
Correct and Optimal: The Regular Expression Inference Challenge

Anonymous Submission to IJCAI 2024

Abstract
We propose regular expression inference (REI) as
a challenge for code/language modelling, and the
wider machine learning community. REI is a su-
pervised machine learning (ML) and program op-
timisation task, and poses the problem of finding
minimal regular expressions from examples: Given
two finite sets of strings P and N and a cost func-
tion cost(·), the task is to generate an expression r
that accepts all strings in P and rejects all strings
in N , while no other such expression r′ exists with
cost(r′) < cost(r). REI has advantages as a chal-
lenge problem: (i) regular expressions are well-
known, widely used, and a natural idealisation of
code; (ii) REI’s asymptotic worst-case complexity
is well understood; (iii) REI has a small number of
easy to understand parameters (e.g. P or N cardi-
nality, string lengths of examples, or the cost func-
tion); this lets us easily finetune REI-hardness; (iv)
REI, with its emphasis on optimisation, is an un-
solved problem for deep learning based ML. Re-
cently, an REI solver was implemented on GPUs,
using program synthesis techniques. This enabled,
for the first time, fast generation of minimal regular
expressions for complex REI instances. Building
on this advance, we generate and publish the first
large-scale datasets for REI, and devise and eval-
uate several initial heuristic and machine learning
baselines. We invite the community to participate
and explore ML methods that learn to solve REI
problems. We believe that progress in REI directly
translates to progress in code/language modelling.

1 Introduction
We propose regular expression inference (REI) as a challenge
for machine learning (ML) communities.

Regular expression inference is the task of finding a regular
expression (RE) r given a positive set of strings P and neg-
ative set of strings N as well as a cost function cost(·), such
that r is precise – it accepts all strings in P while rejecting all
strings in N – and minimal w.r.t. the cost function.

We assume that the reader is familiar with REs; here is an
example of one that specifies the language of all strings with

characters from the alphabet {0, 1} that start with 10:

10(0 + 1)∗

The exact nature of cost(·) will play a key role later, for
now a naive understanding of cost, for example the length of
r as a string, is sufficient.

Regular expression inference always has a trivial solution.
Consider inferring a regular expression from

P: 10, 101, 100, 1010, 1011, 1000, 1001

N: ϵ, 0, 1, 00, 11, 010

Clearly, the union of all the positive examples

10 + 101 + 100 + 1010 + 1011 + 1000 + 1001

is correct but trivial, and can be seen as overfitting. The prob-
lem becomes highly non-trivial if we ask for a minimal RE
such as 10(0 + 1)∗, assuming a uniform cost function.

In this work, we present the regular expression inference
challenge (REIC) as an open-ended challenge to address REI
with machine learning/deep learning. We detail the precise
nature of REIC, introduce large-scale datasets suitable for
supervised training and evaluation, and present baselines in-
cluding the use of an instruction-tuned pretrained very large
code language model, and a first supervised approach.

To our knowledge, our work is the first that makes REI
available as an organised, well-defined and automatically
scored challenge.

All data and starter code to recreate our baselines is pro-
vided via CodaLab [Pavao et al., 2022] on the REIC site:

https://codalab.lisn.upsaclay.fr/competitions/15096

2 Background & Related Work
Regular expressions (REs) are well-known mathematical
structures, invented in the context of modelling biological
neurons [Kleene, 1956]. Abstractly, REs are a constrained
mechanism for succinct, finite specifications of finite and in-
finite languages. While all finite languages are definable by
REs, they can only specify simple infinite languages. Regu-
lar expressions are one of the most widely used formalisms in
computer science [Hopcroft et al., 2006].

REs are equivalent not only to regular languages, the least
expressive language type in the Chomsky-Schützenberger
hierarchy [Chomsky, 1956], but also finite state automata,

https://codalab.lisn.upsaclay.fr/competitions/15096

whether deterministic (DFAs) or non-deterministic (NFAs),
as well as many other important formalisms such as read-
only Turing machine [Turing and others, 1936] and monadic
second-order logic [Courcelle and Engelfriet, 2012].

REI is a special case of grammar inference (GI), a field
with long-standing tradition in AI where it is used to quantify
progress in ML. GI emerged from Chomsky-style linguistics,
which models the problem of human language learning: how
can children infer the grammar rules of their native language
from a small number of examples? A simple mathematical
model of language learning from examples is the following:

• Input: finite sets P and N of strings.

• Output: a grammar g (in the sense of Chomsky) that
precisely captures P and N : all strings in P are accepted
by g, and all strings in N are rejected.

This model was first studied in detail by [Gold, 1967]
for regular grammars. He showed that, “in the limit” this
problem cannot be solved from positive examples alone (i.e.,
N = ∅). Such grammar inference with regular languages is
simplistic as the complex syntactic rules of natural language
are not regular, but regular languages are more mathemati-
cally tractable, and hence are a suitable starting point.

On the machine learning side, in particular in natural lan-
guage processing (NLP), grammar induction and learning of
Chomsky-style grammars and other formalisms has a long
history; for surveys, we refer the reader to [D’Ulizia et al.,
2011] and [Muralidaran et al., 2021]. While they do not learn
an explicit grammar, large transformer-based models have
been shown to learn internal representations akin to implicit
grammars [Tenney et al., 2019]. Other forms of inference
tasks also have a long-standing tradition in NLP, with many
datasets and challenges proposed for Natural Language In-
ference [Bowman et al., 2015; Williams et al., 2017; Wang et
al., 2019; Nie et al., 2019]. Addressing REI with generative
models also relates to a long line of research into sequence
generation tasks such as presented in [Colin et al., 2016;
Budzianowski et al., 2018] and [Guan et al., 2021].

Neural models have been successfully applied in all of
these areas and related tasks. Recent advances in deep learn-
ing (DL), especially the transformer architecture [Vaswani et
al., 2017], have led to neural models now dominating virtu-
ally any NLP task. In the wake of this, code synthesis, i.e.,
the task of generating programming language code based on
natural language instructions, has become an interesting next
step; transformers in general, and GPT-like models [Radford
et al., 2019; Brown et al., 2020] in particular are dominat-
ing this task as well, achieving top scores on datasets such
as MBPP [Austin et al., 2021] and APPS [Hendrycks et al.,
2021]. We posit there is a direct connection between code
synthesis and regular expression generation.

REI as a Yardstick for Quantifying ML Progress. Grammar
inference has two core quantifiable dimensions:

• Correctness: what fraction of data is classified correctly
by the learned representations?

• Optimisation: how far is learned representation away
from the achievable minimum?

Recently, GI was brought into focus by [Delétang et al., 2023;
van der Poel et al., 2023] who use benchmarks directly related
to the Chomsky hierarchy. Both observe strong correlations
between DL architectures and position of a benchmark in the
hierarchy. What all existing GI benchmarks have in common
is their focus on correctness; this leaves optimisation, a core
goal of ML on the road toward AGI, unquantified, hence dif-
ficult to improve.

