
Compilers and computer architecture:
Semantic analysis

Martin Berger 1

October / November 2019

1Email: M.F.Berger@sussex.ac.uk, Office hours: Wed 12-13 in
Chi-2R312

1 / 1

M.F.Berger@sussex.ac.uk

Recall the function of compilers

2 / 1

Recall the structure of compilers

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program

3 / 1

Semantic analysis
One of the jobs of the compiler front-end is to reject ill-formed
inputs. This is usually done in three stages.
I Lexical analysis: detects inputs with illegal lexical syntax.
I Parsing: detects inputs with ill-formed syntax (no

parse-tree).
I Semantic analysis: catch ’all’ remaining errors,

e.g. variable used before declared. ’Last line of defense’.

Why do we need a separate semantic analysis phase at all?

Answer: Some language constraints are not expressible using
CFGs (too complicated).

The situation is similar to the split between lexing and parsing:
not everything about syntactic well-formedness can be
expressed by regular expressions & FSAs, so we use CFGs
later.

4 / 1

Semantic analysis
One of the jobs of the compiler front-end is to reject ill-formed
inputs. This is usually done in three stages.
I Lexical analysis: detects inputs with illegal lexical syntax.
I Parsing: detects inputs with ill-formed syntax (no

parse-tree).
I Semantic analysis: catch ’all’ remaining errors,

e.g. variable used before declared. ’Last line of defense’.

Why do we need a separate semantic analysis phase at all?

Answer: Some language constraints are not expressible using
CFGs (too complicated).

The situation is similar to the split between lexing and parsing:
not everything about syntactic well-formedness can be
expressed by regular expressions & FSAs, so we use CFGs
later.

5 / 1

Semantic analysis
One of the jobs of the compiler front-end is to reject ill-formed
inputs. This is usually done in three stages.
I Lexical analysis: detects inputs with illegal lexical syntax.
I Parsing: detects inputs with ill-formed syntax (no

parse-tree).
I Semantic analysis: catch ’all’ remaining errors,

e.g. variable used before declared. ’Last line of defense’.

Why do we need a separate semantic analysis phase at all?

Answer: Some language constraints are not expressible using
CFGs (too complicated).

The situation is similar to the split between lexing and parsing:
not everything about syntactic well-formedness can be
expressed by regular expressions & FSAs, so we use CFGs
later.

6 / 1

What kinds of checks does semantic analysis do?

Some examples. The precise requirements depend on the
language.

I All identifiers declared before use?
I Are all types correctly declared?
I Do the inheritance relationships make sense?
I Are classes and variables defined only once?
I Methods defined only once?
I Are private methods and members only used within the

defining class?
I Stupid operations like cosine(true) or ”hello”/7?.

7 / 1

What kinds of checks does semantic analysis do?

Some examples. The precise requirements depend on the
language.
I All identifiers declared before use?

I Are all types correctly declared?
I Do the inheritance relationships make sense?
I Are classes and variables defined only once?
I Methods defined only once?
I Are private methods and members only used within the

defining class?
I Stupid operations like cosine(true) or ”hello”/7?.

8 / 1

What kinds of checks does semantic analysis do?

Some examples. The precise requirements depend on the
language.
I All identifiers declared before use?
I Are all types correctly declared?

I Do the inheritance relationships make sense?
I Are classes and variables defined only once?
I Methods defined only once?
I Are private methods and members only used within the

defining class?
I Stupid operations like cosine(true) or ”hello”/7?.

9 / 1

What kinds of checks does semantic analysis do?

Some examples. The precise requirements depend on the
language.
I All identifiers declared before use?
I Are all types correctly declared?
I Do the inheritance relationships make sense?

I Are classes and variables defined only once?
I Methods defined only once?
I Are private methods and members only used within the

defining class?
I Stupid operations like cosine(true) or ”hello”/7?.

10 / 1

What kinds of checks does semantic analysis do?

Some examples. The precise requirements depend on the
language.
I All identifiers declared before use?
I Are all types correctly declared?
I Do the inheritance relationships make sense?
I Are classes and variables defined only once?

I Methods defined only once?
I Are private methods and members only used within the

defining class?
I Stupid operations like cosine(true) or ”hello”/7?.

11 / 1

What kinds of checks does semantic analysis do?

Some examples. The precise requirements depend on the
language.
I All identifiers declared before use?
I Are all types correctly declared?
I Do the inheritance relationships make sense?
I Are classes and variables defined only once?
I Methods defined only once?

I Are private methods and members only used within the
defining class?

I Stupid operations like cosine(true) or ”hello”/7?.

12 / 1

What kinds of checks does semantic analysis do?

Some examples. The precise requirements depend on the
language.
I All identifiers declared before use?
I Are all types correctly declared?
I Do the inheritance relationships make sense?
I Are classes and variables defined only once?
I Methods defined only once?
I Are private methods and members only used within the

defining class?

I Stupid operations like cosine(true) or ”hello”/7?.

13 / 1

What kinds of checks does semantic analysis do?

Some examples. The precise requirements depend on the
language.
I All identifiers declared before use?
I Are all types correctly declared?
I Do the inheritance relationships make sense?
I Are classes and variables defined only once?
I Methods defined only once?
I Are private methods and members only used within the

defining class?
I Stupid operations like cosine(true) or ”hello”/7?.

14 / 1

Caveat

When we say that semantic analysis catches ’all’ remaining
errors, that does not include application-specific errors. It
means catching errors that violate the well-formedness
constraints that the language iteself imposes.

Naturally, those constraints are chosen by the language
designers with a view towards efficient checkability by the
compiler.

15 / 1

Rice’s Theorem and undecidability

Rice’s theorem. No interesting property of programs (more
precisely: program execution) is decidable.

That means for essentially any property that programs might
have (e.g. does not crash, terminates, loops forever, uses more
than 1782349 Bytes of memory) there cannot be a perfect
checker, ie. a program that determines with perfect accuracy
whether the chosen property holds of any input program or not.

Informally, one may summarise Rice’s theorem as follows: to
work out with 100% certainty what programs do, you have
to run them (with the possibility of non-termination), there
is no shortcut.

16 / 1

Rice’s Theorem and undecidability

Rice’s theorem. No interesting property of programs (more
precisely: program execution) is decidable.

That means for essentially any property that programs might
have (e.g. does not crash, terminates, loops forever, uses more
than 1782349 Bytes of memory) there cannot be a perfect
checker, ie. a program that determines with perfect accuracy
whether the chosen property holds of any input program or not.

Informally, one may summarise Rice’s theorem as follows: to
work out with 100% certainty what programs do, you have
to run them (with the possibility of non-termination), there
is no shortcut.

17 / 1

Rice’s Theorem and undecidability

Not all hope is lost!

