
Compilers and computer architecture:
The RISC-V architecture

Martin Berger 1

November 2019

1Email: M.F.Berger@sussex.ac.uk, Office hours: Wed 12-13 in
Chi-2R312

1 / 1

M.F.Berger@sussex.ac.uk

Recall the function of compilers

2 / 1

Introduction

In previous lectures, we focussed on generating code for simple
architectures like the stack machine, or accumulator machines.

Now we want to do something more interesting, generating
code for a real CPU.

We focus on the RISC-V (family of) processor(s).

3 / 1

Introduction

In previous lectures, we focussed on generating code for simple
architectures like the stack machine, or accumulator machines.

Now we want to do something more interesting, generating
code for a real CPU.

We focus on the RISC-V (family of) processor(s).

4 / 1

CISC vs RISC

Processors can roughly be classified as
I CISC (complex instruction set computer)
I RISC (reduced instruction set computer)

What is the instruction set?

5 / 1

CISC vs RISC

Processors can roughly be classified as
I CISC (complex instruction set computer)
I RISC (reduced instruction set computer)

What is the instruction set?

6 / 1

Instruction set architecture

In a CPU we distinguish between
I Instruction set architecture, that is externally visible

aspects like the supported data types (e.g. 32 bit Ints, 80
bit floats etc), instructions, number and kinds of registers,
addressing modes, memory architecture, interrupt etc.

This is what the programmer uses to get the CPU to do
things.

I Microarchitecture, which how the instruction set is
implemented. The microarchitecture is not visible to the
programmer, and CPUs with different microarchitectures
can share a common instruction set. For example Intel and
AMD support very similar instruction sets (x86 derived) but
have very different microarchitectures. The programmer
can ignore this, this is for the hardware people.

7 / 1

Instruction set architecture

In a CPU we distinguish between
I Instruction set architecture, that is externally visible

aspects like the supported data types (e.g. 32 bit Ints, 80
bit floats etc), instructions, number and kinds of registers,
addressing modes, memory architecture, interrupt etc.
This is what the programmer uses to get the CPU to do
things.

I Microarchitecture, which how the instruction set is
implemented. The microarchitecture is not visible to the
programmer, and CPUs with different microarchitectures
can share a common instruction set. For example Intel and
AMD support very similar instruction sets (x86 derived) but
have very different microarchitectures. The programmer
can ignore this, this is for the hardware people.

8 / 1

Instruction set architecture

In a CPU we distinguish between
I Instruction set architecture, that is externally visible

aspects like the supported data types (e.g. 32 bit Ints, 80
bit floats etc), instructions, number and kinds of registers,
addressing modes, memory architecture, interrupt etc.
This is what the programmer uses to get the CPU to do
things.

I Microarchitecture, which how the instruction set is
implemented. The microarchitecture is not visible to the
programmer, and CPUs with different microarchitectures
can share a common instruction set. For example Intel and
AMD support very similar instruction sets (x86 derived) but
have very different microarchitectures.

The programmer
can ignore this, this is for the hardware people.

9 / 1

Instruction set architecture

In a CPU we distinguish between
I Instruction set architecture, that is externally visible

aspects like the supported data types (e.g. 32 bit Ints, 80
bit floats etc), instructions, number and kinds of registers,
addressing modes, memory architecture, interrupt etc.
This is what the programmer uses to get the CPU to do
things.

I Microarchitecture, which how the instruction set is
implemented. The microarchitecture is not visible to the
programmer, and CPUs with different microarchitectures
can share a common instruction set. For example Intel and
AMD support very similar instruction sets (x86 derived) but
have very different microarchitectures. The programmer
can ignore this, this is for the hardware people.

10 / 1

Recall:

11 / 1

Instruction set architecture

There is a semantic gap between high-level programming
languages and machine languages: the former have powerful
features (e.g. method invocation) that translate to a large
number of simple machine instructions.

In the past it was thought that making machine commands
more powerful would close or narrow the semantic gap, making
compiled code faster. Examples of powerful machine
commands include directly enabling constructs such as
procedure calls, or complicated array access in single
instructions.

CPUs with such instruction sets are called CISC (complex
instruction set computer). Complex because the instructions do
complicated things and are complex to implement in hardware.

12 / 1

Instruction set architecture

There is a semantic gap between high-level programming
languages and machine languages: the former have powerful
features (e.g. method invocation) that translate to a large
number of simple machine instructions.

In the past it was thought that making machine commands
more powerful would close or narrow the semantic gap, making
compiled code faster. Examples of powerful machine
commands include directly enabling constructs such as
procedure calls, or complicated array access in single
instructions.

