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We introduce new benchmark for code learning



Background

DNNs, particularly transformers have captured the attention of the world.

Applications in logic and verification, where 100% precision is required, are
dominated by symbolic methods.

This raises the question of comparison.

Good, apples-to-apples benchmarks are in short supply.



Background

Requirements:

▸ Needs lots of training data for transformers
▸ Symbolic AI approaches typically don’t handle large amount of training data
▸ Also: problem domain should be natural, general, and easy to quantify
▸ Also: tunable hardness from trivial to way beyond the SOTA





Regular expression inference (REI)

Given two sets P and N of strings:

P: 10, 101, 100, 1010, 1011, 1000, 1001
N: ϵ, 0, 1, 00, 11, 010

Learn the smallest regular expression that accepts all strings in P and rejects all
strings in N!

Trivial solution (overfitting on P):

10 + 101 + 100 + 1010 + 1011 + 1000 + 1001



Regular expression inference (REI)

Given two sets P and N of strings:

P: 10, 101, 100, 1010, 1011, 1000, 1001
N: ϵ, 0, 1, 00, 11, 010

Learn the smallest regular expression that accepts all strings in P and rejects all
strings in N!

Trivial solution (overfitting on P):

10 + 101 + 100 + 1010 + 1011 + 1000 + 1001



Regular expression inference (REI)

Given two sets P and N of strings:

P: 10, 101, 100, 1010, 1011, 1000, 1001
N: ϵ, 0, 1, 00, 11, 010

Learn the smallest regular expression that accepts all strings in P and rejects all
strings in N!

Trivial solution (overfitting on P):

10 + 101 + 100 + 1010 + 1011 + 1000 + 1001



Regular expressions (REs)

REs: a canonical and minimal model of a programming language.

Syntax where Σ is alphabet:

r , r ′ ∶∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ The empty set
ϵ The empty string
a Alphabet character a ∈ Σ
r∗ 0 or more repetitions of r
r ⋅ r ′ Concatenation
r + r ′ Union, logical disjunction
...



Regular expressions: cost homomorphism

A cost homomorphism is a map cost(⋅) ∶ RE(Σ) → N s. t.

▸ cost(∅) = c1

▸ cost(r∗) = cost(r) + c3

▸ cost(r ⋅ r ′) = cost(r) + cost(r ′) + c5

▸ cost(r + r ′) = cost(r) + cost(r ′) + c7

▸ ...
for constants c1, . . . ,c8 > 0.

Note: cost homomorphism is given by an 8-tuple, so easy to learn.

Example: intuitive RE size is c1 = ⋯ = c8 = 1.



Regular expression inference (REI)

▸ Input: Two finite sets of strings P and N of positive and negative examples,
and a cost homomorphism cost(⋅) for REs (given by an 8-tuple).

▸ Output: A regular expression r that is both:
▸ Correct: Meaning that r accepts all strings in P and rejects all strings in N.
▸ Optimal: No regular expression with a cost less than cost(r) is correct.

We do not allow strings to be mis-classified.

Performance of learner is rigorously quantified by ∆ of cost of learned RE over
possible minimum

Make a quantitative prediction in your mind: how will LLMs perform?
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Dataset generation problem

How to get unlimited amounts of training data?

How to get oracle (minimal RE for each PN set) that works on large training sets?



Program synthesis on GPUs

The data set generation became possible with a recent (2023/4) work in
enumerative program synthesis, when REI was ported to a GPU.



Dataset generation

Random strings with simple model hyperparameters:

▸ Alphabet size
▸ Number of strings in PN
▸ Maximal string length K
▸ Distribution of length of strings in PN

▸ Uniform over all strings of length < K
▸ Uniform choice of length 0 ≤ i < K , and uniform among strings of length i .

Compute oracle (minimal solution) using program synthesis on GPU!

Test and training data are in-distribution





Neural baselines

StarChatβ instruction-tuned variant of StarCoderPlus (16B parameters), trained
on English & 80+ programming languages. Performs REI with a few-shot prompt.

ReGPT is a GPT-2-like model (300M parameters) trained on the REIC training
data (252,947 PN sets).



Measurements of baselines

Test data: 23,489 PN sets

Correct syntax Prec% P% N% PN% Min Min% P Min% G Cost Ratio

StarChatβ 99.86 0.4 42.1 79.5 63.2 5 5.4 <0.1 2.16
ReGPT-1k 100 85.9 97.2 97.6 97.7 3180 15.8 13.5 1.09
ReGPT-10 99.99 82.6 95.3 95.8 96.0 2924 15.1 12.4 1.09

StarChatβ is prompted to generate 10 REs for each test instance.

ReGPT-1k and ReGPT-10 are ReGPT model with 1k and 10 sampled solutions,
respectively.

We keep the best solution as measured by PN Ratio;



Tangent on noisy REI
Experiment on the complexity of noisy REI (n = 1):

Conjecture (noisy REI complexity)
There is an exponential dependency between the allowed error ϵ, and the
hardness of REI with allowed error ϵ.



Discussion of Baseline Performance

ReGPT finds cost-efficient solutions, but rarely optimal ones. Sampling 10 or 1000
REs makes little difference.

Reasonable performance of ReGPT suggests hybrids: a fine-tuned DNN providing
solutions close to minimal as starting points for symbolic methods.

Prompted StarChatβ performs badly. While it is large and trained for code
synthesis, a superset of REI, it has never seen REIC data during training. So we
may wonder about its ability to generalise.



Thank you



Challenge Paper

https://codalab.lisn.upsaclay.fr/competitions/15096
https://arxiv.org/abs/2308.07899

https://codalab.lisn.upsaclay.fr/competitions/15096
https://arxiv.org/abs/2308.07899




Energy consumption

This benchmark would be much more interesting if we could relate the benchmark
performance with compute used (measured by e.g., energy consumption).

Doing this well is an open problem!


