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Recall the function of compilers
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Welcome to the cutting edge

Compilers are used to translate from programming languages
humans can understand to machine code executable by
computers. Compilers come in two forms:

I Conventional ahead-of-time compilers where translation is
done once, long before program execution.

I Just-in-time (JIT) compilers where translation of program
fragments happens at the last possible moment and is
interleaved with program execution.

We spend the whole term learning about the former. Today I
want to give you a brief introduction to the latter.
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Why learn about JIT compilers?

In the past, dynamically typed languages (e.g. Python,
Javascript) were much more slow than statically typed
languages (factor of 10 or worse). Even OO languages (e.g.
Java) were a lot slower than procedural languages like C.

In the last couple of years, this gap has been narrowed
considerably. JIT compilers where the main cause of this
performance revolution.

JIT compilers are cutting (bleeding) edge technology and
considerably more complex than normal compilers, which are
already non-trivial. Hence the presentation today will be
massively simplifying.
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If JIT compilers are the answer ... what is the problem?

Let’s look at two examples. Remember the compilation of
objects and classes?

a

dptr

Instances of A

Pointer to f_A

Pointer to g_A

dptr

dptr

dptr

Method table for A

Code for f_A

Code for g_A

Method bodies

Pointer to f_B

Method table for B Method bodies
a

Pointer to g_A

Code for f_B

dptr

bdptr

b

Instances of B

To deal with inheritance of methods, invoking a method is
indirect via the method table. Each invocation has to follow two
pointers. Without inheritance, no need for indirection.
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If JIT compilers are the answer ... what is the problem?
Of course an individual indirection takes < 1 nano-second on a
modern CPU. So why worry?

Answer: loops!

interface I {
int f ( int n ); }

class A implements I {
public int f ( int n ) { return n; } }

class B implements I {
public int f ( int n ) { return 2*n; } }

class Main {
public static void main ( String [] args ) {
I o = new A ();
for ( int i = 0; i < 1000000; i++ ) {
for ( int j = 0; i < 1000000; j++ ) {

o.f ( i+j ); } } } }

Performance penalties add up.
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If JIT compilers are the answer ... what is the problem?

But, I hear you say, it’s obvious, even at compile time, that the
object o is of class A. A good optimising compiler should be
able to work this out, and replace the indirect invocation of f
with a cheaper direct jump.

class Main {
public static void main ( String [] args ) {
I o = new A ();
for ( int i = 0; i < 1000000; i++ ) {
for ( int j = 0; i < 1000000; j++ ) {

o.f ( i+j ); } } } }

Yes, in this simple example, a good optimising compiler can do
this. But what about the following?
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If JIT compilers are the answer ... what is the problem?

public static void main ( String [] args ) {
I o = null;
if ( args [ 0 ] == "hello" )
new A ();

else
new B ();

for ( int i = 0; i < 1000000; i++ ) {
for ( int j = 0; i < 1000000; j++ ) {

o.f ( i+j ); } } } }

Now the type of o is determined only at run-time. What is the
problem? Not enough information at compile-time to carry
out optimisation! At run-time we do have this information, but
that’s too late (for normal compilers).

(Aside, can you see a hack to deal with this problem in an AOT
compiler?)
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If JIT compilers are the answer ... what is the problem?

Dynamically typed languages have a worse problem.

Simplifying a little, variables in dynamically typed languages
store not just the usual value, e.g. 3, but also the type of the
value, e.g. Int, and sometimes even more. Whenever you
carry an innocent operation like

x = x + y

under the hood something like the following happens.
let tx = typeof ( x )
let ty = typeof ( y )
if ( tx == Int && ty == Int )

let vx = value ( x )
let vy = value ( y )
let res = integer_addition ( vx, vy )
x_result_part = res
x_type_part = Int

else
... // even more complicated.
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If JIT compilers are the answer ... what is the problem?

Imagine this in a nested loop!

for ( int i = 0; i < 1000000; i++ ) {
for ( int j = 0; i < 1000000; j++ ) {

let tx = typeof ( x )
let ty = typeof ( y )
if ( tx == Int && ty == Int )

let vx = value ( x )
let vy = value ( y )
let res = integer_addition ( vx, vy )
x_result_part = res
x_type_part = Int

...

This is painful. This is why dynamically typed languages are
slow(er).
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If JIT compilers are the answer ... what is the problem?

But ...

in practise, variables usually do not change their types
in inner loops.

Why?

Because typically innermost loops work on big and uniform
data structures (usually big arrays).