The benchmark and challenge presented here changes this.
To our knowledge, we present the first benchmark to focus on
quantification of a learner’s ability to optimise while remain-
ing correct. We do this in an simple and natural way: Like
previous work on GI, we ask learners to produce a grammar
(REs) from positive and negative examples. Unlike previous
work, we quantify how far away the learned grammar is from
the possible minimum (assuming that the grammar correctly
classifies all examples).

We deliberately frame REI as a challenge benchmark,
which we introduce here. We provide training data and an
evaluation harness, as well as first approaches to the task us-
ing heuristics as well as modern DL techniques, in particular,
LLM-based inference. These suggest that REI is indeed a
hard optimisation problem, and we suggest using our bench-
mark as a stepping stone for quantifying and improving the
optimisation abilities of contemporary ML models.

There are multiple reasons for REI being a compelling
challenge that helps us understand and quantify important di-
mensions of modern ML.

The computational complexity of this problem is well un-
derstood: [Gold, 1978; Angluin, 1978; Pitt and Warmuth,
1993; Kearns and Valiant, 1994] showed that (a small vari-
ant of) this problem is NP-hard, and NP-hard even to approx-
imate. They also showed that hardness does not depend on
the underlying representation of regular languages, whether
DFAs, NFAs, REs, or indeed any other. Those hardness re-
sults assure us that there is no easy shortcut that has been
overlooked so far. We can also easily adjust the hardness of
the problem by increasing simple parameters such as the size
of input examples. Moreover, not only are NP-hard problems
extremely well studied, but most properties of regular lan-
guages/expressions are known, such as their expressive power
and limitations, their relationships with automata and gram-
mar formalisms, the computational complexity of expression
minimisation, equivalence checking, and more.

Another advantage of REI is that hardness can easily be ad-
justed in other ways. For example by searching over harder
classes of languages (context-free or context-sensitive), or
simpler ones, e.g., REs with limited star-height. The appeal
of the Chomsky hierarchy for understanding ML performance
has been discussed before, e.g., in [Delétang et al., 2023].
Another form of simplifying REI is by allowing the learner
to query the system to be learned, leading to Angluin-style
active automata learning [Angluin, 1987], a form of ML that
is actively used in formal verification and computer security
[Vaandrager, 2017]. REI is also directly related to other appli-
cations, e.g., circuit complexity, bio-informatics, and network
security. All those applications and connections with NP-hard
problems mean that we have at our disposal a large and het-
erogeneous toolset to approach the inference challenge. Con-

versely, each approach that does well on it can be adapted to
help with many other important problems.

A further advantage of the challenge is that REI is, to the
best of our knowledge, an unsolved problem for deep learn-
ing based ML. While neural regular expression synthesis has
been investigated [Firoiu et al., 1998; Locascio et al., 2016;
Zhong et al., 2018; Park et al., 2019; Li et al., 2021;
Chen et al., 2023], no existing work allows for configurable
cost function, or achieves minimality; indeed, none even
guarantee that all strings in P and N are classified correctly.

From the point-of-view of furthering research in
transformer-based large language models (LLMs), REIC
has another advantage: each problem instance is small,
at most a few hundred tokens. Hence, limited attention
window size is irrelevant; REI is hard already when it fits
comfortably inside even small attention windows. Therefore,
it enables fine-grained and principled investigations into
LLM-learning inside the attention window, and neatly
separates the problems of quantifying the generalisation
performance of transformers inside the attention window
from issues arising from the limitations of window size.
This is especially relevant as REI can be seen as an ideali-
sation of code synthesis; most contemporary tools for this
task are transformer-based LLMs [Yuie et al., 2021;
Chen et al., 2021; OpenAI, 2022; Github, 2022;
Li et al., 2023; Tunstall et al., 2023].

3 The Regular Expression Inference
Challenge

Formally, given a finite alphabet Σ, the regular expressions
over Σ, short RE(Σ) are given by the grammar below, where
option (?), Kleene-star (*) and complement (∼) are unary op-
erators; concatenation (·), intersection (&), union (+), and re-
striction (−) are binary operators:

r, r′ ::=

∅ The empty set
ϵ The empty string
a Alphabet character a ∈ Σ

r? Shorthand for ϵ+ r

r∗ 0 or more repetitions of r
∼ r Complement
r · r′ Concatenation
r & r′ Intersection, logical conjunction
r + r′ Union, logical disjunction
r − r′ Restriction

We use standard abbreviations, e.g., rr′ for r · r′.
With each r ∈ RE(Σ) we associate the language of r,

Lang(r), defined by the following clauses:
– Lang(∅) = ∅, Lang(ϵ) = {ϵ}, Lang(a) = {a}
– Lang(r?) = Lang(ϵ+ r)

– Lang(r∗) =
⋃

n≥0 Lang(r
n) where r0 = ϵ and

rn+1 = r · rn
– Lang(∼ r) = Σ∗ \ Lang(r)
– Lang(r · r′) = Lang(r) · Lang(r′)
– Lang(r & r′) = Lang(r) ∩ Lang(r′)

– Lang(r + r′) = Lang(r) ∪ Lang(r′)

– Lang(r − r′) = Lang(r) \ Lang(r′)
This induces an equality on REs: r is equivalent to r′ iff

Lang(r) = Lang(r′). For example, r+r and r have the same
language; likewise Lang(r∗∗) = Lang(r∗). Note that each
equivalence class has an infinite number of inhabitants.

A cost function is a map cost(·) : RE(Σ) → N such that
there are constants c1, . . . , c8 > 0 with:

– cost(∅) = cost(ϵ) = cost(a) = c1 ∀a ∈ Σ

– cost(r?) = cost(r) + c2
– cost(r∗) = cost(r) + c3
– cost(∼ r) = cost(r) + c4
– cost(r · r′) = cost(r) + cost(r′) + c5
– cost(r & r′) = cost(r) + cost(r′) + c6
– cost(r + r′) = cost(r) + cost(r′) + c7
– cost(r − r′) = cost(r) + cost(r′) + c8

We call each ci the cost of the corresponding regular oper-
ators. An important special case is the uniform cost given by
setting c1 = · · · = c8 = 1.

Expressions in RE(Σ) form tree structures defining the
scope of operators; when writing expressions as linear strings,
we use parentheses where necessary to clarify scope, they
don’t count towards the RE’s cost.

Finally, regular expression inference is a supervised learn-
ing problem and has the following structure:

• Input: Two finite sets of strings P and N of positive and
negative examples, and a cost function cost(·) for REs.

• Output: A regular expression r that is both:
– Precise: Meaning that r accepts all strings in P and

rejects all strings in N .
– Minimal: No regular expression with a cost less

than cost(r) is precise1.

We call the pair P,N a PN-set, the combination with a cost
function an instance, and r the solution of the instance.

