Search-Based Regular Expression Inference on a GPU

Mojtaba Valizadeh Martin Berger
https://martinfriedrichberger.net/

21 June 2023

https://martinfriedrichberger.net/

Problem

Can we accelerate program synthesis with GPUs?

What makes program GPU-friendly?

» Predictable data movement
» Minimise data-dependent branching
» Maximise parallelism

» Minimise synchronisation between different threads/warps/cores etc as much
as possible

Can we do this for program synthesis?

What makes program GPU-friendly?

» Predictable data movement
» Minimise data-dependent branching
» Maximise parallelism

» Minimise synchronisation between different threads/warps/cores etc as much
as possible

Can we do this for program synthesis?

What is a tractable synthesis problem to bootstrap GPU synthesis?

Regular expression inference

REI = programming by example with regular expressions

REI = programming by example with regular expressions

Input:
» Examples: two finite sets of strings, P and N
» Cost function: cost(-) for REs

Output: regular expression r that is:
» Precise: r accepts all strings in P and rejects all strings in N
» Minimal: no regular expression with a cost less than cost(r) is precise

REI = programming by example with regular expression

Old & well-known problem (1967 Gold’s “Language identification in the limit”)
Currently unsolved for deep-learning based
REs are “embarrassingly sequential”

Asymptotic complexity well understood
» Gold (1978): is NP-hard for DFAs
> Pitt and Warmuth (1993): is NP-hard for DFAs, NFAs and REs, even to
approximate minimum

Regular expressions

The regular expressions over ¥ are given by the following grammar:
r o= 0|elalrr|r+r|r
We write Lang(r) for the language of r

Usual abbreviations, e.g., rr’ for concatenation r - r’, r?, ¥*. Also implemented:
intersection, negation, complement

Search order, cost homomorphism

A cost function is a map cost(-) : RE(X) — Nat. It is a cost homomorphism if
there are integer constants, ¢y, ..., ¢s > 0, such that:

cost(r - r') = cost(r) + cost(r') + ¢4
r+r') = cost(r) + cost(r') + cs

vvyYVvyyvyy
(@]
o
(2]
—
—_ o~~~
~
*
~
Il
(@]
(2]
—

We call each c; the cost of the corresponding regular constructor

Solution: trivial algorithm

Enumerate by increasing cost and check each if meets constraints

Solution: trivial algorithm

Enumerate by increasing cost and check each if meets constraints

Research question: How to make GPU friendly?

Core problem: how to represent REs during search?

Using REs search space is wasteful for several reasons:
> Not space-efficient: Each regular expression is a tree (needs pointers)
» Slow contains-check: To check candidate, needs tree-walk

» Redundant: Each regular language is denoted by infinitely many regular
expressions. For example, 00+1 and 1+00 denote the same language

» Non-local: Pointers can point to anywhere in memory, unpredictable

Representation of RE by languages

Recall language L is subset of £*. Isomorphic representation as characteristic

sequence
1,: & - B

1 ocel
o =
0 else
Note: B is a semiring, and boolean algebra

Many REs have the same characteristic sequence e.g. r + r and r. Characteristic
sequence prune away this redundancy (REs up to observational congruence)

Problem: the domain £* of 1, is infinite

Representation of languages

In REI, we only care about strings in P U N, we could use

1,: PUN = B

N

l\'\
Q N
'\QQQ'\QQ INIEN

'\
Positive = {1, 011, 1011, 11011} ¢W¢M
Negative = {e, 10, 101, 0011}

14

Note: 1, : PuU N — B is not enough, e.g. with

\"0'@ Q'\Q\ ,\'\ [N
1 60600000
2 00000000 P =1,001, 1001, 11011

.2 000900000 N =, 10, 101, 0011

JURS VR 9 8

f

v

1011 =“".1011 checked
1.011 checked
1011 1
101.1

1011.%"