So the compiler should move the type-checks outside the loops.
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If JIT compilers are the answer ... what is the problem?
Recall that in dynamically typed languages

for ( int i = 0; i < 1000000; i++ ) {
for ( int j = 0; i < 1000000; j++ ) {

a [i, j] = a[i,j] + 1 } }

Is really

for ( int i = 0; i < 1000000; i++ ) {
for ( int j = 0; i < 1000000; j++ ) {

let ta = typeof ( a[i, j] ) // always same
let t1 = typeof ( 1 ) // always same
if ( ta == Int && t1 == Int ) {

let va = value ( a[i, j] )
let v1 = value ( 1 ) // simplifying
let res = integer_addition ( va, v1 )
a[ i, j ]_result_part = res
a[ i, j ] _type_part = Int }

else { ... } } }
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If JIT compilers are the answer ... what is the problem?

So program from last slide can be

let ta = typeof ( a )
let t1 = typeof ( 1 )
if ( ta == Array [...] of Int && t1 == Int ) {
for ( int i = 0; i < 1000000; i++ ) {

for ( int j = 0; i < 1000000; j++ ) {
let va = value ( a[i, j] )
let v1 = value ( 1 ) // simplifying
let res = integer_addition ( va, v1 )
a[ i, j ]_result_part = res } } }

else { ... }

Alas, at compile-time, the compiler does not have enough
information to make this optimisation safely.
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If JIT compilers are the answer ... what is the problem?

Let’s summarise the situation.
I Certain powerful optimisations cannot be done at

compile-time, because the compiler has not got enough
information to know they are safe.

I At run-time we have enough information to carry out these
optimisations.

Hmmm, what could we do ...

38 / 1



If JIT compilers are the answer ... what is the problem?

Let’s summarise the situation.
I Certain powerful optimisations cannot be done at

compile-time, because the compiler has not got enough
information to know they are safe.

I At run-time we have enough information to carry out these
optimisations.

Hmmm, what could we do ...

39 / 1



If JIT compilers are the answer ... what is the problem?

Let’s summarise the situation.
I Certain powerful optimisations cannot be done at

compile-time, because the compiler has not got enough
information to know they are safe.

I At run-time we have enough information to carry out these
optimisations.

Hmmm, what could we do ...

40 / 1



How about we compile and optimise only at run-time?

But there is no run-time if we don’t have a compilation process,
right?

Enter interpreters!
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Interpreters

Recall from the beginning of the course, that interpreters are a
second way to run programs.

CompilerSource program Executable

Data

Output

Source program Interpreter

Data

Output

At runtime.

I Compilers generate a program
that has an effect on the world.

I Interpreters effect the world
directly.
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Interpreters

Recall from the beginning of the course, that interpreters are a
second way to run programs.

CompilerSource program Executable

Data

Output

Source program Interpreter

Data

Output

At runtime.

I The advantage of compilers is
that generated code is faster,
because a lot of work has to
be done only once (e.g.
lexing, parsing, type-checking,
optimisation). And the results
of this work are shared in
every execution. The
interpreter has to redo this
work every time.

I The advantage of interpreters
is that they are much simpler
than compilers.
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JIT compiler, key idea

Interpret the program, and compile (parts of) the program at
run-time. This suggests the following questions.

I When shall we compile, and which parts of the program?
I How do interpreter and compiled program interact?
I But most of all: compilation is really slow, especially

optimising compilation. Don’t we make performance worse
if we slow an already slow interpreter down with a lengthy
compilation process?

In other words, we are facing the following conundrum:
I We want to optimise as much as possible, because

optimised programs run faster.
I We want to optimises as little as possible, because running

the optimisers is really slow.

Hmmmm ...
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Pareto principle and compiler/interpreter ∆ to our
rescue

Compiling

Running

Running

Interpreter Compiler

Time

Paid every time

Paid once

Interpretation is much faster
than (optimising) compilation.
But a compiled program is
much faster than
interpretation. And we have
to compile only once.

Combine this with the Pareto principle, and you have a potent
weapon at hand.
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Pareto principle, aka 80-20 rule

Vilfredo Pareto, late 19th, early 20th century Italian economist.
Noticed:

I 80% of land in Italy was owned by 20% of the population.
I 20% of the pea pods in his garden contained 80% of the

peas.

This principle applies in many other areas of life, including
program execution:

The great majority of a program’s execution time is spent
running in a tiny fragment of the code.