We can adjust the hardness of REI. For example, as every
REI problem P,N can be solved at a cost not exceeding that
of the trivial solution, i.e., the union of all strings in P , we can
trivially rule out operators (other than union, concatenation
and characters) by setting their cost to something above the
cost of the trivial solution. We also note that we can make
REI simpler, e.g., if instead of using the cost function as an
input parameter, we fix a single cost function for all instances.

4 Datasets
We now detail the data released as part of the challenge.
The data is produced automatically using an extension of the
GPU-accelerated REI solver of [Valizadeh and Berger, 2023]:
we added three additional operators (∼,&,−). This allowed
us to introduce datasets DS3 and DS4, as explained below.
The data is split into official training and test sets; the former,
but not the latter, come with associated solutions, i.e., for each
PN-set, a minimal solution regular expression.

1Note that for any given PN, there may exist other precise r′ with
cost(r′) = cost(r)

Dataset Σ RE Characters & Ops Cost Function #PN Sets #Instances #Train #Test

DS1 {0, 1} {ϵ, a, ?, ∗, ·,+} uniform 6, 053 6, 053 5, 447 606
DS2 {0, 1} {ϵ, a, ?, ∗, ·,+} variable 6, 029 120, 580 110, 329 10, 251
DS3 {0, 1} {∅, ϵ, a, ?, ∗,∼, ·,&,+,−} uniform 6, 054 6, 054 5, 448 606
DS4 {0, 1} {∅, ϵ, a, ?, ∗,∼, ·,&,+,−} variable 6, 013 120, 260 108, 234 12, 026

Table 1: The four datasets generated for the REI challenge. Here and elsewhere #S denotes the cardinality of S.

We provide four separate datasets, differing in key charac-
teristics along two dimensions:

• Allowed operators. Datasets 1 and 2 (DS1, DS2) allow
only the standard RE operators option (?), Kleene-star
(∗), concatenation (·), and union (+). In other words,
complement (∼), intersection (&) and restriction (−) are
not available. In contrast, Datasets 3 and 4 (DS3, DS4)
allow all operators.

• Cost functions. We use only the uniform cost for
Datasets 1 and 3, while making it variable for Datasets 2
and 4, which provide a number of solutions per PN-Set,
given different random cost functions.

We posit that such a division makes the problems in REIC
more variable; we explicitly encourage participants to con-
tribute to results on only some, or all of the four datasets.

When splitting the four generated datasets into training and
test data, we aim for a 90/10 split. For each of the datasets,
we ensure that the test portion only contains regular expres-
sions that do not occur in the training part. However, some-
times solutions to a PN-set in the training set might also be
solutions to an instance in the test set.

4.1 Data Generation
Our data generation approach has two parts, random PN-set
and random cost function generation.

PN-set Generation. Random PN-sets are generated with a
small set of parameters:

• Σ: The set of characters used in P and N .

• le: The maximum length of example strings in P and N
(0 is always minimum length).

• p, n: number of positive negative examples respectively,
i.e., size of P and N .

For these parameters, we use two PN-generation schemes
from strings over Σ, with complementary properties.

• TYPE 1: We uniformly and independently sample p
strings from the set of all strings of size 0, 1, ..., le , and
n strings for N . TYPE 1 is heavily biased towards long
strings, since there are exponentially more long strings
than short ones. Since short strings, in particular ϵ and
the characters in Σ, play an important role in regular
languages, bias towards long strings is sometimes sub-
optimal, and we use a complementary second scheme.

• TYPE 2: This scheme gives more weight to shorter
strings and works in two steps: first, uniformly and inde-
pendently sample a target string length i, and then uni-
formly and independently sample a string of length i.

We use this procedure to generate strings for P and N
until the sizes p and n are reached.

In both cases, we ensure that P and N are disjoint, to rule out
challenge problems without solutions.

As an illustration, assuming an alphabet Σ = {0, 1},
an example of a generated Type 1 PN-set with parameters
le = 6, p = 12, n = 10 is

P: 10110, 001110, 010111, 1, 00101, 011111, 011,

000000, 0111, 10011, 001100, 001001

N: 000, 00010, 010010, 010011, 01010, 100001, 1011,

110000, 11001, 1110

With the same alphabet, Type 2 generation with parameters
le = 8, p = 10, n = 7 produces, for example

P: 000, 0101, 1110010, 11, 1, 111, ϵ, 11101100, 0,

11001

N: 00010, 0010011, 010, 01001000, 011, 10, 11010

The four datasets discussed above contain instances gen-
erated (roughly) evenly with TYPE 1 and TYPE 2 over the
alphabet {0, 1}. For TYPE 1, parameters p and n range over
all of 1, . . . , 10, and le ranges over all of 0, . . . , 7; for TYPE 2,
we use the same ranges for p and n, and le from 0 to 10.

For the challenge presented here, we restrict ourselves to
strings over a binary alphabet for two reasons: First, as our
baselines in the next section indicate clearly, REI with a bi-
nary alphabet is already hard to learn. Secondly, getting
ground truth for substantially bigger alphabets, e.g., ASCII,
is currently infeasible, because the performance even of the
SOTA GPU-based REI solver we use [Valizadeh and Berger,
2023] is heavily constrained by alphabet size.

Cost Function Generation. As mentioned above, our
datasets are split w.r.t. cost functions: In Datasets 1 and 3 the
cost function is fixed to the uniform cost. In the remaining
Datasets 2 and 4 the cost function is a parameter. To generate
costs, we randomly and independently sample from 1, . . . , 49
for each ci of the cost function. For Dataset 4, we use all ci;
since Dataset 2 uses a reduced set of operators, we only sam-
ple costs of relevant operators. For both datasets, we generate
19 random cost functions in addition to the uniform cost, for
each PN-set. Hence k PN-sets give us 20k inference prob-
lems. Table 1 shows an overview of the data generated for
the REI challenge.

After generating PN-sets and cost functions, we use the
REI solver from [Valizadeh and Berger, 2023] to generate ref-
erence minimal REs for each instance.

5 REIC Metrics and Baselines
Challenge scoring. The REI challenge is scored using the
following metrics. All scoring is automated. All scores be-
low are calculated for all instances in a dataset; if an instance
solution is not syntactically valid, it will also negatively con-
tribute to other scores.

• Compile Ratio: The ratio of generated REs that are syn-
tactically valid, i.e., that can be parsed by a RE parser.

• Precise Absolute: Number of instances for which the
generated RE correctly classifies the entire PN-set.

• Precise Ratio: The ratio of instance REs that correctly
accept and respectively reject the PN-Sets.

• Positive Ratio: The ratio of positive examples that are
correctly accepted.

• Negative Ratio: The ratio of negative examples that are
correctly rejected.

• PN Ratio: The ratio of combined accepted strings in P
with rejected strings in N.

• Minimal Instances: The number of instances for which
the generated RE is precise and minimal.