Infix-closure

Our representation of regular expressions are characteristic sequences

cs:ic(PUuN)—B

w is an infix (aka substring) of string o if c = wy - w - wo. Example: “abc” has
infixes like
abc ab bc a b c €

ic(S), the infix-closure of a set S, is the smallest infix-closed superset of S

Infix-closure: example

P={1,011,1011,11011} and N = {¢,10,101,0011}. Thenic(PU N) is

11011,1101,110,11,1011,101,10,1,011,01,0011,001, 00,0, €

or\o"r\"'\"o n

NS '\000'\'\'\00 QQr\"t\Q SN
01
3

Q Q ¢
1202120202021 2021 2020 020
4

14 13 12 11 10 9 8 7 6 5 2 1 0

Infix-closure characteristic sequences summary

Q"r\ N
t\"r\ O 00,\ r@o QQ N PN o e
1202120202021 Z202120202021Z2020
14 13 12 11 @ 9 8 7 6 5 4 3 2 1 0

Characteristic sequence turns language into a bitvector in memory
bitvector = integer, bitvectors = integer matrix!

ic(P U N) is ordered in memory

>
>

» P and N are fixed, so don’t change during an REI run!
>

» Going through ic(P U N) is a linear scan (= predictable)

Principled program synthesis: using formal power series over
semirings

Our characteristic sequences cs : ic(P U N) — B form a *-semiring, abstracting:
> addition
» multiplication
> iteration

corresponding exactly to the operations on regular expressions

Slogan: *-semiring as the API for regular expression synthesis

Algorithm 1 Main function of synthesis algorithm

: Input Positive and negative examples (P, N), cost, maxCost
: Qutput A minimal RE w.rt. cost and maxCost and consistent with (P, N), otherwise "not_found”

if P == {} then return ¢

if P == {""} then return €

: languageCache = [list of CSs of alphabet] > languageCache is global variable
: for ¢ « cost(€) + 1 to maxCost do

questions = buildQuestionMark(¢ - cost(?))

stars = buildStar(c — cost(x))

10: concats = buildConcat(c — cost(-))

11: unions = buildUnion(c — cost(+))

12: languageCache|[c] = questions ++ stars ++ concats ++ unions > ++ is concatenation

WON D N W

13: return "not_found" > Procedures in loop will return solution directly to caller of main, if found

Language Cache
We construct all needed languages bottom-up, from lower to higher cost, and keep
the constructed languages in memory for later re-use:

,
0,
o
>
.
7y
>
>

[«) =] ol O (=) 7,
%,

o,
)
P
%,
o
o

cost

-1

-3

BENR 2223002200020
(ER 0 % 0 20 2020202020202021202120208
CIEVIRER 1 X1 X1 202021 21 20X 1 2021 2021 20X 1 JE
CESMERRERRR 1 21 21 212021 2121212021 2021 2020 J
0% 12020202 12020
7 5 3 1 0

- &G G
-G G G G
oXoXoZXoXo
- & G G G
-G G G G
- G G G
oZoZXo oo o)
POOOQOQO©
=) €Y €=) €= €=
OO 2
220202 a2 O b
DS o
oXaXoXo a3

011 «-» Q@OOOOOE 1 1 1=

Algorithm 2 Pseudocode for concatenation (buildConcat procedure in Alg. 1)

1: Input cost c, globals used: 1anguageCache, P, N

2: Output A list of new CSs generated by concatenation

3:

4: outList « []

5: forall L, Rsuch thatL + R=c do

6: for all ICS € languageCache(L) do

7: for all rCS € languageCache(R) do

8: i1

9: newCS « 0

10: for w < 0to #ic(PUN) — 1do

11: for all pair (I, r) € gt[w] do

12: if (ICS & 1) # 0and (rCS & r) # 0 then
13: newCS < newCS | i

14: i—ix1

15: isUnique < hashSet.insert(newCS)

16: it isUnique then

17: if newCS |= (P, N) then

18: print newCS and terminate program
19: outList.insert(newCS)

20: return outList

All local, except global uniqueness check

In order to maximise parallelism on GPUs, we allocate each new characteristic
sequence (which may be redundant) into a temporary array

Each new characteristic sequence is composed from older entries in the language
cache by simple, fast and local bitvector operations

For each new characteristic sequence we run a global uniqueness check

Cost=i Cost = i+1 Cost =i+2 Cost=i Cost =i+1 Cost = i+2

Language Cache
Language Cache

En

Unique RI

AN

=\

Temp

Measurements

AlphaRegex benchmarks (previously state-of-the-art) are too small.

Our new, large benchmarks suite

— Alphabet %,
— le is the maximal length of example strings,
— p and n, the numbers of positive and negative examples, respectively.

