits the parallelism GPUs offer through a non-deterministic automata

representation of regular languages. Later, [Liu et al. 2020; Zu et al. 2012] improves [Cascarano

et al. 2010] with more carefully designed data structures.

5.2 Future Work

It is natural to consider generalisation of the Paresy algorithm to other classes of grammars,

whether more expressive (e.g., context-free or context-sensitive), or less (e.g., restricted star-height).

Many of our core algorithmic choices, in particular the choice of bitvectors to represent languages,

and the use of uniqueness as generic pruning technique, work for any grammar.
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It is also natural to ask if Paresy can be made less memory intensive by compromising on mini-

mality or precision. In other words, can local search benefit from ideas for GPU acceleration of global

search? In closing, we sketch how to implement REI with error, a simple local search technique that

requires changing only a few lines of code. Intuitively it is clear that REI becomes easier if we drop the

requirement that the result be precise. Let’s introduce an allowed error parameter, a number between

0 and 1, that quantifies the allowed error. Solving (𝑃, 𝑁 ) then requires finding 𝑟 with 𝑟 |= (𝑃 ′, 𝑁 ′)
such that 𝑃 ′ ⊆ 𝑃 and 𝑁 ′ ⊆ 𝑁 , and the allowed error is an upper bound on the fraction of 𝑃 ∪𝑁 that

is not in 𝑃 ′ ∪ 𝑁 ′. Consider the specification 𝑃 = {00, 1101, 0001, 0111, 001, 1, 10, 1100, 111, 1010} and
𝑁 = {𝜖, 0, 0000, 0011, 01, 010, 011, 100, 1000, 1001, 11, 1110}, the top row of Table 1. The table below

shows the dependency of synthesis cost (quantified by number of regular expressions checked for

compliance with the specification) on allowed error. We used the (1, 1, 1, 1, 1) cost function.

Allowed Error # REs RE Cost(RE)

0 % 26,774,099,142 10?+0?(00+10*10?(0+1))1? 28

5 % 319,649,322 ((0+1)0+(0+11)*1)(100?)? 22

10 % 18,698,767 (10+0*1)(10?(0+1))? 18

15 % 794,598 (0+1)0+(0+11)*1 14

20 % 116,912 (0+11)*(1+00) 12

25 % 2,073 (0+11)*1 8

30 % 2,073 (0+11)*1 8

35 % 1,124 1+(0+1)0 7

40 % 50 10? 4

45 % 3 1 1

50 % 1 ∅ 1

What we see might be an exponential dependency between allowed error and synthesis cost.

Finally, we challenge the deep learning community to solve minimal and precise REI with ANNs,

and then compare speed, memory usage and power consumption with Paresy.
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