We can approximate a property of interest, and our
approximation will have either false positives or false negatives
(or both).

18 / 1

Rice’s Theorem and undecidability

Not all hope is lost!

We can approximate a property of interest, and our
approximation will have either false positives or false negatives
(or both).

19 / 1

Rice’s Theorem and undecidability
So our semantic analysis must approximate. A compiler does
this in a conservative way (“erring on the side of caution”):
every program the semantic analysis accepts is guaranteed to
have to properties that the semantic analysis check for, but the
semantic analysis will reject a lot of safe programs (having the
required property).

Example: Our semantic analysis guarantees that programs
never try to multiply an integer and a string like
cosine("hello"). In this sense, the following program is
safe (why?):

if (x*x = -1) {
y = 3 / "hello" }

else
y = 3 / 43110 }

Yet any typing system in practical use will reject it. (Why?)

20 / 1

Rice’s Theorem and undecidability
So our semantic analysis must approximate. A compiler does
this in a conservative way (“erring on the side of caution”):
every program the semantic analysis accepts is guaranteed to
have to properties that the semantic analysis check for, but the
semantic analysis will reject a lot of safe programs (having the
required property).

Example: Our semantic analysis guarantees that programs
never try to multiply an integer and a string like
cosine("hello"). In this sense, the following program is
safe (why?):

if (x*x = -1) {
y = 3 / "hello" }

else
y = 3 / 43110 }

Yet any typing system in practical use will reject it. (Why?)

21 / 1

Rice’s Theorem and undecidability
So our semantic analysis must approximate. A compiler does
this in a conservative way (“erring on the side of caution”):
every program the semantic analysis accepts is guaranteed to
have to properties that the semantic analysis check for, but the
semantic analysis will reject a lot of safe programs (having the
required property).

Example: Our semantic analysis guarantees that programs
never try to multiply an integer and a string like
cosine("hello"). In this sense, the following program is
safe (why?):

if (x*x = -1) {
y = 3 / "hello" }

else
y = 3 / 43110 }

Yet any typing system in practical use will reject it. (Why?)
22 / 1

Plan

For lexing and parsing we proceeded in two steps.

1. Specify constraint (RE for lexing, CFGs for parsing)

2. Invented algorithm to check constraints given in (1): FSA to
decide REs, (top-down) parser to decide CFGs.

For semantic analysis such a nice separation between
specification and algorithm is difficult / an open problem.
It seems hard to express constraints independent from giving
an algorithm that checks for them.

The whole session on semantic analysis will be more
superficial than those on lexing/parsing.

23 / 1

Plan

For lexing and parsing we proceeded in two steps.

1. Specify constraint (RE for lexing, CFGs for parsing)

2. Invented algorithm to check constraints given in (1): FSA to
decide REs, (top-down) parser to decide CFGs.

For semantic analysis such a nice separation between
specification and algorithm is difficult / an open problem.
It seems hard to express constraints independent from giving
an algorithm that checks for them.

The whole session on semantic analysis will be more
superficial than those on lexing/parsing.

24 / 1

Semantic analysis by traversal of the AST

Just like code generation, semantic analysis will happen by
walking the AST:

I Analyses a node N in the AST.
I Recursively process the children of N.
I After the recursion terminates, finish the analysis of N with

the information obtained from the children.

25 / 1

Semantic analysis by traversal of the AST

Just like code generation, semantic analysis will happen by
walking the AST:
I Analyses a node N in the AST.

I Recursively process the children of N.
I After the recursion terminates, finish the analysis of N with

the information obtained from the children.

26 / 1

Semantic analysis by traversal of the AST

Just like code generation, semantic analysis will happen by
walking the AST:
I Analyses a node N in the AST.
I Recursively process the children of N.

I After the recursion terminates, finish the analysis of N with
the information obtained from the children.

27 / 1

Semantic analysis by traversal of the AST

Just like code generation, semantic analysis will happen by
walking the AST:
I Analyses a node N in the AST.
I Recursively process the children of N.
I After the recursion terminates, finish the analysis of N with

the information obtained from the children.

28 / 1

Semantic analysis by traversal of the AST

while(n > 0){
n--;
res *= 2; }

T_while

T_greater

T_var (n) T_num (0)

T_semicolon

T_decrement

T_var (n)

T_update

T_var (res) T_mult

T_var (res) T_num (2)

29 / 1

Semantic analysis by traversal of the AST

while(n > 0){
n--;
res *= 2; }

T_while

T_greater

T_var (n) T_num (0)

T_semicolon

T_decrement

T_var (n)

T_update

T_var (res) T_mult

T_var (res) T_num (2)

30 / 1

Semantic analysis by traversal of the AST

while(n > 0){
n--;
res *= 2; }

T_while

T_greater

T_var (n) T_num (0)

T_semicolon

T_decrement

T_var (n)

T_update

T_var (res) T_mult

T_var (res) T_num (2)

31 / 1

Semantic analysis by traversal of the AST

while(n > 0){
n--;
res *= 2; }

T_while

T_greater

T_var (n) T_num (0)

T_semicolon

T_decrement

T_var (n)

T_update

T_var (res) T_mult

T_var (res) T_num (2)

32 / 1

Semantic analysis by traversal of the AST

Sometimes we will have to walk the AST multiple times (e.g.
some kinds of type-inference).

We want to be sure that every identifier is declared. With
non-recursive definitions this is no problem, everything is
declared before use, which is easy to check with one recursive
descent of the AST.

With recursive definitions sometimes identifiers are declared
after use. What do we do?

33 / 1

Semantic analysis by traversal of the AST

Sometimes we will have to walk the AST multiple times (e.g.
some kinds of type-inference).

We want to be sure that every identifier is declared. With
non-recursive definitions this is no problem, everything is
declared before use, which is easy to check with one recursive
descent of the AST.

With recursive definitions sometimes identifiers are declared
after use. What do we do?

34 / 1

Semantic analysis by traversal of the AST

Sometimes we will have to walk the AST multiple times (e.g.
some kinds of type-inference).

We want to be sure that every identifier is declared. With
non-recursive definitions this is no problem, everything is
declared before use, which is easy to check with one recursive
descent of the AST.

With recursive definitions sometimes identifiers are declared
after use. What do we do?

35 / 1

Semantic analysis by traversal of the AST
Sometimes we will have to walk the AST multiple times (e.g.
some kinds of type-inference). With recursive definitions
sometimes identifiers are declared after use. What do we do?

abstract class A () {
B b }

abstract class B () {
A a }

Answer:
I Walk the AST once collecting class definitions.
I Walk the AST a second time checking if each use of a

class (type) identifier has a definition somewhere.
I Alternatively, propagate information about needed

definitions up in a clever way and check if everything is OK.