• Minimal Ratio – Precise: The ratio of minimal REs
over precise generated REs.

• Minimal Ratio – Global: The ratio of minimal REs
over all test instances.

• Cost Ratio: The average ratio of precise generated REs’
costs over the gold-standard minimal RE costs.

Our leaderboard lists all scores for participating models2.
The leader is determined solely by global Minimal Ratio3.

Baselines. We devise REI as a challenge to entice the ma-
chine learning/deep learning community to explore this hard
task. Addressing REI with ML/DL methods is as of yet an
unsolved problem; while perfect algorithmic solvers exist (in
fact, one such solver was used to generate the data for REIC),
no such perfect learned model is known.

To bootstrap REIC with baseline solutions, and provide
further insights into the challenge, we devise several heuristic
baselines, as well as two first DL-based approaches:

• The Trivial RE baseline simply generates, for each test
instance, the trivial regular expression formed by the
union (+) of the strings in its positive set. Note that this
always returns a precise RE, albeit usually not minimal.

• PN Retrieval is a baseline that, for each test instance,
retrieves the closest matching train data instance w.r.t.
overlap of their PN sets, and uses the corresponding reg-
ular expression for the test. If multiple PN sets the with

2As heuristics/algorithms are known to achieve perfect scores,
the official leaderboard only lists and ranks ML/DL models.

3‘Gaming” the system to get high scores in some metrics is easy;
e.g., the Trivial baseline achieves 100% Compile Rate, Precision,
and P/N/PN Ratio by definition. Similarly, Minimal Ratio (Precise)
and Cost Ratio can easily be exploited by high-precision, low-recall
systems. Hence, any score encompassing a (weighted) average score
could easily be artificially tuned.

same overlap are retrieved, the lowest cost RE w.r.t. the
test instance cost function is returned. This baseline lets
use assess how much of the training data is solvable by
learning from closely related data.

• RE Retrieval has access to all regular expressions in
given training sets (DS1+DS2, DS3+DS4), and tests all
of them against each test data instance, selecting for each
that RE with highest PN Ratio. In cases of ties, it selects
that expression with lowest cost, according to the test
instance cost function. This baseline can show us how
many test instances are solvable precisely and with min-
imal cost with expressions seen in the training data.

• StarChatβββ uses a pretrained code LLM and performs
REI with a few-shot prompt. Specifically, we employ
StarChatβ [Tunstall et al., 2023], an instruction-tuned
variant of StarCoderPlus [Li et al., 2023], a SOTA
15.5 billion parameter code LLM. We use prompting to
instill information about REI into the model, and let it
generate 10 regular expressions for each test instance,
keeping the best. Prompts and inference details used for
this baseline are shown in the technical appendix.

• ReGPT is a GPT-2-like [Radford et al., 2019] model,
trained on the training portions of the REIC datasets;
details are given below, and all training hyperparameters
are given in the technical appendix. We use the model’s
inference capabilities as a generative LLM to generate
regular expressions for the test set instances.

We considered automaton minimisation as a baseline, such
as taking an NFA A, e.g., one based on the trivial solution,
and transforming it into an equivalent minimal DFA B. How-
ever, we decided against it for several reasons: First, by defi-
nition, B accepts the same language as A; but this is not nec-
essarily the case for a minimal solution to a REI problem –
it just needs to classify the PN-set correctly, regardless of the
language it specifies. Hence B will typically not be minimal
for a given PN-set. Second, to the best of our knowledge, no
algorithm for DFA minimisation exists that can handle cost
functions. Finally, even assuming a notion of minimality in
DFAs, e.g., number of states, we doubt the standard trans-
lations from automata (possibly cyclic graphs) to REs (trees)
preserve minimality. We therefore disregard this as a baseline
suited to the challenge at hand.
ReGPT Training and Inference. For ReGPT we train two
models from scratch, one on the combined training sets DS1
and DS2, and a second model on DS3 and DS4. All mod-
els are implemented in the HuggingFace transformers frame-
work4 and use the GPT-2 architecture with a total of ∼300M
parameters. Details are shown in the technical appendix.

We use a [CLS] token to indicate the beginning of the
input, [POS] and [NEG] for positive/negative strings, one
[COST X] token per operator to indicate the cost function,
and [BOR] and [EOR] to mark the beginning/end of a regu-
lar expression; [EOR] doubles as the end-of-sequence token.
An example ReGPT encoding is shown in the appendix.

During training, we randomly split the combined training
data into train and validation sets in a 90/10 split. To select

4https://huggingface.co/docs/transformers

https://huggingface.co/docs/transformers

CR Prec Prec% P% N% PN% Min Min% P Min% G Cost Ratio

Dataset 1
Trivial 100 606 100 100 100 100 0 0.0 0.0 3.34
PN Ret 100 3 0.5 45.9 89.3 67.8 1 33.3 1.7 1.20
RE Ret 100 302 49.8 94.0 95.6 95.4 133 44.0 21.9 1.15
StarChatβ 100 5 0.8 37.2 85.9 63.4 0 0.0 0.0 2.02
ReGPT-1k 100 60 9.9 80.9 88.5 87.4 33 55.0 5.4 1.10
ReGPT-10 100 10 1.7 65.6 74.2 73.4 7 70.0 1.2 1.08

Dataset 2
Trivial 100 10251 100 100 100 100 77 0.8 0.8 3.35
PN Ret 100 10251 100 100 100 100 2133 20.8 20.8 1.08
RE Ret 100 10251 100 100 100 100 2375 23.2 23.2 1.06
StarChatβ 99.69 29 0.3 39.6 79.8 61.9 3 10.3 <0.1 1.47
ReGPT-1k 100 9787 95.5 99.1 99.1 99.2 2013 20.6 19.6 1.08
ReGPT-10 99.99 9775 95.4 99.0 99.1 99.1 1945 19.9 19.0 1.08

Dataset 3
Trivial 100 606 100 100 100 100 2 0.3 0.3 3.99
PN Ret 100 9 1.5 63.6 72.5 70.8 3 33.3 5.0 1.20
RE Ret 100 328 54.1 95.7 94.6 96.0 151 46.0 24.9 1.16
StarChatβ 100 6 1.0 44.6 79.8 65.8 1 16.7 0.2 2.10
ReGPT-1k 100 97 16.0 85.5 89.6 89.8 41 42.3 6.8 1.14
ReGPT-10 100 28 4.6 73.3 77.0 79.0 15 53.6 2.5 1.11

Dataset 4
Trivial 100 12026 100 100 100 100 32 0.3 0.3 4.32
PN Ret 100 12026 100 100 100 100 1239 10.3 10.3 1.08
RE Ret 100 12026 100 100 100 100 1412 11.7 11.7 1.07
StarChatβ 100 52 0.4 44.5 78.9 64.2 1 1.39 <0.1 2.56
ReGPT-1k 100 10222 84.99 97.0 97.2 97.4 1093 10.7 9.1 1.09
ReGPT-10 99.99 9590 79.7 94.7 95.0 95.3 957 10.0 8.0 1.09