Such code is referred to as hot.
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Putting the pieces together

Compiling

Running

Running

Interpreter Compiler

Time

Clearly compiling at run-time code that’s executed
infrequently will slow down execution. Trade-offs
are different for hot code.

An innermost loop may be executed billions of
times. The more often, the more optimising
compilation pays off.

Pareto’s principle tells us that (typically) a
program contains some hot code.

With the information available at run-time, we can
aggressively optimise such hot code, and get a
massive speed-up. The rest is interpreted.
Sluggishness of interpretation doesn’t matter,
because it’s only a fraction of program execution
time.
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There is just one problem ... how do we find hot code?

Remember, at compiler time, the optimiser couldn’t work it out
(reliably).

Let’s use counters at run-time!

We instrument the interpreter with counters,
that increment every time a method is called,
or every time we go round a loop.

Whenever these counters reach a threshold,
we assume that the associated code is hot.
We compile that hot code, and jump to the
compiled code.

Making this play nice with garbage collection,
exceptions, concurrency, debugging isn’t easy
...

When the compiled code terminates, we switch
back to interpretation.
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Aside

Have you noticed that Java programs start up quite slowly?

This is because at the beginning, everything is interpreted,
hence slow. Then JIT compilation starts, also slow.

Eventually, the hot code is detected and compiled with a great
deal of optimisation. Then execution gets really fast.
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The devil is in the details

This picture omits many subtleties.

Chief among those is that the handover of control from
interpreter to compiler and back works seamlessly.

Also, we don’t want to recompile code, typically use cache of
already compiled code.

How actually to do the optimisations, taking information
available at run-time into account.

Etc etc.
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JIT compilers summary

JIT compilers are the cutting edge of compiler technology. They
were first conceived (in rudimentary form) in the 1960s, but
came to life in the last 10 years or so.

JIT compilers are very complicated. The JVM, probably the
best known JIT compiler, probably took 1000+ person years to
build.

So what’s next in compiler technology? Let me introduce you to
...

92 / 1



JIT compilers summary

JIT compilers are the cutting edge of compiler technology. They
were first conceived (in rudimentary form) in the 1960s, but
came to life in the last 10 years or so.

JIT compilers are very complicated. The JVM, probably the
best known JIT compiler, probably took 1000+ person years to
build.

So what’s next in compiler technology? Let me introduce you to
...

93 / 1



JIT compilers summary

JIT compilers are the cutting edge of compiler technology. They
were first conceived (in rudimentary form) in the 1960s, but
came to life in the last 10 years or so.

JIT compilers are very complicated. The JVM, probably the
best known JIT compiler, probably took 1000+ person years to
build.

So what’s next in compiler technology? Let me introduce you to
...

94 / 1



JIT compilers summary

JIT compilers are the cutting edge of compiler technology. They
were first conceived (in rudimentary form) in the 1960s, but
came to life in the last 10 years or so.

JIT compilers are very complicated. The JVM, probably the
best known JIT compiler, probably took 1000+ person years to
build.

So what’s next in compiler technology?

Let me introduce you to
...

95 / 1



JIT compilers summary

JIT compilers are the cutting edge of compiler technology. They
were first conceived (in rudimentary form) in the 1960s, but
came to life in the last 10 years or so.

JIT compilers are very complicated. The JVM, probably the
best known JIT compiler, probably took 1000+ person years to
build.

So what’s next in compiler technology? Let me introduce you to
...

96 / 1



Tracing JIT compilers

Tracing JIT compilers are a form of JIT compilation where
optimisation is especially aggressive.
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Tracing JIT compilers

Hot code can contain code that is not used (much). Imagine the
compilation of:

for ( x = 1 to 1000000 )
for ( y = 1 to 1000000 )

try
a[ x ][ y ] = a[ x+1 ][ a [ y-1 ][ y+1 ] ]

catch ... // error handling
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compilation of:

for ( x = 1 to 1000000 )
for ( y = 1 to 1000000 )

try
a[ x ][ y ] = a[ x+1 ][ a [ y-1 ][ y+1 ] ]

catch ... // error handling

Clearly the try-catch block is an innermost loop, so
potentially hot code. But if the programmer does a good job, the
exception handling will never be triggered. Yet we have all this
exception handling code (tends to be large) in the hot loop. This
causes all manner of problems, e.g. cache locality is destroyed.
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Hot code can contain code that is not used (much). Imagine the
compilation of:

for ( x = 1 to 1000000 )
for ( y = 1 to 1000000 )

try
a[ x ][ y ] = a[ x+1 ][ a [ y-1 ][ y+1 ] ]

catch ... // error handling

It is difficult to figure out, even at run-time (!) to find such parts.

