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Recall the function of compilers
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Recall we are discussing parsing

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code 
generation

Optimisation

Code generation

Translated program
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Key steps

Remember we need:
I Specify the syntax of the language.
I Have an algorithm that decides the language and returns

an AST.

regular expression/FSA
FSA

=
CFG
???
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Key steps

I CFGs as mechanism to specify syntax with recursive
structure G = (A,V , I,→).
I V variables, A alphabet.
I I ∈ V initial variable.
I Transitions X → σ where X ∈ A, σ ∈ (A ∪ V )∗

I If X → σ then αXβ ⇒ ασβ.
I The language of G is {σ ∈ V ∗| I ⇒ · · · ⇒ σ}.
I We call each I ⇒ · · · ⇒ σ a derivation.
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Parser

A parser (in its simplest form) for a CFG G takes as input a
string/token-list, and returns true/false depending on whether
the string is in the language of G or not, and, at the same time,
build an AST representing the structure of the input.

Key concepts: derivations and parse trees. The latter can be
seen as a 2D representation of the former. It is very close to
ASTs (but contains some redundant information like brackets).
When constructing the AST we drop those, and only keep stuff
that’s needed for later phases of the compiler.
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Parser

There are two approaches to parsers:

I Top down or predictive (we will study the recursive
descent algorithm).

I Bottom up (also known as shift-reduce algorithms)
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Two approaches to parsers

I Top down.
I Good: conceptually easy, can be hand-written, powerful.
I Bad: Can be slow. Can’t deal with left-recursing CFGs (see

later), but left-recursive grammars can be converted
automatically to non-left-recursive CFGs.

I Bottom up.
I Good: Fast, can deal with all (non-ambiguous) CFGs.
I Bad: Complicated, hard to write by hand.

We’ll look at top down
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Top down parsing: intuition for the decision problem

You look at the current string and go through all rules starting
with a variable in the string (say leftmost) if the input can be
used with one of the rules, if it matches.

If there’s a matching rule, recursively process the rest of the
string. (To start, we must rewrite the initial variable.)

If you ’consume’ the whole string, you are finished.

If you get stuck, backtrack.

If you have exhaused all rules without success, reject the string.
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Example top down parsing

P → begin Q
P → prog
Q → end
Q → P ; Q

Let P be the initial variable. Note: grammar not ambiguous!

Example string: begin prog; prog; end

Slogan for top-down parsing: "Starting from the initial variable,
search for a rule which rewrites the variables to yield characters
from the alphabet consistent with the input. As you rewrite,
make a note (= AST) of which rules you applied how!"

This is what we’ve done in the examples so far when drawing
parse trees.
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Example top down parsing

P
CODE: begin prog; prog; end

PARSED:
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Example top down parsing

P

begin Q

P ; Q

P ; Qprog

prog end

CODE: 
PARSED: begin prog; prog; end
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Summary of approach we used
I We start with the full input, and the initial parse tree

(corresponds to the initial variable). We choose to work
left-most (meaning we always rewrite the left-most variable
first)

I Once, the parsing process is going, we assume the current
input is derived from leftmost variable (let’s call it X )

I Examine each alternative transition for X , say X → S
I Compare first (or more) unmatched input token with S

I If a matching transition is found (e.g. begin) use it to rewrite
X , and remove the matched stuff from the input string

I Repeat, using next input token to determine the transition to
be used for the next variable

I If no match, try a different transition. If nothing matches,
reject input

I At each step, one of the transitions was chosen, and used
from left-to-right, to replace a variable in the parse tree by
a RHS.

Let’s turn this into pseudo-code!
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Top down parsing pseudo code

Recall our grammar.

P → begin Q
P → prog
Q → end
Q → P ; Q

First we define our tokens in pseudo-code (for more
complicated languages, tokens may carry additional
information).

interface Token
class T_begin () implements Token
class T_end () implements Token
class T_prog () implements Token
class T_semicolon () implements Token
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Top down parsing pseudo code

Recall our grammar.

P → begin Q
P → prog
Q → end
Q → P ; Q

We use methods, one for each variable (can be programmed in
other ways)

def parseQ( tl : List [Token] ) = ...
def parseP( tl : List [Token] ) = ...
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Top down parsing pseudo code

We use methods, one for each variable (can be programmed in
other ways)

def parseQ( tl : List [Token] ) = ...
def parseP( tl : List [Token] ) = ...