All Data
Trivial 100 23489 100 100 100 100 111 0.5 0.5 3.86
PN Ret 100 22289 94.9 97.7 99.0 98.4 3376 15.1 14.4 1.08
RE Ret 100 22907 97.5 99.7 99.7 99.8 4071 17.8 17.3 1.07
StarChatβ 99.86 92 0.4 42.1 79.5 63.2 5 5.4 <0.1 2.16
ReGPT-1k 100 20166 85.9 97.2 97.6 97.7 3180 15.8 13.5 1.09
ReGPT-10 99.99 19403 82.6 95.3 95.8 96.0 2924 15.1 12.4 1.09

Table 2: Baseline results on the four REI challenge test datasets, as well as all combined test data. PN Ret and RE Ret are PN Retrieval
and RE Retrieval baselines, respectively. CR refers to Compile Ratio, Prec/Prec% to total/ratio of REs that precisely accepts/reject PN-Sets,
P/N/PN% to accuracies over respective sets, Min% P/Min% G to ratio of minimal cost for precise REs/across full dataset. “ReGPT-1k” and
“ReGPT-10” are our ReGPT model with 1k and 10 sampled solutions, respectively.

the model checkpoints for final evaluation on the test sets, we
greedily generate one solution for each validation instance,
and calculate the average of PN Ratio and Global Minimal-
ity. For each test set, we select the checkpoint with highest
average score on the respective validation set.

For inference on the test set, we use the trained ReGPT
models to generate 1k solutions for each instance: one greed-
ily, and the remaining solutions using Nucleus Sampling
[Holtzman et al., 2019]. We keep the best solution as mea-
sured by PN Ratio; in cases of ties, we keep the solution with
lower cost according to the test instance cost function.

In our inference setup, sampling 1, 000 REs with ReGPT
takes roughly the same time as sampling 10 solutions with
StarChatβ. However, for a better comparison, we also report
ReGPT performance when generating 10 solutions. We pro-
vide training and inference details in the appendix.

Note that these first baselines are in fact not directly op-

timized for RE minimalisation. We provide these as exam-
ples of addressing the novel challenge we present with the
currently dominant approach to inference tasks, i.e., train-
ing LLMs on large amounts of positive data. While the cost
function is encoded in the LLM input, there is no theoretical
guarantee that the model will be able to generalise to unseen
combinations of PN-Sets and cost functions. This is deliber-
ate: We provide a first mainstream approach to the new chal-
lenge benchmark, and leave more involved approaches, e.g.,
Reinforcement Learning using cost functions for the reward
signal, to future work and future challenge entries.

5.1 Discussion of Baseline Performance
Table 2 summarises the performance of all our baselines on
the four test datasets, as well as on all combined test data.

The heuristic baselines – Trivial RE, PN Retrieval, and RE
Retrieval – provide valuable insights into the challenge data.

Of course, the Trivial baseline achieves 100% in all PN cover-
age metrics, as well as Compile Rate. Due to data artifacts, it
even “finds” some minimal expressions; however, these finds
are rare, showing that the minimal RE is almost never trivial.
Across all datasets, this baseline achieves the worst Cost Ra-
tio, producing expressions up to more than 4.3 times as costly
on average than the minimal regular expression, on Dataset 4.

The two retrieval baselines reveal an interesting pattern
across the four datasets. While both PN and RE Retrieval
methods are able to find expressions that are 100% precise
on DS2 and DS4, this metric falls to ∼50% (RE) and only
∼1% (PN) on the (much smaller) DS1 and DS3. For mini-
mality, retrieving solutions based on PN sets or REs leads to
very similar performance on the datasets with variable cost
functions, while there is a stark performance difference on
those with uniform cost function. This is likely an artefact of
data generation, where 20 instances per PN set are given for
both DS2 and DS4, with varying cost functions. Therefore,
the retrieval baselines are able to find corresponding instances
across these larger training and test data; while this leads to
perfect precision, the heuristics also reveal that at most 1/4
(RE Retrieval, 24.9% minimality on DS3) of the challenge is
solvable from the data directly, without learning techniques.

ReGPT (1k) produces syntactically valid regular expres-
sions for all test instances, indicating it has learned a good
internal representation of the RE grammar. Even when only
sampling 10 solutions, it performs at or essentially at 100%
compile rate. While it is outperformed by the (very strong)
RE Retrieval, ReGPT generates better expressions than can
be retrieved by PN Retrieval on the smaller test sets, DS1
and DS3. PN Retrieval is conceptually the closest heuristic
to the learned model, which is trained to generate REs condi-
tioned on PN sets; ReGPT outperforming this baseline on the
smaller datasets – which are more out-of-distribution com-
pared to the training data than the larger test sets – indicates
that there is a learning signal available in the training data that
allows a degree of generalisation. ReGPT’s strongest test sets
are DS2, followed by DS 4, which both contain variable cost
functions for the same PN sets. These datasets of course con-
tribute the vast amount of training data during ReGPT train-
ing; in addition, Dataset 2 uses the reduced set of permitted
operators, explaining the relatively high test performance.

Across all datasets, ReGPT finds cost-efficient solutions;
on the challenging sets DS1 and DS3, the average cost of its
perfect solutions even is lowest across systems. This yields
interesting possibilities of using trained models in combina-
tion with algorithmic solvers such as that of [Valizadeh and
Berger, 2023], for example by providing precise solutions
that are close to minimal as starting points for the search al-
gorithm, potentially helping with search space reduction.

The StarChatβ baseline shows a severe performance gap
on the challenge test sets. This is not surprising: While it is a
truly large and trained for code synthesis – a task very much
related to, if not a superset of regular expression inference –
it has never seen REIC data during training. While prompting
instruction-tuned LLMs with specific tasks can be a powerful
technique, it seems not enough to perform well on the novel,
untrained, and provably hard challenge proposed here.

In fact, as StarChatβ’s compile rate of (essentially) 100%

demonstrates, the model is capable of generating REs as de-
fined for our challenge. However, when it comes to preci-
sion and minimality, the large SOTA pretrained code LLM
struggles with the proposed challenge in a prompt-based set-
ting, where it underperforms Compared to the much smaller,
but fully supervised ReGPT baseline. This is true even when
comparing models that sample the same number of outputs.

It is possible (in fact likely) that a fine-tuned version, i.e.,
a StarChatβ model trained on REIC’s training data, will out-
perform the prompt approach – though competitiveness with
ReGPT remains another question5. However, training such a
large model even for finetuning is time-consuming and ex-
pensive. Other prompting methods – either with different
hand-written prompts to ours, or trained – might also yield
improvement; however, the long inference time and resources
needed make rapid development of this a challenge in itself.
As this work aims to establish Regular Expression Inference
as a challenge for the research community, we thus leave
these approaches as interesting future work.