CPUs with such instruction sets are called CISC (complex
instruction set computer). Complex because the instructions do
complicated things and are complex to implement in hardware.

13 / 1

Instruction set architecture

In some cases CISC architectures led to faster compiled code.
But in the 1970s researchers began to study instruction set
architecture and compiled code carefully and noticed two
things.

I Compilers rarely make use of the complex instructions
provided by CISC machines.

I Complex operations tended to be slower than a sequence
of simpler operations doing the same thing.

I Often real-world programs spend most of their time
executing simple operations.

I Implementing complex operations leads to complicated
CPU architecture that slow down the execution of simple
instructions. Worse: simple operations are slower even
when you don’t use the complex operations.

14 / 1

RISC

These empirical insights lead to a radical rethink of instruction
set architecture.

Optimise as much as possible the few instructions that are used
the most in practise. Try and make them exceedingly fast.

This makes the task of the compiler (much) harder, but the
compiler has to compile a program only once, whereas the
CPU would have to support complex instructions all the time.

15 / 1

RISC

These empirical insights lead to a radical rethink of instruction
set architecture.

Optimise as much as possible the few instructions that are used
the most in practise. Try and make them exceedingly fast.

This makes the task of the compiler (much) harder, but the
compiler has to compile a program only once, whereas the
CPU would have to support complex instructions all the time.

16 / 1

RISC

These empirical insights lead to a radical rethink of instruction
set architecture.

Optimise as much as possible the few instructions that are used
the most in practise. Try and make them exceedingly fast.

This makes the task of the compiler (much) harder, but the
compiler has to compile a program only once, whereas the
CPU would have to support complex instructions all the time.

17 / 1

RISC

RISC processors like RISC-V are the outcome.

One key feature of RISC is that external memory was only
accessible by a load or store instruction. All other instructions
were limited to internal registers. Hence RISC is also called
load/store architecture.

This drastically simplifies processor design: allowing
instructions to be fixed-length, simplifying pipelines, and
isolating the logic for dealing with the delay in completing a
memory access (cache miss, etc.) to only two instructions.

18 / 1

RISC

RISC processors like RISC-V are the outcome.

One key feature of RISC is that external memory was only
accessible by a load or store instruction. All other instructions
were limited to internal registers. Hence RISC is also called
load/store architecture.

This drastically simplifies processor design: allowing
instructions to be fixed-length, simplifying pipelines, and
isolating the logic for dealing with the delay in completing a
memory access (cache miss, etc.) to only two instructions.

19 / 1

RISC

RISC processors like RISC-V are the outcome.

One key feature of RISC is that external memory was only
accessible by a load or store instruction. All other instructions
were limited to internal registers. Hence RISC is also called
load/store architecture.

This drastically simplifies processor design: allowing
instructions to be fixed-length, simplifying pipelines, and
isolating the logic for dealing with the delay in completing a
memory access (cache miss, etc.) to only two instructions.

20 / 1

RISC vs CISC today
Despite RISC being technically better, still the most popular
desktop/server family of chips (Intel x86) is not RISC. (Phones
are dominated by RISCish architectures (ARM).) Reasons:

I Large amount of legacy x86 code (e.g. Microsoft products),
locking PC users into x86 CISC. x86 has been backwards
compatible back to the 8080 processor (1974).

I Intel earns much more money than producers of RISC
chips so can spend much more on research, design and
manufacturing, keeping CISC chips competitive with RISC.

I ’Under the hood’ modern Intel processors are also RISC:
the complicated x86 machine instructions are translated at
run-time into much simpler underlying RISC microcode
(which is not user-visible).

I Both ARM and x86 provide dedicated instructions for
cryptography (AES).

21 / 1

RISC vs CISC today
Despite RISC being technically better, still the most popular
desktop/server family of chips (Intel x86) is not RISC. (Phones
are dominated by RISCish architectures (ARM).) Reasons:

I Large amount of legacy x86 code (e.g. Microsoft products),
locking PC users into x86 CISC. x86 has been backwards
compatible back to the 8080 processor (1974).

I Intel earns much more money than producers of RISC
chips so can spend much more on research, design and
manufacturing, keeping CISC chips competitive with RISC.

I ’Under the hood’ modern Intel processors are also RISC:
the complicated x86 machine instructions are translated at
run-time into much simpler underlying RISC microcode
(which is not user-visible).

I Both ARM and x86 provide dedicated instructions for
cryptography (AES).