36 / 1

Semantic analysis by traversal of the AST
Sometimes we will have to walk the AST multiple times (e.g.
some kinds of type-inference). With recursive definitions
sometimes identifiers are declared after use. What do we do?

abstract class A () {
B b }

abstract class B () {
A a }

Answer:
I Walk the AST once collecting class definitions.
I Walk the AST a second time checking if each use of a

class (type) identifier has a definition somewhere.
I Alternatively, propagate information about needed

definitions up in a clever way and check if everything is OK.

37 / 1

Key tool: types

Types and typing systems are the key tool for semantic
analysis.

What are types?

Types are a rough classification of programs that rule out
certain errors, e.g. cosine("hello")!

With each type t we associate values, and operators that we
can apply to values of type t . Conversely, with each operator
with associate types that describe the nature of the operator’s
arguments and result.

For example to values of type string, we can apply operations
such as println, but we cannot multiply two strings.

38 / 1

Key tool: types

Types and typing systems are the key tool for semantic
analysis.

What are types?

Types are a rough classification of programs that rule out
certain errors, e.g. cosine("hello")!

With each type t we associate values, and operators that we
can apply to values of type t . Conversely, with each operator
with associate types that describe the nature of the operator’s
arguments and result.

For example to values of type string, we can apply operations
such as println, but we cannot multiply two strings.

39 / 1

Key tool: types

Types and typing systems are the key tool for semantic
analysis.

What are types?

Types are a rough classification of programs that rule out
certain errors, e.g. cosine("hello")!

With each type t we associate values, and operators that we
can apply to values of type t . Conversely, with each operator
with associate types that describe the nature of the operator’s
arguments and result.

For example to values of type string, we can apply operations
such as println, but we cannot multiply two strings.

40 / 1

Key tool: types

Types and typing systems are the key tool for semantic
analysis.

What are types?

Types are a rough classification of programs that rule out
certain errors, e.g. cosine("hello")!

With each type t we associate values, and operators that we
can apply to values of type t . Conversely, with each operator
with associate types that describe the nature of the operator’s
arguments and result.

For example to values of type string, we can apply operations
such as println, but we cannot multiply two strings.

41 / 1

Types

In mainstream PLs, types are weak (= not saying anything
complicated) specifications of programs.

42 / 1

Types as two-version programming

In languages such as Java, programs are annotated with types.
This can be seen as a weak form of two-version programming:
the programmer specifies twice what the program should do,
once by the actual code, and a second time through the types.

By saying something twice, but in somewhat different
languages (Java vs types) the probability that we make the
same mistake in both expressions is lower than if we state our
intention only once.

The key idea behind semantic analysis is to look for
contradictions between the two specifications, and reject
programs with such contradictions.

43 / 1

Types as two-version programming

In languages such as Java, programs are annotated with types.
This can be seen as a weak form of two-version programming:
the programmer specifies twice what the program should do,
once by the actual code, and a second time through the types.

By saying something twice, but in somewhat different
languages (Java vs types) the probability that we make the
same mistake in both expressions is lower than if we state our
intention only once.

The key idea behind semantic analysis is to look for
contradictions between the two specifications, and reject
programs with such contradictions.

44 / 1

Types as two-version programming

In languages such as Java, programs are annotated with types.
This can be seen as a weak form of two-version programming:
the programmer specifies twice what the program should do,
once by the actual code, and a second time through the types.

By saying something twice, but in somewhat different
languages (Java vs types) the probability that we make the
same mistake in both expressions is lower than if we state our
intention only once.

The key idea behind semantic analysis is to look for
contradictions between the two specifications, and reject
programs with such contradictions.

45 / 1

Types

Note that types can only prevent stupid mistakes like "hello"

* "world".

They cannot (usually) prevent more complicated problems, like
out-of-bounds indexing of arrays.

int [] a = new int [10]
a [20] = 3

46 / 1

Type-checking vs type-inference
An important distinction is that between type-checking
(old-fashioned) and type-inference (modern).

I In type-checking (e.g. Java) we verify that the
programmer-written type-annotations are consistent with
the program code. E.g.
def f (x : String) : Int = {

if (x = "Moon")
true

else
false }

is easy to see as inconsistent.
I In type-inference (e.g. Haskell, Ocaml, Scala, Rust, ...) we

analyse the program code to see if it is internally
consistent. This is done by trying to find types that we
could assign to a program to make it type-check. (So we
let the computer do most of the work of type annotations.)

47 / 1

Type-checking vs type-inference
An important distinction is that between type-checking
(old-fashioned) and type-inference (modern).

I In type-checking (e.g. Java) we verify that the
programmer-written type-annotations are consistent with
the program code. E.g.
def f (x : String) : Int = {
if (x = "Moon")
true

else
false }

is easy to see as inconsistent.

I In type-inference (e.g. Haskell, Ocaml, Scala, Rust, ...) we
analyse the program code to see if it is internally
consistent. This is done by trying to find types that we
could assign to a program to make it type-check. (So we
let the computer do most of the work of type annotations.)

48 / 1

Type-checking vs type-inference
An important distinction is that between type-checking
(old-fashioned) and type-inference (modern).

I In type-checking (e.g. Java) we verify that the
programmer-written type-annotations are consistent with
the program code. E.g.
def f (x : String) : Int = {
if (x = "Moon")
true

else
false }

is easy to see as inconsistent.
I In type-inference (e.g. Haskell, Ocaml, Scala, Rust, ...) we

analyse the program code to see if it is internally
consistent. This is done by trying to find types that we
could assign to a program to make it type-check. (So we
let the computer do most of the work of type annotations.)

49 / 1

Type-checking vs type-inference summary

Type-checking: is the program consistent with
programmer-supplied type annotations?

Type-inference: is the program consistent with itself?

50 / 1

Type-checking vs type-inference

def f (y : ???) : ??? = {
if (x = y)
y

else
x+1 }

What types could you give to x , y and the return value of f?

Clearly x has type integer, y has type integer.

51 / 1

Type-checking vs type-inference

def f (y : ???) : ??? = {
if (x = y)
y

else
x+1 }

What types could you give to x , y and the return value of f?

Clearly x has type integer, y has type integer.

52 / 1

Type-checking vs type-inference
That was easy. What about this program

def f (x : ???) : ??? = {
while (x.g (y)) {
y = y+1 };

if (y > z)
z = z+1

else
println ("hello") }

What types could you give to x , y , z,g and f?

y and z are integers, x must be a class A such that A has a
method (should it be public or private?) g which takes and
integer and returns a boolean.
Finally, f returns nothing, so should be of type Unit , or void
(which is the same thing in many contexts).