Finally, focusing on model performance on all combined
data, it becomes clear that the hardness of REIC indeed lies
in finding minimal solutions to the given inference problems.
The heuristic baselines perform close to 100% precision, and
ReGPT’s learning approaches 86% for the combined data on
the same metric, which we can expect to easily be improved
upon with more sophisticated models. With exception of
StarChatβ, all approaches including ReGPT achieve scores in
the high 90s on PN Ratio, giving further evidence that learn-
ing to cover the PN-sets is achievable. However, even the
strongest heuristic baseline, RE Retrieval, only finds precise
and minimal solutions on 17.3% of the full data.

It seems clear that REI provides a challenging setting, for
both heuristic and learning-based methods. We hope these re-
sults will incentivise the research community to actively par-
ticipate in the REIC, pushing the envelope in regular expres-
sion and deep learning research and understanding.

6 Conclusions
We have introduced the regular expression inference chal-
lenge, an open-ended research challenge with a novel goal,
optimisation while remaining correct, for the machine learn-
ing community, inviting participants to develop models that
can generate minimal regular expressions w.r.t. PN-sets and
cost functions. We motivated the challenge in the light of reg-
ular expression and formal language research, machine learn-
ing research, and potential practical applications that we be-
lieve stand to benefit from regular expression inference. We
employed heuristic and learned baselines, indicating that the
REI challenge is difficult, and warrants further research into
how machine learning and deep learning approaches can be
leveraged to better cover this problem.

We invite the research community to participate in the REI
challenge hosted on CodaLab, where starter code is also made
available to enable reproduction of our baselines:

https://codalab.lisn.upsaclay.fr/competitions/15096

5We speculate that, given the small context size for REI, a fully
supervised model like ReGPT should not require billions of param-
eters to properly capture the task.

https://codalab.lisn.upsaclay.fr/competitions/15096

References
[Angluin, 1978] Dana Angluin. On the complexity of mini-

mum inference of regular sets. Information and Control,
39(3):337–350, 1978.

[Angluin, 1987] Dana Angluin. Learning Regular Sets
from Queries and Counterexamples. Inf. Comput.,
75(2):87–106, November 1987.

[Austin et al., 2021] Jacob Austin, Augustus Odena,
Maxwell Nye, Maarten Bosma, Henryk Michalewski,
David Dohan, Ellen Jiang, Carrie Cai, Michael Terry,
Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

[Bowman et al., 2015] Samuel R Bowman, Gabor Angeli,
Christopher Potts, and Christopher D Manning. A large
annotated corpus for learning natural language inference.
arXiv preprint arXiv:1508.05326, 2015.

[Brown et al., 2020] Tom Brown, Benjamin Mann, Nick Ry-
der, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot
learners. Advances in neural information processing sys-
tems, 33:1877–1901, 2020.

[Budzianowski et al., 2018] Paweł Budzianowski, Tsung-
Hsien Wen, Bo-Hsiang Tseng, Inigo Casanueva, Stefan
Ultes, Osman Ramadan, and Milica Gašić. MultiWOZ–
a large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. arXiv preprint
arXiv:1810.00278, 2018.

[Chen et al., 2021] Mark Chen, Jerry Tworek, Heewoo Jun,
Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021.

[Chen et al., 2023] Qiaochu Chen, Arko Banerjee, Çağatay
Demiralp, Greg Durrett, and Isil Dillig. Data Extraction
via Semantic Regular Expression Synthesis, 2023.

[Chomsky, 1956] Noam Chomsky. Three models for the de-
scription of language. IRE Transactions on information
theory, 2(3):113–124, 1956.

[Colin et al., 2016] Emilie Colin, Claire Gardent, Yassine
M’rabet, Shashi Narayan, and Laura Perez-Beltrachini.
The WebNLG Challenge: Generating Text from DBPedia
Data. In Proceedings of the 9th international natural lan-
guage generation conference, pages 163–167, 2016.

[Courcelle and Engelfriet, 2012] Professor Bruno Courcelle
and Dr Joost Engelfriet. Graph Structure and Monadic
Second-Order Logic: A Language-Theoretic Approach.
Cambridge University Press, USA, 1st edition, 2012.

[Delétang et al., 2023] Grégoire Delétang, Anian Ruoss,
Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, El-
liot Catt, Chris Cundy, Marcus Hutter, Shane Legg, Joel
Veness, and Pedro A. Ortega. Neural networks and the
chomsky hierarchy. In 11th International Conference on
Learning Representations, 2023.

[D’Ulizia et al., 2011] Arianna D’Ulizia, Fernando Ferri,
and Patrizia Grifoni. A survey of grammatical inference
methods for natural language learning. Artificial Intelli-
gence Review, 36:1–27, 2011.

[Firoiu et al., 1998] Laura Firoiu, Tim Oates, and Paul R.
Cohen. Learning Deterministic Finite Automaton with a
Recurrent Neural Network. In Proceedings of the 4th In-
ternational Colloquium on Grammatical Inference, ICGI
’98, page 90–101, Berlin, Heidelberg, 1998. Springer-
Verlag.

[Github, 2022] Github. Your AI pair programmer. https://
github.com/features/copilot, 2022. Blog post accessed 8
June 2023.

[Gold, 1967] E. Mark Gold. Language identification in the
limit. Information and Control, 10(5):447–474, 1967.

[Gold, 1978] E. Mark Gold. Complexity of automaton iden-
tification from given data. Information and Control,
37(3):302–320, 1978.

[Guan et al., 2021] Jian Guan, Zhexin Zhang, Zhuoer Feng,
Zitao Liu, Wenbiao Ding, Xiaoxi Mao, Changjie Fan, and
Minlie Huang. Openmeva: A benchmark for evaluat-
ing open-ended story generation metrics. arXiv preprint
arXiv:2105.08920, 2021.

[Hendrycks et al., 2021] Dan Hendrycks, Steven Basart,
Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan
Guo, Collin Burns, Samir Puranik, Horace He, Dawn
Song, et al. Measuring coding challenge competence with
apps. arXiv preprint arXiv:2105.09938, 2021.

[Holtzman et al., 2019] Ari Holtzman, Jan Buys, Li Du,
Maxwell Forbes, and Yejin Choi. The curious case of neu-
ral text degeneration. arXiv preprint arXiv:1904.09751,
2019.

[Hopcroft et al., 2006] John E. Hopcroft, Rajeev Motwani,
and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 2006.

[Kearns and Valiant, 1994] Michael Kearns and Leslie
Valiant. Cryptographic Limitations on Learning Boolean
Formulae and Finite Automata. J. ACM, 41(1):67–95, jan
1994.

[Kleene, 1956] S. C. Kleene. Representation of events in
nerve nets and finite automata. In Claude Shannon and
John McCarthy, editors, Automata Studies, pages 3–41.
Princeton University Press, Princeton, NJ, 1956.