With those parameters, we define two complementary benchmark generation schemes. Both create
instances (P, N) by sampling uniformly from two different spaces of random strings.

— Ty 1: {(P,N) € =/ x 35! |Vw e PUN#P = p,#N = n,PN N = 0}

— TypE 2: {((Po, ...,Plg), (No, ey N[e)) €EYXY | Yi#P; = p,):,-#Ni =nVi.P,NN; = 0}

Input CPU GPU

Type No #P #N Cost Function

Sec Sec Speed-up #REs

1 50 10 12 (1,1,1,1,1) 5080.7850 | 4.9512 1026x 26,774,099,142
51 12 9 (10,1,1,1,1) 4699.8137 | 4.4966 1045x 23,824,118,297
73 10 11 (1,10,1,1,1) 5805.2168 | 3.7144 1562x 22,703,639,676
20 9 9 (1,1,10,1,1) 2893.4835 | 2.8935 1000x 13,567,472,188
73 10 11 (1,1,1,10,1) 2901.9297 | 2.9504 983x 11,706,686,339
31 8 9 (1,1,1,1,10) 5856.6925 | 3.9973 1465x 14,210,157,835
57 12 10 (10,10,10, 10, 1) | 2804.6793 | 3.4322 817x 14,163,906,090
50 10 12 (10,10,10, 1, 10) | 4519.9456 | 4.9096 920x 23,349,552,935
57 12 10 (10,10,1,10,10) | 4301.8548 | 4.5243 950x 20,257,045,497
97 12 12 (10,1, 10,10, 10) | 5608.7286 | 4.7782 1173x 19,680,542,658
61 12 10 (1,10, 10,10,10) | 2915.0938 | 3.0532 954x 14,322,039,866
88 12 9 (20,20, 20,5,30) | 6899.0045 | 4.6904 1470x 25,193,577,825
88 14 8 (1,1,1,1,1) 3783.9772 | 4.2462 891x 23,697,549,545
150 14 12 (10,1,1,1,1) 4228.2773 | 4.4120 958x 23,125,803,623
158 12 14 (1,10,1,1,1) 2975.9956 | 2.4887 1195x 11,432,891,412
136 11 14 (1,1,10,1,1) 3374.8873 | 3.6080 935x 18,241,755,827
107 12 12 (1,1,1,10,1) 2432.4320 | 4.4120 551x 24,954,272,802
32 10 7 (1,1,1,1,10) 7400.8135 | 4.6482 1592x 16,729,795,052
136 11 14 (10,10, 10, 10, 1) | 2907.9182 | 3.9689 732x 17,476,988,322
200 13 8 (10,10,10, 1, 10) | 9687.7952 | 4.5366 2135x 6,037,014,423
107 12 12 (10, 10,1,10, 10) | 3383.1937 | 4.5071 750x 20,697,274,025
81 8 14 (10,1, 10, 10, 10) | 3497.9013 | 4.6699 749x 21,869,903,022
88 14 8 (1,10, 10,10,10) | 34055536 | 4.1602 818x 21,889,508,744
158 12 14 (20,20, 20, 5,30) | 5804.8112 | 4.9228 1179x 23,163,079,580

Average 4465.4493 4.1238 1077x 19,127,861,447

[I R I N O N N R R N U U S U U

5160 benchmarks (200 Type 1, 230 Type 2, 12 cost functions). Examples hardest within
timeout < 5 sec on GPU. GPU: Nvidia A100-SXM4, CPU: Intel Xeon, 2.20 GHz, 25 GB

Future work

Algorithmic engineering, is uniqueness check for every new characteristic
sequence optimal?

Context-free inference? (implemented on CPU, in progress: GPU)
Scaling: approximate REI (in progress)
Mathematics of synthesis, e.g.

Regular grammar _ General grammar
Infix-closure ~ ???-closure

Comparison with LLMs (paper under anonymous review)

Thanks

Code: https://github.com/MojtabaValizadeh/paresy
Paper: https://arxiv.org/abs/2305.18575

https://github.com/MojtabaValizadeh/paresy
https://arxiv.org/abs/2305.18575
https://github.com/MojtabaValizadeh/paresy
https://arxiv.org/abs/2305.18575