53 / 1

Type-checking vs type-inference
That was easy. What about this program

def f (x : ???) : ??? = {
while (x.g (y)) {
y = y+1 };

if (y > z)
z = z+1

else
println ("hello") }

What types could you give to x , y , z,g and f?

y and z are integers, x must be a class A such that A has a
method (should it be public or private?) g which takes and
integer and returns a boolean.
Finally, f returns nothing, so should be of type Unit , or void
(which is the same thing in many contexts).

54 / 1

Polymorphism (not exam relevant)

What about this program?

def f (x : ???) : ??? = { return x }

We can use any type t , as long as the input and output both
have t :

def f (x : t) : t = { return x }

This is called (parametric) polymorphism.

55 / 1

Polymorphism (not exam relevant)

What about this program?

def f (x : ???) : ??? = { return x }

We can use any type t , as long as the input and output both
have t :

def f (x : t) : t = { return x }

This is called (parametric) polymorphism.

56 / 1

Polymorphism (not exam relevant)

But which concrete type t should we use for

def f (x : t) : t = { return x }

We want to be able to do f(17) and f(true) in the same
program. Any concrete choice of t would prevent this. In order
to deal with this we assign a type variable which can be
instantiated with any type.

In Java, the concept of generics captures this polymorphism,
e.g.:

public interface List<E> {
void add(E x);
Iterator<E> iterator();}

57 / 1

Polymorphism (not exam relevant)

But which concrete type t should we use for

def f (x : t) : t = { return x }

We want to be able to do f(17) and f(true) in the same
program. Any concrete choice of t would prevent this. In order
to deal with this we assign a type variable which can be
instantiated with any type.

In Java, the concept of generics captures this polymorphism,
e.g.:

public interface List<E> {
void add(E x);
Iterator<E> iterator();}

58 / 1

Advanced question (not exam relevant)

What types should/could we infer for e.g.

def f (x : ???) : ??? = {
if (x > 3.1415) then

true
else

throw new Exception ("...!") }

59 / 1

Dynamic vs static typing

An important distinction is that between dynamically typed
languages, e.g. Python, Javascript, and statically typed
languages such as Java, C, C++. The difference is when
type-checking happens.

I In dynamically typed languages, type-checking happens at
run-time, at the last possible moment, e.g. just before we
execute x+2 we check that x contains an integer.

I In statically typed languages, type-checking happens at
compile-time

60 / 1

Dynamic vs static typing

I Disadvantages for dynamically typed languages:
I Slow, because of constant type-checking at run-time.
I Errors only caught at run-time, when it is too late.

I Key advantage for dynamically typed languages: more
flexibility. There are many programs that are safe, but
cannot be typed at compile time, e.g.

x = 100
x = x*x
println (x+1)
x = "hello"
x = concatenate(x, " world")
println (x)

Moreover, vis-a-vis languages like Java, we don’t have to write
type annotations. Less work ...

61 / 1

Dynamic vs static typing

I Disadvantages for dynamically typed languages:
I Slow, because of constant type-checking at run-time.
I Errors only caught at run-time, when it is too late.

I Key advantage for dynamically typed languages: more
flexibility. There are many programs that are safe, but
cannot be typed at compile time, e.g.

x = 100
x = x*x
println (x+1)
x = "hello"
x = concatenate(x, " world")
println (x)

Moreover, vis-a-vis languages like Java, we don’t have to write
type annotations. Less work ...

62 / 1

Dynamic vs static typing

I Disadvantages for dynamically typed languages:
I Slow, because of constant type-checking at run-time.
I Errors only caught at run-time, when it is too late.

I Key advantage for dynamically typed languages: more
flexibility. There are many programs that are safe, but
cannot be typed at compile time, e.g.

x = 100
x = x*x
println (x+1)
x = "hello"
x = concatenate(x, " world")
println (x)

Moreover, vis-a-vis languages like Java, we don’t have to write
type annotations. Less work ...

63 / 1

Dynamic vs static typing

The compilation of dynamically typed languages (and how to
make them fast) using JIT compilers is very interesting and a
hot research topic.

Type inference for advanced programming languages is also
very interesting and a hot research topic.

However, from now on we will only look at statically typed
languages with type-checking (except maybe later in the
advanced topics).

64 / 1

Dynamic vs static typing

For large-scala industrial programming, the disadvantages of
dynamically typed languages become overwhelming, and static
types are often retro-fitted, e.g.:
I Javascript: Flow (Facebook) and Typescript (Microsoft)
I Python: mypy and PyAnnotate (Dropbox)

65 / 1

Type-checking for a simple imperative language

Let us look at a simple programming language. Here’s it’s CFG:

P ::= x | 0 | 1 | ... | true | false | P = P | P < P |
| P + P | P ∗ P | for i = P to P do {P} | new List<α>
| P.append(P)| P.get(P)
| while P do {P} | if P then P else P
| x := P | let x : α = P in P | P; P

Here x ranges over variables and α over types (see below).

We want to do semantic analysis that catches mistakes like
true + 7 and we use types for this purpose.

66 / 1

Type-checking for a simple imperative language

Let us look at a simple programming language. Here’s it’s CFG:

P ::= x | 0 | 1 | ... | true | false | P = P | P < P |
| P + P | P ∗ P | for i = P to P do {P} | new List<α>
| P.append(P)| P.get(P)
| while P do {P} | if P then P else P
| x := P | let x : α = P in P | P; P

Here x ranges over variables and α over types (see below).

We want to do semantic analysis that catches mistakes like
true + 7 and we use types for this purpose.

67 / 1

Type-checking for a simple imperative language

Now we need to define types. Here they are.

α ::= Unit | Int | Bool | List<α>

The type Unit is the type of statements (like void in Java).
Clearly Int is the type of integers, and Bool that of booleans.
Finally List<α> is the type of lists storing things of type α.

The Java program

int x = 3;
x = x+1;

in our language is

let x : Int = 3 in x := x + 1

68 / 1

Type-checking for a simple imperative language

Now we need to define types. Here they are.

α ::= Unit | Int | Bool | List<α>

The type Unit is the type of statements (like void in Java).
Clearly Int is the type of integers, and Bool that of booleans.
Finally List<α> is the type of lists storing things of type α.

The Java program

int x = 3;
x = x+1;

in our language is

let x : Int = 3 in x := x + 1

69 / 1

Type-checking for a simple imperative language

A Java program like

List<Int> a = new List<Int>();
a.append(10);

translates to

let a : List<Int> = new List<Int> in a.append(10)

70 / 1

Type-checking for a simple imperative language

Let’s look at some examples.

I The program 3 has type Int

I The program true has type Bool

I What about 3 + 4?
I What about 3 + x?