Why can’t we use counters? Yes but ... counters only give us
some relevant information ... for good optimisation we need
more information. Traces give us this information. What are
traces?
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Tracing JIT compilers

Tracing JIT compilers have not one, but several compilers (or
interpreters) inside (simplifying greatly).

After the interpreter has found hot code, the hot code is
compiled and executed once (called tracing execution).

In the tracing execution, the machine code actually executed is
recorded, yielding the trace of the hot code.

Note that if the machine code to be traced is branching, only the
branch taken is in the trace. Traces are linear, no branching.
This makes optimisation algorithms much simpler and faster.

Once tracing has finished, e.g. the body of the hot loop has
been executed once: then analyse and optimise trace.

Based on the analysis another compiler generates another
(highly optimised) executable, which is then run to termination,
then control goes back to interpreter.

106 / 1



Tracing JIT compilers
Tracing JIT compilers have not one, but several compilers (or
interpreters) inside (simplifying greatly).

After the interpreter has found hot code, the hot code is
compiled and executed once (called tracing execution).

In the tracing execution, the machine code actually executed is
recorded, yielding the trace of the hot code.

Note that if the machine code to be traced is branching, only the
branch taken is in the trace. Traces are linear, no branching.
This makes optimisation algorithms much simpler and faster.

Once tracing has finished, e.g. the body of the hot loop has
been executed once: then analyse and optimise trace.

Based on the analysis another compiler generates another
(highly optimised) executable, which is then run to termination,
then control goes back to interpreter.

107 / 1



Tracing JIT compilers
Tracing JIT compilers have not one, but several compilers (or
interpreters) inside (simplifying greatly).

After the interpreter has found hot code, the hot code is
compiled and executed once (called tracing execution).

In the tracing execution, the machine code actually executed is
recorded, yielding the trace of the hot code.

Note that if the machine code to be traced is branching, only the
branch taken is in the trace. Traces are linear, no branching.
This makes optimisation algorithms much simpler and faster.

Once tracing has finished, e.g. the body of the hot loop has
been executed once: then analyse and optimise trace.

Based on the analysis another compiler generates another
(highly optimised) executable, which is then run to termination,
then control goes back to interpreter.

108 / 1



Tracing JIT compilers
Tracing JIT compilers have not one, but several compilers (or
interpreters) inside (simplifying greatly).

After the interpreter has found hot code, the hot code is
compiled and executed once (called tracing execution).

In the tracing execution, the machine code actually executed is
recorded, yielding the trace of the hot code.

Note that if the machine code to be traced is branching, only the
branch taken is in the trace. Traces are linear, no branching.
This makes optimisation algorithms much simpler and faster.

Once tracing has finished, e.g. the body of the hot loop has
been executed once: then analyse and optimise trace.

Based on the analysis another compiler generates another
(highly optimised) executable, which is then run to termination,
then control goes back to interpreter.

109 / 1



Tracing JIT compilers
Tracing JIT compilers have not one, but several compilers (or
interpreters) inside (simplifying greatly).

After the interpreter has found hot code, the hot code is
compiled and executed once (called tracing execution).

In the tracing execution, the machine code actually executed is
recorded, yielding the trace of the hot code.

Note that if the machine code to be traced is branching, only the
branch taken is in the trace. Traces are linear, no branching.
This makes optimisation algorithms much simpler and faster.

Once tracing has finished, e.g. the body of the hot loop has
been executed once: then analyse and optimise trace.

Based on the analysis another compiler generates another
(highly optimised) executable, which is then run to termination,
then control goes back to interpreter.

110 / 1



Tracing JIT compilers
Tracing JIT compilers have not one, but several compilers (or
interpreters) inside (simplifying greatly).

After the interpreter has found hot code, the hot code is
compiled and executed once (called tracing execution).

In the tracing execution, the machine code actually executed is
recorded, yielding the trace of the hot code.

Note that if the machine code to be traced is branching, only the
branch taken is in the trace. Traces are linear, no branching.
This makes optimisation algorithms much simpler and faster.

Once tracing has finished, e.g. the body of the hot loop has
been executed once: then analyse and optimise trace.

Based on the analysis another compiler generates another
(highly optimised) executable, which is then run to termination,
then control goes back to interpreter.

111 / 1



Tracing JIT compilers
Tracing JIT compilers have not one, but several compilers (or
interpreters) inside (simplifying greatly).

