
Search-Based Regular Expression Inference on a GPU

Mojtaba Valizadeh Martin Berger

https://martinfriedrichberger.net/

21 June 2023

https://martinfriedrichberger.net/

Problem

Can we accelerate program synthesis with GPUs?

What makes program GPU-friendly?

▶ Predictable data movement
▶ Minimise data-dependent branching
▶ Maximise parallelism
▶ Minimise synchronisation between different threads/warps/cores etc as much

as possible

Can we do this for program synthesis?

What is a tractable synthesis problem to bootstrap GPU synthesis?

What makes program GPU-friendly?

▶ Predictable data movement
▶ Minimise data-dependent branching
▶ Maximise parallelism
▶ Minimise synchronisation between different threads/warps/cores etc as much

as possible

Can we do this for program synthesis?

What is a tractable synthesis problem to bootstrap GPU synthesis?

Regular expression inference

REI = programming by example with regular expressions

Input:
▶ Examples: two finite sets of strings, P and N
▶ Cost function: cost(·) for REs

Output: regular expression r that is:
▶ Precise: r accepts all strings in P and rejects all strings in N
▶ Minimal: no regular expression with a cost less than cost(r) is precise

REI = programming by example with regular expressions

Input:
▶ Examples: two finite sets of strings, P and N
▶ Cost function: cost(·) for REs

Output: regular expression r that is:
▶ Precise: r accepts all strings in P and rejects all strings in N
▶ Minimal: no regular expression with a cost less than cost(r) is precise

REI = programming by example with regular expression

Old & well-known problem (1967 Gold’s “Language identification in the limit”)

Currently unsolved for deep-learning based

REs are “embarrassingly sequential”

Asymptotic complexity well understood
▶ Gold (1978): is NP-hard for DFAs
▶ Pitt and Warmuth (1993): is NP-hard for DFAs, NFAs and REs, even to

approximate minimum

Regular expressions

The regular expressions over Σ are given by the following grammar:

r ::= ∅ || ϵ || a || r · r || r + r || r∗

We write Lang(r) for the language of r

Usual abbreviations, e.g., rr ′ for concatenation r · r ′, r?, Σ∗. Also implemented:
intersection, negation, complement

Search order, cost homomorphism

A cost function is a map cost(·) : RE(Σ) → Nat. It is a cost homomorphism if
there are integer constants, c1, ..., c5 > 0, such that:

▶ cost(∅) = cost(ϵ) = cost(a) = c1 for all a ∈ Σ

▶ cost(r?) = cost(r) + c2

▶ cost(r∗) = cost(r) + c3

▶ cost(r · r ′) = cost(r) + cost(r ′) + c4

▶ cost(r + r ′) = cost(r) + cost(r ′) + c5

We call each ci the cost of the corresponding regular constructor

Solution: trivial algorithm

Enumerate by increasing cost and check each if meets constraints

Research question: How to make GPU friendly?

Solution: trivial algorithm

Enumerate by increasing cost and check each if meets constraints

Research question: How to make GPU friendly?

Core problem: how to represent REs during search?

Using REs search space is wasteful for several reasons:
▶ Not space-efficient: Each regular expression is a tree (needs pointers)
▶ Slow contains-check: To check candidate, needs tree-walk
▶ Redundant: Each regular language is denoted by infinitely many regular

expressions. For example, 00+1 and 1+00 denote the same language
▶ Non-local: Pointers can point to anywhere in memory, unpredictable

Representation of RE by languages

Recall language L is subset of Σ∗. Isomorphic representation as characteristic
sequence

1L : Σ∗ → B

σ 7→

{
1 σ ∈ L
0 else

Note: B is a semiring, and boolean algebra

Many REs have the same characteristic sequence e.g. r + r and r . Characteristic
sequence prune away this redundancy (REs up to observational congruence)

Problem: the domain Σ∗ of 1L is infinite

Representation of languages

In REI, we only care about strings in P ∪ N, we could use

1L : P ∪ N → B

Note: 1L : P ∪ N → B is not enough, e.g. with

P = 1, 001, 1001, 11011

N = ϵ, 10, 101, 0011

Infix-closure

Our representation of regular expressions are characteristic sequences

cs : ic(P ∪ N) → B

w is an infix (aka substring) of string σ if σ = w1 · w · w2. Example: “abc” has
infixes like

abc ab bc a b c ϵ

ic(S), the infix-closure of a set S, is the smallest infix-closed superset of S

Infix-closure: example

P = {1,011,1011,11011} and N = {ϵ,10,101,0011}. Then ic(P ∪ N) is

11011,1101,110,11,1011,101,10,1,011,01,0011,001,00,0, ϵ

Infix-closure characteristic sequences summary

▶ Characteristic sequence turns language into a bitvector in memory
▶ bitvector = integer, bitvectors = integer matrix!
▶ P and N are fixed, so don’t change during an REI run!
▶ ic(P ∪ N) is ordered in memory
▶ Going through ic(P ∪ N) is a linear scan (= predictable)

Principled program synthesis: using formal power series over
semirings

Our characteristic sequences cs : ic(P ∪ N) → B form a *-semiring, abstracting:
▶ addition
▶ multiplication
▶ iteration

corresponding exactly to the operations on regular expressions

Slogan: *-semiring as the API for regular expression synthesis

Language Cache
We construct all needed languages bottom-up, from lower to higher cost, and keep
the constructed languages in memory for later re-use:

Semiring ops give (mostly) predictable memory access

All local, except global uniqueness check

In order to maximise parallelism on GPUs, we allocate each new characteristic
sequence (which may be redundant) into a temporary array

Each new characteristic sequence is composed from older entries in the language
cache by simple, fast and local bitvector operations

For each new characteristic sequence we run a global uniqueness check

Measurements

AlphaRegex benchmarks (previously state-of-the-art) are too small.

Our new, large benchmarks suite

5160 benchmarks (200 Type 1, 230 Type 2, 12 cost functions). Examples hardest within
timeout < 5 sec on GPU. GPU: Nvidia A100-SXM4, CPU: Intel Xeon, 2.20 GHz, 25 GB
RAM

Future work

Algorithmic engineering, is uniqueness check for every new characteristic
sequence optimal?

Context-free inference? (implemented on CPU, in progress: GPU)

Scaling: approximate REI (in progress)

Mathematics of synthesis, e.g.

Regular grammar
Infix-closure

=
General grammar

???-closure

Comparison with LLMs (paper under anonymous review)

Thanks

Code: https://github.com/MojtabaValizadeh/paresy
Paper: https://arxiv.org/abs/2305.18575

Code: Paper:

https://github.com/MojtabaValizadeh/paresy
https://arxiv.org/abs/2305.18575
https://github.com/MojtabaValizadeh/paresy
https://arxiv.org/abs/2305.18575