Each method does the following:

I Consume (eat) as much of the input as possible according
to grammar for the variable (e.g. parseQ according to
rules for Q).

I Indicate if no input can be parsed.
I If some input can be parsed, but not all, return the leftovers

(= input not parsed), I’m ignoring the AST for now!
So a parse is successful exactly when all input is consumed.
Then the input is in the language of the CFG.
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Parsing P transitions

Recall our grammar.

P → begin Q
P → prog
Q → end
Q → P ; Q

def parseP ( tl : List [ Token ] ) =
if tl is of form

T_begin :: rest then parseQ ( rest )
else if tl is of form

T_prog :: rest then rest
else "rule doesnt apply"

Here x::l is short for a list with first element x and rest l.
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Parsing Q transitions
Recall our grammar.

P → begin Q
P → prog
Q → end
Q → P ; Q

def parseQ ( tl : List [ Token ] ) =
if tl is of form

T_end :: rest then rest
else {

let tl2 = parseP ( tl )
if tl2 is of form

T_semicolon :: rest2 then parseQ ( rest2 )
else "rule doesnt apply"

In other words: if we have a terminal (token), we remove it from
the input. If we have a variable, we call the associated parser.
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Parsing P & Q transitions

That’s it. No further code needed. That was simple.

Usage:

t = List ( T_begin, T_prog, T_semicolon, T_end )

try {
let result = parseP ( t )
if ( result.size <= 0 )

println ( "success" )
else

println ( "failure" ) }
catch {

case e : Exception => println ( "failure" ) }
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Top down parsing

This was simple. The approach can be refined massively,
leading to combinator parsing, where you can more or less
write a grammar, and it’s a valid Haskell or Scala program. In
Java, this is difficult due to lacking expressivity. Combinator
parsers are extremely elegant in my opinion (albeit too slow for
parsing large input).

However, we’ve omitted various issues.

I Doing something (e.g. constructing an AST) during
parsing.

I Left-recursion.
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Constructing an AST during parsing

Usually we don’t just want to decide if an input string is in the
language defined by the ambient CFG. Instead we want to build
up something, e.g. an AST. This is quite easy. Here’s a
pseudo-code example for the grammar we’ve been looking at.

interface Token
class T_begin implements Token
class T_end implements Token
class T_prog ( s : String ) implements Token
class T_semicolon implements Token

interface AST
class EmptyAST implements AST
class ProgAST implements AST
class SeqAST ( lhs : AST, rhs : AST ) implements AST
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Constructing an AST during parsing

interface AST
class EmptyAST implements AST
class ProgAST implements AST
class SeqAST ( lhs : AST, rhs : AST ) implements AST

Note: no ASTs corresponding to begin/end. This is bracketing,
so it’s implicit in AST structure anyway. (Why?)

Other options are possible.
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Constructing an AST during parsing

We use options None and Some(...) to indicate success or
absence of success in parsing. (See java.util.Optional
in Java.) In case of success, we return ast, the AST that has
been constructed and rest, the remaining tokens:

Some ( ( ast, rest ) )

Otherwise we return None. Many languages offer this, in Java
you can use an interface Optional with implentations None
and Some( ... ) to do this. You can write a small auxiliary
class to implement tuples like (x , y).

Optional.java
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Constructing an AST during parsing

We also use the following abbreviation for the return type of our
parse.

type Result = Optional[ Pair[ AST, List[ Token ] ] ]
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Constructing an AST during parsing
Recall our grammar.

P → begin Q
P → prog
Q → end
Q → P ; Q

Now we parse P like this:

def parseP ( tl : List [ Token ] ) : Result =
if tl is of form
T_begin :: rest then parseQ ( rest )

else if tl is of form
T_prog :: rest then

Some ( ProgAST (), rest ) )
else None }

Note that the then clause is simple here because we have
chosen not to represent begin / end by an explicit AST.
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Constructing an AST during parsing

Q → end
Q → P ; Q

def parseQ ( tl : List [ Token ] ) : Result =
if tl is of form
T_end :: rest then Some( ( EmptyAST, rest ) )

else
if parseP ( tl ) is of form

None then None
Some( ( astL, restL ) ) then

if restL is of form
T_semicolon :: restLL then

if parseQ ( restLL ) is of form
None then None
Some( ( astR, rest2 ) ) then
Some(SeqAST(astL, astR), rest2)) }}

else None
else None
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Constructing an AST during parsing