71 / 1

Type-checking for a simple imperative language

Let’s look at some examples.
I The program 3 has type Int

I The program true has type Bool

I What about 3 + 4?
I What about 3 + x?

72 / 1

Type-checking for a simple imperative language

Let’s look at some examples.
I The program 3 has type Int

I The program true has type Bool

I What about 3 + 4?
I What about 3 + x?

73 / 1

Type-checking for a simple imperative language

Let’s look at some examples.
I The program 3 has type Int

I The program true has type Bool

I What about 3 + 4?

I What about 3 + x?

74 / 1

Type-checking for a simple imperative language

Let’s look at some examples.
I The program 3 has type Int

I The program true has type Bool

I What about 3 + 4?
I What about 3 + x?

75 / 1

Type-checking for a simple imperative language

The type of programs like 3 + x depends on our assumptions
about the type of x : if we assume that x has type Int then
3 + x has type Int.

If we assume that x has type Bool then 3 + x has no type!

An executable program has no free variables, unlike 3 + x ,
since all variables have to be declared before use. (Why?)

76 / 1

Type-checking for a simple imperative language

The type of programs like 3 + x depends on our assumptions
about the type of x : if we assume that x has type Int then
3 + x has type Int.

If we assume that x has type Bool then 3 + x has no type!

An executable program has no free variables, unlike 3 + x ,
since all variables have to be declared before use. (Why?)

77 / 1

Type-checking for a simple imperative language

The type of programs like 3 + x depends on our assumptions
about the type of x : if we assume that x has type Int then
3 + x has type Int.

If we assume that x has type Bool then 3 + x has no type!

An executable program has no free variables, unlike 3 + x ,
since all variables have to be declared before use. (Why?)

78 / 1

Type-checking for a simple imperative language

If all variables have to be declared before use, why do we have
to worry about programs with free variables at all when the
programs we run don’t have free variables?

79 / 1

Type-checking for a simple imperative language
We want to type-check in a compositional way, that means,
determining types of a program from the types of its
components.

The key construct here is

let x : α = P in Q.

To type-check Q we have to add the assumption that x stores
something of type α to the assumptions we use to type-check
the whole phrase let x : α = P in Q.

Assume y stores something of type Int. Under this
assumption, the program

let x : Int = y + 1 in x := x + 2

is well-typed and has type Unit.

80 / 1

Type-checking for a simple imperative language
We want to type-check in a compositional way, that means,
determining types of a program from the types of its
components.

The key construct here is

let x : α = P in Q.

To type-check Q we have to add the assumption that x stores
something of type α to the assumptions we use to type-check
the whole phrase let x : α = P in Q.

Assume y stores something of type Int. Under this
assumption, the program

let x : Int = y + 1 in x := x + 2

is well-typed and has type Unit.

81 / 1

Type-checking for a simple imperative language

In other words, we type-check using assumptions about the
types of free variables. We can split this insight into parts
(divide-and-conquer):

I We need to store the assumptions.
I We need to be able to get the assumptions.

So our type-checking algorithm needs a suitable data structure,
an ’assumption store’.

82 / 1

Type-checking for a simple imperative language

In other words, we type-check using assumptions about the
types of free variables. We can split this insight into parts
(divide-and-conquer):
I We need to store the assumptions.

I We need to be able to get the assumptions.

So our type-checking algorithm needs a suitable data structure,
an ’assumption store’.

83 / 1

Type-checking for a simple imperative language

In other words, we type-check using assumptions about the
types of free variables. We can split this insight into parts
(divide-and-conquer):
I We need to store the assumptions.
I We need to be able to get the assumptions.

So our type-checking algorithm needs a suitable data structure,
an ’assumption store’.

84 / 1

Type-checking for a simple imperative language

In other words, we type-check using assumptions about the
types of free variables. We can split this insight into parts
(divide-and-conquer):
I We need to store the assumptions.
I We need to be able to get the assumptions.

So our type-checking algorithm needs a suitable data structure,
an ’assumption store’.

85 / 1

Type-checking for a simple imperative language
To describe the type-checking algorithm concisely, let’s
introduce some notation.

We write Γ ` P : α, meaning that program P has type α under
the assumptions as given by Γ. This Γ is our ’assumption
store’, and pronounced “Gamma”. The ’assumption store’ is
also called symbol table or typing environment or just
environment. You can think of Γ as a function: you pass a
variable name to Γ and get either an error (if Γ has no
assumptions on that variable) or a type α (if Γ stores the
assumption that the variable has type α).

We write Γ(x) = α to indicate that Γ stores the assumption that
x has type α.

We sometimes want to add and assumption x : α to the
assumptions already in Γ. We write Γ, x : α in this case,
assuming that Γ does not already store assumptions about x .

86 / 1

Type-checking for a simple imperative language
To describe the type-checking algorithm concisely, let’s
introduce some notation.

We write Γ ` P : α, meaning that program P has type α under
the assumptions as given by Γ. This Γ is our ’assumption
store’, and pronounced “Gamma”. The ’assumption store’ is
also called symbol table or typing environment or just
environment. You can think of Γ as a function: you pass a
variable name to Γ and get either an error (if Γ has no
assumptions on that variable) or a type α (if Γ stores the
assumption that the variable has type α).

We write Γ(x) = α to indicate that Γ stores the assumption that
x has type α.

We sometimes want to add and assumption x : α to the
assumptions already in Γ. We write Γ, x : α in this case,
assuming that Γ does not already store assumptions about x .

87 / 1

Type-checking for a simple imperative language
To describe the type-checking algorithm concisely, let’s
introduce some notation.

We write Γ ` P : α, meaning that program P has type α under
the assumptions as given by Γ. This Γ is our ’assumption
store’, and pronounced “Gamma”. The ’assumption store’ is
also called symbol table or typing environment or just
environment. You can think of Γ as a function: you pass a
variable name to Γ and get either an error (if Γ has no
assumptions on that variable) or a type α (if Γ stores the
assumption that the variable has type α).

We write Γ(x) = α to indicate that Γ stores the assumption that
x has type α.

We sometimes want to add and assumption x : α to the
assumptions already in Γ. We write Γ, x : α in this case,
assuming that Γ does not already store assumptions about x .

88 / 1

Type-checking for a simple imperative language

I Γ ` true : Bool

I Γ ` false : Bool

I Γ ` 7 : Int

These type can be derived without assumptions on the types of
variables, and other program parts.

89 / 1

Type-checking for a simple imperative language

I Γ ` true : Bool

I Γ ` false : Bool

I Γ ` 7 : Int

These type can be derived without assumptions on the types of
variables, and other program parts.

90 / 1

Type-checking for a simple imperative language

I Γ ` true : Bool

I Γ ` false : Bool

I Γ ` 7 : Int

These type can be derived without assumptions on the types of
variables, and other program parts.