After the interpreter has found hot code, the hot code is
compiled and executed once (called tracing execution).

In the tracing execution, the machine code actually executed is
recorded, yielding the trace of the hot code.

Note that if the machine code to be traced is branching, only the
branch taken is in the trace. Traces are linear, no branching.
This makes optimisation algorithms much simpler and faster.

Once tracing has finished, e.g. the body of the hot loop has
been executed once: then analyse and optimise trace.

Based on the analysis another compiler generates another
(highly optimised) executable, which is then run to termination,
then control goes back to interpreter. 112 / 1



Tracing JIT compilers

Analysing and optimising the trace:
I Find out if variables change type in the loop, if not, move

type-checking out of the loop. (For dynamically typed
languages.)

I Find out if object change type in the loop, if not, use
short-cut method invocations, no need to go via method
table.

I Let the interpreter handle the rarely used parts of the hot
loop (e.g. error handling).

I ...
I Finally, enter the third phase, the ’normal’ execution of the

optimised trace.
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A tracing JIT compiler in a picture
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Difficulties

As with normal JIT compilers, we have to orchestrate the
interplay of all these compiler phases, e.g.: Handover of control
from interpreter to compiler, to tracing, to execution of
optimised trace, and back. Garbage collection, exceptions,
concurrency etc must all also work.

Typical optimisations: type-specialisation, bypassing method
invocation, function inlining, register allocation, dead code
elimination.

Etc etc.
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Example compilers

The JVM (from Oracle). It is a method based JIT compiler,
meaning that methods are the units of compilation. It is not
tracing.

The first implementation of a tracing JIT was HPs Dynamo. It
does not compile from a high-level language to a low-level
language. Instead it optimises machine-code.

HotpathVM was the first tracing JIT for a high-level language
(Java).

TraceMonkey, one of Firefox’s JavaScript implementations was
first JIT compiler for Javascript. (NB: Current Firefox’s
SpiderMonkey is not tracing.)

Hard to say exactly who uses what (e.g. Apple Safari) since
companies rarely say what they’re using. They can use more
than one. Trade secrets.
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Example compilers

Open source: PyPy, a meta-tracing framework for Python.

Meta-tracing, what’s that?
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Meta-tracing
Background:

Writing compilers is hard, writing optimising
compilers is harder, writing JIT compilers is harder still, but
writing tracing JIT compilers is the hardest.

Designers of new programming languages cannot really
produce a good code generator for a new language. Typically
language designers write interpreters for new languages. But
that means the new language is hampered. This impedes
progress in programming languages.

Great idea: how about using a JIT compiler to compile the
interpreter, hoping that JITing will speed up interpreter, hence
new PL.

This idea is ingenious, simple, old and ... wrong!

The problem is that interpreter loops are the kinds of loops that
JITers do not optimise well. Let’s explain this in detail.
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Why JIT compilers can’t optimise interpreter loops

An interpreter is a big loop that gets the next command and
acts on it, e.g.

while true do:
cmd = getNextCommand
if cmd is:

"x := E" then ...
"if C then M else N" then ...
"while C do M" then ...
"repeat M until C" then ...
"print(M)" then ...
...

Now JIT compilers are really good at optimising loops, why do
they fail with interpreter loops?
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Key requirements for good JIT optimisation of loops

The essence of JIT compilation are tight inner loops that are
executed a large number of times. This insight can be split into
separate parts.

I Because they are executed a large number of times the
effect of the optimisation is magnified. X

I Optimising these inner loops heavily gives substantial
performace benefits. X

I Each iteration (or at least most of them) do the same thing.

Last requirement is violated in interpreter loops.
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Why can’t interpreter loops be JITed?

The problem is that the source language to be interpreted has
loops too.

Let’s assume this is the programm we are interpreting.

while i > 0:
j = j+i
i = i-1

This gives rise to something like the following bytecode

loop:
br r17 exit
add r21 r33 r21
subabs r33 1 r33
jump loop

exit:
...
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Why can’t interpreter loops be JITed?
Let’s have bytecode and bytecode interpreter side-by-side:

loop:
br r17 exit
add r21 r33 r21
subabs r33 1 r33
jump loop

exit:
...

while true:
op = mem [ pc ]
pc = pc+1
case op = br:

r = mem [ pc ]
pc = pc+1
if mem [ r ] == 0:

pc := mem [ pc ]
case op = add:

r1 = mem [ pc ]
pc = pc+1

...