Q → end
Q → P ; Q

def parseQ ( tl : List [ Token ] ) : Result =
if tl is of form

T_end :: rest then Some( ( EmptyAST, rest ) )
else

if parseP ( tl ) is of form
None then None
Some( ( astL, restL ) ) then

if restL is of form
T_semicolon :: restLL then

if parseQ ( restLL ) is of form
None then None
Some( ( astR, rest2 ) ) then

Some(SeqAST(astL, astR), rest2)) }}
else None

else None
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Question: what’s the difference between parse trees
and ASTs?

E

E *
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+E
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4 * (3 + 17)

E
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17

*

4 +

3 17

Parse trees contain redundant information, e.g. brackets.
Moreover, subsequent stages don’t care about e.g. CFG
variable names, so we can drop them.

ASTs convey the essence of the parse tree.

But you can always use the parse tree as AST.
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Left-recursion

Recall our grammar.

P → begin Q
P → prog
Q → end
Q → P ; Q

and its implementation in a simple top-down parser:

def parseP( tl ) = {
if tl is of the form
T_begin :: rest then parseQ ( rest )
T_prog :: rest then rest

else "no matching transition"

Key idea: each occurrence of a variable such as Q gives rise to
a recursive call to a parser for that variable parseQ.
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Left-recursion

Let’s look at a grammar for expressions

E → E + E | E ∗ E | − E | (E) | 0 | 1 | ...

and its implementation in a simple top-down parser:
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Left-recursion

E → E + E | E ∗ E | − E | (E) | 0 | 1 | ...

def parseE ( tl : List [ Token ] ) = {
let tryAdd = parseE ( parse+ ( parseE ( tl ) ) )
if ( parsing successful ... )

tryAdd
else

let tryMul = parseE ( parse* ( parseE ( tl ) ) )
if ( parsing successful ... )

tryMul
else if tl is of form

T_leftBracket :: rest then ...
T_minus :: rest then parseE ( rest )
T_int ( n ) :: rest then rest

...
else {

‘‘[parseE] no matching transition’’ )
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Left-recursion

def parseE ( tl : List [ Token ] ) = {
if tl is of form

...
then {
let tryAdd = parseE ( parse+ ( parseE ( tl ) ) )
if ( tryAdd.size > 0 )

tryAdd
else {

...

The parser doesn’t terminate!

parseE(2+ 3)→ parseE(2+ 3)→ ...
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Left-recursion

The problem is that the grammar

E → E + E | E ∗ E | − E | (E) | 0 | 1 | ...

is left-recursive! Unlike

P → begin Q
P → prog
Q → end
Q → P ; Q

Why?

because ’eating’ begin shortens the argument for the
recursive call.
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Left-recursion

More generally, a grammar is left-recursive if we can find a
variable N and a string σ such that

N → · · · → Nσ

So a grammar like

P → Q hello
Q → P world
Q → end

is also left-recursive
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Removing left-recursion

Good news! It is possible algorithmically to remove
left-recursion from a grammar by introducing new variables.
Here is an example.

R → R woof | baaa

What is the language of this CFG? Strings of the form

baaa woof woof ... woof

We can rewrite this as:

R → baaa Q
Q → woof Q | ε

Here Q is a new variable, and ε the empty string. Now every
’recursive call’ needs to ’chew off’ an initial terminal. Hence
recursion terminates.
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Removing left-recursion

A more non-trivial example with two instances of left-recursion.

E → E + T | E − T | T
T → T ∗ F | T/F | F
F → 0 | 1 | ...

rewrite⇒

E → T E ′

E ′ → +T E ′ | − T E ′ | ε
T → F T ′

T ′ → ∗F E ′ | /F T ′ | ε
F → 0 | 1 | ...

With this new grammar, a top-down parser will
I terminate (because all left-recursion has been removed)
I backtrack on some (more) inputs
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Removing left-recursion

Every left-recursive grammar G can be mechanically
transformed into a grammar G′ that is not left-recursive and
accepts the same language.

It’s a fun and enlightening exercise to write implement this
algorithm.
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Parser and lexer generators

Great news: the construction of a top-down (and also
bottom-up) parser is completely mechanical given a CFG.