91 / 1

Type-checking for a simple imperative language

I If Γ(x) = α then Γ ` x : α

I If Γ ` P : Int and also Γ ` Q : Int then Γ ` P + Q : Int.
I If Γ ` P : Int and also Γ ` Q : Int then Γ ` P = Q : Bool.

Writing out "if" etc explicitly gets unwieldy quickly, so let’s
introduce a new form of notation.

92 / 1

Type-checking for a simple imperative language

I If Γ(x) = α then Γ ` x : α

I If Γ ` P : Int and also Γ ` Q : Int then Γ ` P + Q : Int.

I If Γ ` P : Int and also Γ ` Q : Int then Γ ` P = Q : Bool.
Writing out "if" etc explicitly gets unwieldy quickly, so let’s
introduce a new form of notation.

93 / 1

Type-checking for a simple imperative language

I If Γ(x) = α then Γ ` x : α

I If Γ ` P : Int and also Γ ` Q : Int then Γ ` P + Q : Int.
I If Γ ` P : Int and also Γ ` Q : Int then Γ ` P = Q : Bool.

Writing out "if" etc explicitly gets unwieldy quickly, so let’s
introduce a new form of notation.

94 / 1

Type-checking for a simple imperative language

I If Γ(x) = α then Γ ` x : α

I If Γ ` P : Int and also Γ ` Q : Int then Γ ` P + Q : Int.
I If Γ ` P : Int and also Γ ` Q : Int then Γ ` P = Q : Bool.

Writing out "if" etc explicitly gets unwieldy quickly, so let’s
introduce a new form of notation.

95 / 1

Type-checking for a simple imperative language

We write

Assumption1 ... Assumptionn

Conclusion

for: whenever Assumption1 and ... and Assumptionn are true,
then Conclusion is true.

Example: we write

Γ ` P : Int Γ ` Q : Int

Γ ` P + Q : Int

for: if Γ ` P : Int and also Γ ` Q : Int then Γ ` P + Q : Int.

96 / 1

Type-checking for a simple imperative language

We write

Assumption1 ... Assumptionn

Conclusion

for: whenever Assumption1 and ... and Assumptionn are true,
then Conclusion is true.

Example: we write

Γ ` P : Int Γ ` Q : Int

Γ ` P + Q : Int

for:

if Γ ` P : Int and also Γ ` Q : Int then Γ ` P + Q : Int.

97 / 1

Type-checking for a simple imperative language

We write

Assumption1 ... Assumptionn

Conclusion

for: whenever Assumption1 and ... and Assumptionn are true,
then Conclusion is true.

Example: we write

Γ ` P : Int Γ ` Q : Int

Γ ` P + Q : Int

for: if Γ ` P : Int and also Γ ` Q : Int then Γ ` P + Q : Int.

98 / 1

Type-checking for a simple imperative language

Γ ` true : Bool Γ ` false : Bool Γ ` 7 : Int

Γ(x) = α
Γ ` x : α

Γ ` P : Int Γ ` Q : Int
Γ ` P + Q : Int

Γ ` P : Int Γ ` Q : Int
Γ ` P = Q : Bool

99 / 1

Type-checking for a simple imperative language

Γ ` P : Unit Γ ` Q : Unit
Γ ` P; Q : Unit

Γ ` C : Bool Γ ` Q : Unit
Γ ` while C do {Q} : Unit

Γ ` C : Bool Γ ` Q : α Γ ` R : α α arbitrary type
Γ ` if C then Q else R : α

Γ ` P : Int Γ ` Q : Int i not def in Γ Γ, i : Int ` R : Unit
Γ ` for i = P to Q do {R} : Unit

Recall that Γ, i : Int means that we add the assumption that i
has type Int to our environment.

100 / 1

Type-checking for a simple imperative language

Γ ` P : Unit Γ ` Q : Unit
Γ ` P; Q : Unit

Γ ` C : Bool Γ ` Q : Unit
Γ ` while C do {Q} : Unit

Γ ` C : Bool Γ ` Q : α Γ ` R : α α arbitrary type
Γ ` if C then Q else R : α

Γ ` P : Int Γ ` Q : Int i not def in Γ Γ, i : Int ` R : Unit
Γ ` for i = P to Q do {R} : Unit

Recall that Γ, i : Int means that we add the assumption that i
has type Int to our environment.

101 / 1

Type-checking for a simple imperative language

Γ ` P : Unit Γ ` Q : Unit
Γ ` P; Q : Unit

Γ ` C : Bool Γ ` Q : Unit
Γ ` while C do {Q} : Unit

Γ ` C : Bool Γ ` Q : α Γ ` R : α α arbitrary type
Γ ` if C then Q else R : α

Γ ` P : Int Γ ` Q : Int i not def in Γ Γ, i : Int ` R : Unit
Γ ` for i = P to Q do {R} : Unit

Recall that Γ, i : Int means that we add the assumption that i
has type Int to our environment.

102 / 1

Type-checking for a simple imperative language

Γ ` P : Unit Γ ` Q : Unit
Γ ` P; Q : Unit

Γ ` C : Bool Γ ` Q : Unit
Γ ` while C do {Q} : Unit

Γ ` C : Bool Γ ` Q : α Γ ` R : α α arbitrary type
Γ ` if C then Q else R : α

Γ ` P : Int Γ ` Q : Int i not def in Γ Γ, i : Int ` R : Unit
Γ ` for i = P to Q do {R} : Unit

Recall that Γ, i : Int means that we add the assumption that i
has type Int to our environment.