[Li et al., 2021] Yeting Li, Shuaimin Li, Zhiwu Xu, Jialun
Cao, Zixuan Chen, Yun Hu, Haiming Chen, and Shing-Chi
Cheung. TransRegex: Multi-Modal Regular Expression
Synthesis by Generate-and-Repair. In Proceedings of the
43rd International Conference on Software Engineering,
ICSE ’21, page 1210–1222. IEEE Press, 2021.

[Li et al., 2023] Raymond Li, Loubna Ben Allal, Yang-
tian Zi, Niklas Muennighoff, Denis Kocetkov, Cheng-
hao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel
Lamy-Poirier, João Monteiro, Oleh Shliazhko, Nicolas

https://github.com/features/copilot
https://github.com/features/copilot

Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee,
Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin,
Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Ja-
son Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov,
Marco Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy,
Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh,
Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor
Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jen-
nifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan
Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robin-
son, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bah-
danau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean
Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra,
and Harm de Vries. Starcoder: may the source be with
you! arXiv, 2023.

[Locascio et al., 2016] Nicholas Locascio, Karthik
Narasimhan, Eduardo DeLeon, Nate Kushman, and
Regina Barzilay. Neural Generation of Regular Expres-
sions from Natural Language with Minimal Domain
Knowledge, 2016.

[Muralidaran et al., 2021] Vigneshwaran Muralidaran, Irena
Spasić, and Dawn Knight. A systematic review of unsu-
pervised approaches to grammar induction. Natural Lan-
guage Engineering, 27(6):647–689, 2021.

[Nie et al., 2019] Yixin Nie, Adina Williams, Emily Dinan,
Mohit Bansal, Jason Weston, and Douwe Kiela. Adver-
sarial NLI: A new benchmark for natural language under-
standing. arXiv preprint arXiv:1910.14599, 2019.

[OpenAI, 2022] OpenAI. Introducing ChatGPT. https:
//openai.com/blog/chatgpt, 2022. Blog post published
November 30, 2022.

[Park et al., 2019] Jun-U Park, Sang-Ki Ko, Marco
Cognetta, and Yo-Sub Han. SoftRegex: Generating
Regex from Natural Language Descriptions using Soft-
ened Regex Equivalence. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 6425–6431, Hong Kong, China, November 2019.
Association for Computational Linguistics.

[Pavao et al., 2022] Adrien Pavao, Isabelle Guyon, Anne-
Catherine Letournel, Xavier Baró, Hugo Escalante, Sergio
Escalera, Tyler Thomas, and Zhen Xu. CodaLab Com-
petitions: An open source platform to organize scientific
challenges. Technical report, 2022.

[Pitt and Warmuth, 1993] Leonard Pitt and Manfred K. War-
muth. The Minimum Consistent DFA Problem Can-
not Be Approximated within Any Polynomial. J. ACM,
40(1):95–142, jan 1993.

[Radford et al., 2019] Alec Radford, Jeffrey Wu, Rewon
Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners.
OpenAI blog, 1(8):9, 2019.

[Tenney et al., 2019] Ian Tenney, Dipanjan Das, and Ellie
Pavlick. BERT Rediscovers the Classical NLP Pipeline.

In Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–4601,
2019.

[Tunstall et al., 2023] Lewis Tunstall, Nathan Lambert,
Nazneen Rajani, Edward Beeching, Teven Le Scao,
Leandro von Werra, Sheon Han, Philipp Schmid,
and Alexander Rush. Creating a coding assis-
tant with starcoder. Hugging Face Blog, 2023.
https://huggingface.co/blog/starchat.

[Turing and others, 1936] Alan Mathison Turing et al. On
computable numbers, with an application to the entschei-
dungsproblem. J. of Math, 58(345-363):5, 1936.

[Vaandrager, 2017] Frits Vaandrager. Model Learning. Com-
mun. ACM, 60(2):86–95, jan 2017.

[Valizadeh and Berger, 2023] Mojtaba Valizadeh and Martin
Berger. Search-Based Regular Expression Inference on a
GPU. Proc. ACM Program. Lang., 7(PLDI), jun 2023.
Draft available at https://arxiv.org/abs/2305.18575, imple-
mentation: https://github.com/MojtabaValizadeh/paresy.

[van der Poel et al., 2023] Sam van der Poel, Dakotah Lam-
bert, Kalina Kostyszyn, Tiantian Gao, Rahul Verma, Derek
Andersen, Joanne Chau, Emily Peterson, Cody St. Clair,
Paul Fodor, Chihiro Shibata, and Jeffrey Heinz. ML-
RegTest: A Benchmark for the Machine Learning of Reg-
ular Languages, 2023.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems,
30, 2017.

[Wang et al., 2019] Alex Wang, Yada Pruksachatkun, Nikita
Nangia, Amanpreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel Bowman. Superglue: A stick-
ier benchmark for general-purpose language understand-
ing systems. Advances in neural information processing
systems, 32, 2019.

[Williams et al., 2017] Adina Williams, Nikita Nangia, and
Samuel R Bowman. A broad-coverage challenge cor-
pus for sentence understanding through inference. arXiv
preprint arXiv:1704.05426, 2017.

[Yuie et al., 2021] Wang Yuie, Weishi Wang, Shafiq Joty,
and Steven C.H. Hoi. CodeT5: Identifier-aware Uni-
fied Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In EMNLP, 2021.

[Zhong et al., 2018] Zexuan Zhong, Jiaqi Guo, Wei Yang,
Jian Peng, Tao Xie, Jian-Guang Lou, Ting Liu, and Dong-
mei Zhang. SemRegex: A Semantics-Based Approach for
Generating Regular Expressions from Natural Language
Specifications. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing,
pages 1608–1618, Brussels, Belgium, October-November
2018. Association for Computational Linguistics.

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2305.18575
https://github.com/MojtabaValizadeh/paresy

Correct and Optimal: The Regular Expression Inference Challenge

Technical Appendix

1 Data Generation Hyperparameters
We summarise the hyperparameters used for generating our
datasets in Table 1. Symbols, operators (Ops) and abbrevia-
tions as specified in the main paper. “Unif. CF” is the uni-
form cost function, “#Rd. CF’ is’ the number of random cost
functions per PN-set.

DS1 DS2 DS3 DS4

Σ ϵ+ {0, 1} ∅+ ϵ+ {0, 1}
Ops ·,+, ?, ∗ ·,+, ?, ∗,∼,−,&

TYPE 1
p-range 1, . . . , 10
n-range 1, . . . , 10
le-range 1, . . . , 7
%Data ∼50

TYPE 2
p-range 1, . . . , 10
n-range 1, . . . , 10
le-range 1, . . . , 10
%Data ∼50

Unif. CF ✓ ✓ ✓ ✓
#Rd. CF 0 19 0 19
CF range N/A 1, . . . , 49 N/A 1, . . . , 49

Table 1: Data generation hyperparameters.