83 / 1



Parser and lexer generators

Great news: the construction of a top-down (and also
bottom-up) parser is completely mechanical given a CFG.

84 / 1



Parser and lexer generators

Lexers can be generated by lexer generators (e.g. JFlex).
Parsers can be generated by parser generators (e.g. JavaCC,
CUPS, Yacc, Bison). Lexers and parsers generated by such
tools are likely to be better (e.g. faster, better error handling)
than hand-written parsers. Writing a lexer or parser by hand is
typically much more time consuming than using a generator.

Description of 
AST construction

Parser generator

Parser

CFG

Token stream AST

Parser generators usually provide precedence declarations to
handle ambiguity (or they produce parsers that return all
possible parse trees). They also handle left-recursion. They are
available for most programming languages.
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Using parser generators

There are many parser (and lexer) generators. To use them
properly, you will have to read the manual. Often the input is
something like this:

preamble

---------- boundary ----------

grammarRule action
...
grammarRule action

In the preamble you are setting up the parser, e.g. saying that
the name and type of the parsing function to be produced
should be, what the type of the input is, what the initial variable
is etc.
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Using parser generators
With each rule

grammarRule action

we must specify what should happen when we encounter input
that can be parsed in accordance with the rule. For example a
rule E → E + E could be handled something like this

E ::= E TokenPlus E { return new ASTPlus($1,$2); }

Here E ::= E TokenPlus E is the rendering of the rule
E → E + E in the language of the generator. The red stuff is
the action in the target language (e.g. Java).

The $1 $2 are variables of the parser generator language and
allow us recursively to access the results from parsing the left E
(with $1) and right E (using $2) in E + E . Note that $1 $2 will
not occur in the generated Java.

Different generators may use different syntax.
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Using parser generators

So an grammar/action like

E ::= E TokenPlus E { return new ASTPlus($1,$2); }

says the following: whenever the input matches E + E then
return a fresh object of class ASTPlus, and the constructor
gets as first argument whatever matches the left E and as
second argument whatever fits the right E .

So the input 3 + 4 might lead to the parser an object generated
like so.

new ASTPlus ( new IntLiteral ( 3 ),
new IntLiteral ( 4 ) )

(Here we assume that parsing an integer yields objects of class
IntLiteral.)
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Using parser generators

Note that you can embed arbitrary code in an action:

E ::= E TokenPlus E { print( "Let’s go to Mars" ) }

The parser generator will simply generate a parser and add the
action to handle the result of of successful parses. Note that
parser generators typically don’t check the action for syntatic
correctness, instead it simply embeds the actions in the code it
produces. That means the generated parse may not compile,
or may produce non-sense. (And likewise for lexer generators.)
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Using parser generators
It is the programmer’s responibility to compile the code
generated by the parser generator and integrate it with the rest
of the compiler, i.e. feed the lexer’s output to the generated
parser, and feed the generated perser’s output to the compiler’s
backend.

Description of 
AST construction

Parser generator

Parser

CFGDescription of 
Token list construction

Lexer generator

Lexer

RE

String
Token
list Backend

AST
Assembler

Generates Generates

Using lexer and parser generators makes it easier to change a
lexical or syntactic specification in contrast with changing a
hand-written lexer / parser.
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Conclusion
We use CFGs to specify the syntax of programming languages
(after giving the lexical details using regular expressions/FSAs).

Parsers for a CFG are algorithms that decide if an input string is
in the language of the CFG, and at the same time can build up
ASTs.

Ambiguity means some string can be parsed in more than one
way, this must be avoided in some way or other.

Parsers are either top-down (easy to write but require absence
of left recursion) or bottom-up.

It’s usually best to use lexer / parser generators to build lexers /
parsers.

The theory of formal languages (like CFGs) is deep and
beautiful.
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The material in the textbooks

I Introduction to parsing
I EaC Chapter 1
I Dragon book Ch.s 1 and 2.
I Appel & Palsberg Ch. 1

I General grammar issues, top-down parsing
I EaC Chapter 3 sections 3.1-3.3
I Dragon Book pp.42, pp.60 and Ch. 4
I Appel & Palsberg Ch. 3.

I Parser-generators
I EaC Section 3.5
I Dragon Book Ch. 4 pp.287
I Appel & Palsberg Ch. 3 pp.68

102 / 1