Now every round of the interpreter takes a different branch.
The tracing JIT can just optimise one branch through the loop.
This is the worst case scenario: we pay the price of tracing,
optimisation (since loop is executed a lot), only to throw away
the optimisation and go back to interpretation.
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Why can’t interpreter loops be JITed?
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Why can’t interpreter loops be JITed?

Profiling detects the wrong loop as hot code!

We want profiling to detect the (code corresponding to the)
user loop, not the interpreter loop.

Note that the (code corresponding to the) user loop consists of
several rounds of the interpreter loop.

This is too difficult to detect for profiling, since user programs
can vary greatly.
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Why can’t interpreter loops be JITed?

The interpreter writer knows what the user loops are like:

while true do:
cmd = getNextCommand
if cmd is:

"x := E" then ...
"if C then M else M" then ...
"while C do M" then ...
"repeat M until C" then ...
"print(M)" then ...
...

The idea of meta-tracing is to let the interpreter writer annotate
the interpreter code with ’hooks’ that tell the tracing JIT
compiler where user loops start and end. The profiler can then
identify the hot loops in (the interpretation of) user code.
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Why can’t interpreter loops be JITed?
while true do:

beginInterpreterLoop
cmd = getNextCommand
if cmd is:

"x := E" then ...
"while C do M" then

beginUserLoop
...
endUserLoop

"repeat M until C" then
beginUserLoop
...
endUserLoop

...
endInterpreterLoop

Annotations are used by profiler for finding hot user loops.
Then user loops are traced & optimised.

Result: Speedup!
It is simple to annotate an interpreter.
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Meta-tracing as game changer in PL development
The real advantage of this is that it divides the problem of
developing high-performance JIT compilers for a language into
several parts, each of which separately is much more
mangable:

1. Develop a (meta-)tracing JIT compiler. Hard, but needs to
be done only once.

2. Develop an interpreter for the given source language.
Easy!

3. Add annotations in the interpreter to expose user loops.
Easy!

4. Run the interpreter using the tracing JIT from (1). Easy!
The tracing JIT from (1) can be reused for an unlimited number
of language interpreters. Once a meta-tracing JIT is available,
we can easily develop new languages and have
high-performance compilers for them (almost) for free.
The PyPy meta-tracing framework runs Python substantially
faster than e.g. the CPython framework.
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Brief remarks on performance

JIT compilers are built upon many trade-offs.

Although JIT compilers can give lightning fast execution on
typical programs, their worst-case execution time can be
dreadful.

JIT compilers work best for languages that do a lot of stuff at
run-time (e.g. type-checking).

For bare-bones languages like C, there is little to optimise at
run-time, and code generated by a conventional C compiler
with heavy (hence slow) optimisation will almost always beat a
modern JIT compiler.
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modern JIT compiler.
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Compiler development in industry

Lot’s of research going on into compilers, both conventional
and (tracing) JITs. It’s super high-tech.

Big companies (Google, Microsoft, Oracle, Intel, Arm, Apple)
compete heavily on quality (e.g. speed, energy usage) of their
compilers. They have large teams working on this. Find it
difficult to hire, because advanced compiler knowledge is rare.

Much work left to be done.

173 / 1



Compiler development in industry

Lot’s of research going on into compilers, both conventional
and (tracing) JITs. It’s super high-tech.

Big companies (Google, Microsoft, Oracle, Intel, Arm, Apple)
compete heavily on quality (e.g. speed, energy usage) of their
compilers. They have large teams working on this. Find it
difficult to hire, because advanced compiler knowledge is rare.

Much work left to be done.

174 / 1



Compiler development in industry

Lot’s of research going on into compilers, both conventional
and (tracing) JITs. It’s super high-tech.

Big companies (Google, Microsoft, Oracle, Intel, Arm, Apple)
compete heavily on quality (e.g. speed, energy usage) of their
compilers. They have large teams working on this. Find it
difficult to hire, because advanced compiler knowledge is rare.

Much work left to be done.

175 / 1



Compiler development in industry

Lot’s of research going on into compilers, both conventional
and (tracing) JITs. It’s super high-tech.

Big companies (Google, Microsoft, Oracle, Intel, Arm, Apple)
compete heavily on quality (e.g. speed, energy usage) of their
compilers. They have large teams working on this. Find it
difficult to hire, because advanced compiler knowledge is rare.

Much work left to be done.

176 / 1



Interested?

Compilers (and related subjects) great subject for final year
projects.

JRA (Junior Research Assistant) in the summer 2019.

Feel free to talk to me about this.
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