22 / 1

Aside: extreme RISC

Sometimes a workload is so extremely skewed towards certain
commands that it makes sense to abandon traditiona CPU
architecture (including RISC) and use special purpose
processors.

I GPUs (graphics processing unit) which explore the
unusually high degree of SIMD parallelism of most
graphics and image processing algorithms.

I Bitcoin lead to dedicated chips that compute nothing but
SHA256.

I Google’s TPU (Tensor Processing Units) for speeding up
computation in neural nets (typically 15x - 30x vs GPU),
and more energy efficient (70x vs GPU, 200x vs CPU).
Basically matrix multiplication and activation function
engine. Currently a lot of work in this space.

23 / 1

The RISC-V processor

The original RISC processor was MIPS, John Hennessy in
Stanford. For various reasons it has been replaced by RISC-V!

RISC-V is open source and has an extremely clean and
simple design. For those reasons it has emerged as a serious
competitor to ARM.

Several industrial strength compilers to RISC-V exist, including
LLVM and GCC.

24 / 1

The RISC-V processor

In its basic from, RISC-V has 32 integer registers.

RISC-V is a load-and-store architecture, meaning:

Except for memory access instructions, instructions address
only registers.

25 / 1

The RISC-V processor

In its basic from, RISC-V has 32 integer registers.

RISC-V is a load-and-store architecture, meaning:

Except for memory access instructions, instructions address
only registers.

26 / 1

RARS
I recommend using a RISC-V simulator like RARS for learning
RISC-V.

27 / 1

Getting RARS

Homepage: https://github.com/TheThirdOne/rars

Download *.jar at https://github.com/TheThirdOne/
rars/releases/download/v1.3.1/rars1_3_1.jar

Easy to launch: java -jar rars1_3_1.jar

Has useful online help.

28 / 1

https://github.com/TheThirdOne/rars
https://github.com/TheThirdOne/rars/releases/download/v1.3.1/rars1_3_1.jar
https://github.com/TheThirdOne/rars/releases/download/v1.3.1/rars1_3_1.jar

Getting RARS

Homepage: https://github.com/TheThirdOne/rars

Download *.jar at https://github.com/TheThirdOne/
rars/releases/download/v1.3.1/rars1_3_1.jar

Easy to launch: java -jar rars1_3_1.jar

Has useful online help.

29 / 1

https://github.com/TheThirdOne/rars
https://github.com/TheThirdOne/rars/releases/download/v1.3.1/rars1_3_1.jar
https://github.com/TheThirdOne/rars/releases/download/v1.3.1/rars1_3_1.jar

Getting RARS

Homepage: https://github.com/TheThirdOne/rars

Download *.jar at https://github.com/TheThirdOne/
rars/releases/download/v1.3.1/rars1_3_1.jar

Easy to launch: java -jar rars1_3_1.jar

Has useful online help.

30 / 1

https://github.com/TheThirdOne/rars
https://github.com/TheThirdOne/rars/releases/download/v1.3.1/rars1_3_1.jar
https://github.com/TheThirdOne/rars/releases/download/v1.3.1/rars1_3_1.jar

Getting RARS

Homepage: https://github.com/TheThirdOne/rars

Download *.jar at https://github.com/TheThirdOne/
rars/releases/download/v1.3.1/rars1_3_1.jar

Easy to launch: java -jar rars1_3_1.jar

Has useful online help.

31 / 1

https://github.com/TheThirdOne/rars
https://github.com/TheThirdOne/rars/releases/download/v1.3.1/rars1_3_1.jar
https://github.com/TheThirdOne/rars/releases/download/v1.3.1/rars1_3_1.jar

RARS

You need to learn RARS by yourself and in tutorials.

32 / 1

RISC-V

Here is a basic overview of RISC-V. We’ll only cover issues that
are relevant for code generation. You are expected to
familiarise yourself with RISC-V programming on your own.

This should not be difficult with RARS, as RISC-V is an
exceptionally clean architecture.

33 / 1

RISC-V registers

RISC-V has the following registers
(all are 32 bits).

I 32 general purpose registers
I A program counter (PC)

34 / 1

RISC-V registers
CPU general-purpose registers have
assigned functions:

I x0 is hard-wired to 0, and can be
used as target register for any
instruction whose result is to be
discarded. x0 can also be used as
a source of 0 if needed.

I x1-x31 are general purpose
registers. The 32 bit integers they
hold are interpreted, depending on
the instruction that access the
registers. (Examples: Boolean
values, two’s complement signed
binary integers or unsigned binary
integers, stack pointer or return
address).