2 ReGPT Hyperparameters
For ReGPT we train two models from scratch, on the training
splits of DS 1+DS 2, and DS 3+DS 4 respectively. We use the
same hyperparameters for each, for training and inference,
shown in Table 2.

3 StarChatβββ Hyperparameters
In Table 3 we give the hyperparameters used for inference
with the StarChatβ few-shot prompting baseline.

Prompts used for Datasets 1 and 2, and Datasets 3 and 4
respectively are shown in their own subsections below; ex-
pressions in curly brackets {. . .} are instantiated with pos-
tive/negative sets and cost function values per problem.

We stop generation after the first linebreak character (\n)
is produced, using tokens after “r = ” as the expression.

Model
Vocab Size 132
Context Length 256
Embedding dims 1,024
Layers 24
Attention Heads 16
#Parameters ∼300M

Training
Training GPUs 4xV100 16GB
Training Time ∼12 hours/model
Optimiser AdamW
Batch Size 512
LR 1e−5

Weight Decay 0.1
Warmup Steps 500
LR Scheduler Cosine
Epochs 100

Inference
Inference GPUs 4xV100 16GB
Sampling method Nucleus Sampling
top-p 0.8
temperature 0.8
#Samples 10 or 1, 000 (incl. 1 greedy)

Table 2: ReGPT hyperparameters.

Model
Vocab Size 49,156
Context Length 8,192
Embedding dims 6,144
Inner dims 24,576
Layers 40
Attention Heads 48
#Parameters ∼16B

Inference
Inference GPUs 4xV100 16GB
Sampling method Prompting + Nucleus Sampling
top-p 0.8
temperature 0.8
#Samples 10

Table 3: StarChatβ hyperparameters.

Positive Set: 11, 0000, 000
Negative Set: ϵ, 1, 101
RE Characters & Ops: {∅, ϵ, a, ?, ∗,∼, ·,&,+,−}
Cost function: uniform
Input Encoding: [CLS] [POS] 1 1 [POS] 0 0 0 0 [POS] 0 0 0 [NEG] e [NEG] 1 [NEG] 1 0 1 [COST A] 1 [COST ?] 1 [COST *]

1 [COST .] 1 [COST +] 1 [BOR] (0 *) . (0 + (1 . 1)) [EOR]

Figure 1: Example of ReGPT encoding.

4 ReGPT Encoding
Figure 1 shows and example of the input encoding for our
ReGPT model, for a training instance from Dataset 1. Note
that we use COST A to cover all characters a ∈ Σ, ϵ, and ∅.
To stay with ASCII characters, we encode ϵ as ’e’, ∅ as ’E’,
and concatenation (·) as ’.’ In practice, we also distinguish
between 0 and 1 characters used for PN-strings and regular
expressions from integers used for the cost function, by en-
coding the former as tokens ’ONE’ and ’ZERO’.

4.1 StarChattβββ Prompt, Datasets 1 and 2

<|system|>
<|end|>
<|user|>
Regular Expression Inference is the task of finding a minimal regular expression r with
respect to a cost function c, that accepts all strings in a positive set p and rejects all
strings in a negative set n.

The alphabet for regular expressions is 0, 1, and the empty string e. The empty set is
represented as E.

Operators for regular expressions are Option (?), Kleene-Star (*), Concatenation (.), and
Union (+). Parentheses are allowed, and are not used when calculating cost.

The cost of a regular expression r is the sum of costs of all symbols and operators used in
r, according to the cost function c.

Examples:
Input:
p = [0101]
n = [1000100]
c(0) = 1
c(1) = 1
c(e) = 1
c(E) = 1
c(?) = 1
c(*) = 1
c(.) = 1
c(+) = 1
Output:
r = ((0.1)*)
cost = 4

Input:
p = [10, 000, 1101110, 1000000, 1110110, 010]
n = [000110, 0110, 01101000]
c(0) = 1
c(1) = 1
c(e) = 1
c(E) = 1
c(?) = 1
c(*) = 1
c(.) = 1
c(+) = 1
Output:
r = (((1.(0*))*).((0.(1?))*))
cost = 11

Input:
p = [010011]
n = [000000 00011 110010 111010]
c(0) = 20
c(1) = 20
c(e) = 20
c(E) = 20
c(?) = 8
c(*) = 3
c(.) = 45

c(+) = 38
Output:
r = (0.((1.(0*))*))
cost = 156

Find the minimal regular expression r for the inputs below. Only answer with the final
regular expression:
Input:
p = {p}
n = {n}
c(0) = {c0}
c(1) = {c1}
c(e) = {ce}
c(E) = {cE}
c(?) = {cq}
c(*) = {cs}
c(.) = {cd}
c(+) = {cp}
Output:
<|end|>
<|assistant|>
r =

4.2 StarChattβββ Prompt, Datasets 3 and 4

<|system|>
<|end|>
<|user|>
Regular Expression Inference is the task of finding a minimal regular expression r with
respect to a cost function c, that accepts all strings in a positive set p and rejects all
strings in a negative set n.

The alphabet for regular expressions is 0, 1, and the empty string e. The empty set is
represented as E.

Operators for regular expressions are Option (?), Kleene-Star (*), Concatenation (.), Union
(+), Complement (∼), Intersection (&), and Restriction (-).

Parentheses are allowed, and are not used when calculating cost.

The cost of a regular expression r is the sum of costs of all symbols and operators used in
r, according to the cost function c.

Examples:
Input:
p = [0101]
n = [1000100]
c(0) = 1
c(1) = 1
c(e) = 1
c(E) = 1
c(?) = 1
c(*) = 1
c(.) = 1
c(+) = 1
c(∼) = 1
c(&) = 1
c(-) = 1
Output:
r = ((0.1)*)
cost = 4

p = [0, 11, 011, 110, 10]
n = [e, 00, 000, 010, 1, 100, 101]
c(0) = 1
c(1) = 1
c(e) = 1
c(E) = 1
c(?) = 1
c(*) = 1
c(.) = 1
c(+) = 1
c(∼) = 1
c(&) = 1
c(-) = 1
r = (((1?).(((0.(1?))*)-0)))
cost = 11

Input:
p = [011, 0, 1, 101]
n = [e, 10, 100, 11, 110]
c(0) = 1
c(1) = 1
c(e) = 1
c(E) = 1
c(?) = 36
c(*) = 20
c(.) = 38
c(+) = 1
c(∼) = 10
c(&) = 12
c(-) = 30
r = (0+((1).1))
52

Find the minimal regular expression r for the inputs below. Only answer with the final
regular expression:
Input:
p = {p}
n = {n}
c(0) = {c0}
c(1) = {c1}
c(e) = {ce}
c(E) = {cE}
c(?) = {cq}
c(*) = {cs}
c(.) = {cd}
c(+) = {cp}
c(∼) = {ct}
c(&) = {ca}
c(-) = {cm}
Output:
<|end|>
<|assistant|>
r =