103 / 1

Type-checking for a simple imperative language

Γ ` x : α Γ ` P : α
Γ ` x := P : Unit

Γ ` P : α x not defined in Γ Γ, x : α ` Q : β
Γ ` let x : α = P in Q : β

Γ ` new List<α> : List<α>

Γ ` P : List<α> Γ ` Q : α
Γ ` P.append(Q) : List<α>

Γ ` P : List<α> Γ ` Q : Int
Γ ` P.get(Q) : α

104 / 1

Type-checking for a simple imperative language

Γ ` x : α Γ ` P : α
Γ ` x := P : Unit

Γ ` P : α x not defined in Γ Γ, x : α ` Q : β
Γ ` let x : α = P in Q : β

Γ ` new List<α> : List<α>

Γ ` P : List<α> Γ ` Q : α
Γ ` P.append(Q) : List<α>

Γ ` P : List<α> Γ ` Q : Int
Γ ` P.get(Q) : α

105 / 1

Type-checking for a simple imperative language

Γ ` x : α Γ ` P : α
Γ ` x := P : Unit

Γ ` P : α x not defined in Γ Γ, x : α ` Q : β
Γ ` let x : α = P in Q : β

Γ ` new List<α> : List<α>

Γ ` P : List<α> Γ ` Q : α
Γ ` P.append(Q) : List<α>

Γ ` P : List<α> Γ ` Q : Int
Γ ` P.get(Q) : α

106 / 1

Type-checking for a simple imperative language

Γ ` x : α Γ ` P : α
Γ ` x := P : Unit

Γ ` P : α x not defined in Γ Γ, x : α ` Q : β
Γ ` let x : α = P in Q : β

Γ ` new List<α> : List<α>

Γ ` P : List<α> Γ ` Q : α
Γ ` P.append(Q) : List<α>

Γ ` P : List<α> Γ ` Q : Int
Γ ` P.get(Q) : α

107 / 1

Type-checking for a simple imperative language

Γ ` x : α Γ ` P : α
Γ ` x := P : Unit

Γ ` P : α x not defined in Γ Γ, x : α ` Q : β
Γ ` let x : α = P in Q : β

Γ ` new List<α> : List<α>

Γ ` P : List<α> Γ ` Q : α
Γ ` P.append(Q) : List<α>

Γ ` P : List<α> Γ ` Q : Int
Γ ` P.get(Q) : α

108 / 1

Alternatives?

Note that alternative rules are also meaningful, e.g.

Γ ` P : α Γ ` Q : β
Γ ` P; Q : β

Γ ` x : α Γ ` P : α
Γ ` x := P : α

Question: what is returned in both cases?

109 / 1

AST in pseudo-code

interface Prog
class Ident (s : String) implements Prog
class IntLiteral (i : Int) implements Prog
class BoolLiteral (b : Boolean) implements Prog
class Equal (lhs : Prog, rhs : Prog) implements Prog
class Plus (lhs : Prog, rhs : Prog) implements Prog
class For (i : String,

from : Prog,
to : Prog, body : Prog) implements Prog

class While (cond : Prog, body : Prog) implements Prog
class If (cond : Prog, sThen : Prog, sElse : Prog) implements Prog
class Assign (i : String, e : Prog) implements Prog
class Let (x : String, t : Type, p : Prog, q : Prog) implements Prog
class NewList (t: Type) implements Prog
class Append (list: Prog, elem: Prog) implements Prog
class Get (list: Prog, index: Prog) implements Prog

110 / 1

AST in pseudo-code

interface Type
class Int_T () implements Type
class Bool_T () implements Type
class Unit_T () implements Type
class List_T (ty : Type) implements Type

111 / 1

Symbol-tables in (pseudo-) code

Remember: a key data structure in semantic analysis is the
symbol table, or environment, which we wrote Γ above.

The symbol table maps identifiers (names, variables) to their
types (here we think of a class signature as the type of a class).

We use the symbol table to track the following.
I Is every used variable defined (exactly once)?
I Is every variable used according to its type? E.g. if x is

declared to be a string, we should not try x + 3.

112 / 1

Symbol-tables in (pseudo-) code

Remember: a key data structure in semantic analysis is the
symbol table, or environment, which we wrote Γ above.

The symbol table maps identifiers (names, variables) to their
types (here we think of a class signature as the type of a class).

We use the symbol table to track the following.
I Is every used variable defined (exactly once)?
I Is every variable used according to its type? E.g. if x is

declared to be a string, we should not try x + 3.

113 / 1

Symbol-tables in (pseudo-) code

Remember: a key data structure in semantic analysis is the
symbol table, or environment, which we wrote Γ above.

The symbol table maps identifiers (names, variables) to their
types (here we think of a class signature as the type of a class).

We use the symbol table to track the following.
I Is every used variable defined (exactly once)?
I Is every variable used according to its type? E.g. if x is

declared to be a string, we should not try x + 3.

114 / 1

Symbol-tables in (pseudo-) code
In Java we could do this:

HashMap<String, Type> env =
new HashMap<String, Type>();

// Returns the type associated with x.
env.get(x)

// Adds the association of x with type t.
// Removes any previous association for x.
env.put(x, t)

// Returns true if there exists an
// association for x.
env.containsKey(x)

// Returns // association for x, if it exists.
env.remove(x)

115 / 1

Symbol-tables in (pseudo-) code
In Java we could do this:

HashMap<String, Type> env =
new HashMap<String, Type>();

// Returns the type associated with x.
env.get(x)

// Adds the association of x with type t.
// Removes any previous association for x.
env.put(x, t)

// Returns true if there exists an
// association for x.
env.containsKey(x)

// Returns // association for x, if it exists.
env.remove(x)

116 / 1

Symbol-tables in (pseudo-) code
In Java we could do this:

HashMap<String, Type> env =
new HashMap<String, Type>();

// Returns the type associated with x.
env.get(x)

// Adds the association of x with type t.
// Removes any previous association for x.
env.put(x, t)

// Returns true if there exists an
// association for x.
env.containsKey(x)

// Returns // association for x, if it exists.
env.remove(x)

117 / 1

Symbol-tables in (pseudo-) code
In Java we could do this:

HashMap<String, Type> env =
new HashMap<String, Type>();

// Returns the type associated with x.
env.get(x)

// Adds the association of x with type t.
// Removes any previous association for x.
env.put(x, t)

// Returns true if there exists an
// association for x.
env.containsKey(x)

// Returns // association for x, if it exists.
env.remove(x)

118 / 1

Symbol-tables in (pseudo-) code
In Java we could do this:

HashMap<String, Type> env =
new HashMap<String, Type>();

// Returns the type associated with x.
env.get(x)

// Adds the association of x with type t.
// Removes any previous association for x.
env.put(x, t)

// Returns true if there exists an
// association for x.
env.containsKey(x)

// Returns // association for x, if it exists.
env.remove(x)

119 / 1

Type-checking for a simple imperative language

env.put (x, Int_T)
println (env.get (x) // prints Int_T
env.put (x, Bool_T)
println (env.get (x) // prints Bool_T

Alternatively we could throw an exception when adding
information about a variable more than once. Various different
policies are possible, depending on the details of the language
to be typed.

If we don’t throw an exception, we can define variables more
than once in our language. If we do, we have a language where
we can only define variables once.

120 / 1

Type-checking for a simple imperative language

env.put (x, Int_T)
println (env.get (x) // prints Int_T
env.put (x, Bool_T)
println (env.get (x) // prints Bool_T

Alternatively we could throw an exception when adding
information about a variable more than once. Various different
policies are possible, depending on the details of the language
to be typed.

If we don’t throw an exception, we can define variables more
than once in our language. If we do, we have a language where
we can only define variables once.

121 / 1

Type-checking for a simple imperative language

env.put (x, Int_T)
println (env.get (x) // prints Int_T
env.put (x, Bool_T)
println (env.get (x) // prints Bool_T

Alternatively we could throw an exception when adding
information about a variable more than once. Various different
policies are possible, depending on the details of the language
to be typed.

If we don’t throw an exception, we can define variables more
than once in our language. If we do, we have a language where
we can only define variables once.

122 / 1

Type-checking for a simple imperative language

We want to write the following method in pseudo-code:

Type check (HashMap<String, Type> env, Prog p) {
...

}

It returns the type of p under the assumptions (on p’s free
variables) in env if p is typeable under these assumptions,
otherwise an error should be returned.

123 / 1

Type-checking for a simple imperative language

Translation of

Γ ` true : Bool Γ ` 7 : Int

is simple:

Type check (HashMap<String, Type> env, Prog p) {
if p is of form

BoolLiteral (b) then return Bool_T
else if p is of form

IntLiteral (n) then return Int_T
...

}

Tricky question: why do we not check b and n?

124 / 1

Type-checking for a simple imperative language

Translation of

Γ ` true : Bool Γ ` 7 : Int

is simple:

Type check (HashMap<String, Type> env, Prog p) {
if p is of form

BoolLiteral (b) then return Bool_T
else if p is of form

IntLiteral (n) then return Int_T
...

}

Tricky question: why do we not check b and n?

125 / 1

Type-checking for a simple imperative language

We want to translate

Γ ` P : Int Γ ` Q : Int

Γ ` P = Q : Bool

to code.

Type check (HashMap<String, Type> env, Prog p) {
if p is of form

...
Equal (l, r) then

if (check (env, l) != Int_T or
check (env, r) != Int_T)

throw Exception ("typing error")
else return Bool_T

...
}

126 / 1

Type-checking for a simple imperative language

Translation of
Γ(x) = α

Γ ` x : α

is as follows:

Type check (HashMap<String, Type> env, Prog p) {
if p of form

...
Ident (x) then return env.get (x)
...

}

127 / 1

Type-checking for a simple imperative language
Translation of

Γ ` P : Unit Γ ` Q : Unit

Γ ` P; Q : Unit

is as follows:

Type check (HashMap<String, Type> env, Prog p) {
if p of form

...
Seq (l, r) then {

if (check (env, l) != Unit_T or
check (env, r) != Unit_T)

throw Exception ("type error: ...")
else

return Unit_T
}
...

}

128 / 1

Type-checking for a simple imperative language
Translation of

Γ ` P : Bool Γ ` Q : Unit

Γ ` while P do {Q} : Unit

is as follows:

Type check (HashMap<String, Type> env, Prog p) {
if p is of form

...
While (cond, body) then {

if (check (env, cond) != Bool_T or
check (env, body) != Unit_T)

throw Exception ("type error: ...")
else

return Unit_T
}
...

}

129 / 1

Type-checking for a simple imperative language
Translation of

Γ ` P : Bool Γ ` Q : α Γ ` R : α α arbitrary type
Γ ` if P then Q else R : α

is as follows:

Type check (HashMap<String, Type> env, Prog p) {
if p of form

...
If (cond, thenBody, elseBody) then {
Type t = check (env, thenBody)
if (check (env, cond) != Bool_T or

check (env, elseBody) != t)
throw Exception ("type error: ...")

else
return t

}
...

}

130 / 1

Type-checking for a simple imperative language

Γ ` P : Int Γ ` Q : Int i not defined in Γ Γ, i : Int ` R : Unit

Γ ` for i = P to Q do {R} : Unit

translates as follows:
Type check (HashMap<String, Type> env, Prog p) {

if p is of form
For (i, from, to, body) then {

if (env.containsKey(i)) throw Exception(...)
if (check (env, from) != Int_T or

check (env, to) != Int_T)
throw Exception ("...")

env.put (i, Int_T)
if (check (env, body) != Unit_T)

throw Exception ("...")
env.remove (i)
else return Unit_T

}
...

}
131 / 1

Type-checking for a simple imperative language

Translation of
Γ ` P : α Γ ` x : α

Γ ` x := P : Unit

is as follows:

Type check (HashMap<String, Type> env, Prog prog) {
if prog is of form

...
Assign (x, p) then

if (check (env, p) != env.get (x)) then
throw Exception ("...")

else
return Unit_T

...
}

132 / 1

Type-checking for a simple imperative language
Translation of

Γ ` P : α x not defined in Γ Γ, x : α ` Q : β

Γ ` let x : α = P in Q : β

is as follows:

Type check (HashMap<String, Type> env, Prog prog) {
if prog of form

Let (x, t, p, q) then {
if (env.containsKey(x)) throw ...
if (check (env, p) != t) throw ...
env.put (x, t)
let result = check (env, q)
env.remove (x)
return result

}
...

}

133 / 1

Type-checking for a simple imperative language

Translation of

Γ ` new List<α> : List<α>

is as follows:

Type check (HashMap<String, Type> env, Prog p) {
if p of form

...
NewList (t) then {

return List_T(t)
}
...

}

134 / 1

Type-checking for a simple imperative language

Translation of

Γ ` P : List<α> Γ ` Q : α

Γ ` P.append(Q) : List<α>

is as follows:

Type check (HashMap<String, Type> env, Prog prog) {
if prog of form

...
Append (p, q) then {

Type t = check (env, q)
if (check (env, p) != List_T(t)) throw ...
return List_T(t)

}
...

}

135 / 1

Type-checking for a simple imperative language
Translation of

Γ ` P : List<α> Γ ` Q : Int

Γ ` P.get(Q) : α

is as follows:

Type check (HashMap<String, Type> env, Prog prog) {
if prog of form

...
Get (p, q) then {

if (check (env, q) != Int_T) throw ...
if (check (env, p) = List_T(t))

return t
else throw ...

}
...

}

136 / 1

A lot more could be said about type-checking
I Typing objects and classes, subtyping (structural vs

nominal subtyping)
I Typing methods
I Inheritance
I Traits
I Higher-kinded types
I Types that catch more non-trival bugs, e.g. specifying “this

is a sorting function” as types.
I Faster type-checking algorithms
I Type-inference algorithms
I Rust-style lifetime inference
I Gradual typing (Cf Typescript)
I Types for parallel computing
I ...

137 / 1

Conclusion

Types are weak specifications of programs.

We can check them by walking the AST.

The key data-structure is the symbol table which holds
assumptions about the types of free variables.

138 / 1

Conclusion

Types are weak specifications of programs.

We can check them by walking the AST.

The key data-structure is the symbol table which holds
assumptions about the types of free variables.

139 / 1

Conclusion

Types are weak specifications of programs.

We can check them by walking the AST.

The key data-structure is the symbol table which holds
assumptions about the types of free variables.

140 / 1