35 / 1

RISC-V registers: PC

The program counter (PC) register,
points to the instruction to be
executed next. The PC cannot
directly be written or read using
load/store instructions. It can only
be influenced by executing
instructions which change the PC
as a side-effect.

36 / 1

RISC-V registers: do you notice something?

No explicit SP (and no push, no
pop commands)

Can be simulated with general
purpose register and normal
commands.

37 / 1

RISC-V registers: do you notice something?

No explicit SP (and no push, no
pop commands)

Can be simulated with general
purpose register and normal
commands.

38 / 1

RISC-V registers: do you notice something?

No explicit SP (and no push, no
pop commands)

Can be simulated with general
purpose register and normal
commands.

39 / 1

RISC-V registers: do you notice something?

No explicit SP (and no push, no
pop commands)

Can be simulated with general
purpose register and normal
commands.

40 / 1

RISC-V registers: usage conventions

Interesting for us mostly x1 (ra), x2 (sp), x8 (s0)

Note that those are usage conventions. I recommend
adhering to them if you want to interface with other RISC-V
software (e.g. assembler).

41 / 1

RISC-V registers: usage conventions

Interesting for us mostly x1 (ra), x2 (sp), x8 (s0)

Note that those are usage conventions. I recommend
adhering to them if you want to interface with other RISC-V
software (e.g. assembler).

42 / 1

RISC-V registers: usage conventions

Interesting for us mostly x1 (ra), x2 (sp), x8 (s0)

Note that those are usage conventions. I recommend
adhering to them if you want to interface with other RISC-V
software (e.g. assembler).

43 / 1

RISC-V Datatypes

RISC-V has address space of 232 bytes for all memory
accesses.

Address space is circular, so that the byte at address 232 − 1
is adjacent to the byte at address zero.

Memory is byte-addressable.

A word of memory is defined as 32 bits (4 bytes).

A halfword is 16 bits (2 bytes).

A byte 8 bits.

44 / 1

RISC-V Datatypes

RISC-V has address space of 232 bytes for all memory
accesses.

Address space is circular, so that the byte at address 232 − 1
is adjacent to the byte at address zero.

Memory is byte-addressable.

A word of memory is defined as 32 bits (4 bytes).

A halfword is 16 bits (2 bytes).

A byte 8 bits.

45 / 1

RISC-V Datatypes

RISC-V has address space of 232 bytes for all memory
accesses.

Address space is circular, so that the byte at address 232 − 1
is adjacent to the byte at address zero.

Memory is byte-addressable.

A word of memory is defined as 32 bits (4 bytes).

A halfword is 16 bits (2 bytes).

A byte 8 bits.

46 / 1

RISC-V Datatypes

RISC-V has address space of 232 bytes for all memory
accesses.

Address space is circular, so that the byte at address 232 − 1
is adjacent to the byte at address zero.

Memory is byte-addressable.

A word of memory is defined as 32 bits (4 bytes).

A halfword is 16 bits (2 bytes).

A byte 8 bits.

47 / 1

RISC-V Datatypes

RISC-V has address space of 232 bytes for all memory
accesses.

Address space is circular, so that the byte at address 232 − 1
is adjacent to the byte at address zero.

Memory is byte-addressable.

A word of memory is defined as 32 bits (4 bytes).

A halfword is 16 bits (2 bytes).

A byte 8 bits.

48 / 1

RISC-V Datatypes

RISC-V has address space of 232 bytes for all memory
accesses.

Address space is circular, so that the byte at address 232 − 1
is adjacent to the byte at address zero.

Memory is byte-addressable.

A word of memory is defined as 32 bits (4 bytes).

A halfword is 16 bits (2 bytes).

A byte 8 bits.

49 / 1

RISC-V memory alignment

RISC-V has fixed-length 32-bit instructions that must be
aligned on 32-bit boundaries (i.e. at memory locations divisible
by 4).

But ... Accessed memory addresses need not be aligned, but
accesses to aligned addresses may be faster; for example,
simple CPUs may implement unaligned accesses with slow
software emulation driven from an alignment failure interrupt.

The assembler will help you with alignment. We come back to
this.

50 / 1

RISC-V memory alignment

RISC-V has fixed-length 32-bit instructions that must be
aligned on 32-bit boundaries (i.e. at memory locations divisible
by 4).

But ...

Accessed memory addresses need not be aligned, but
accesses to aligned addresses may be faster; for example,
simple CPUs may implement unaligned accesses with slow
software emulation driven from an alignment failure interrupt.

The assembler will help you with alignment. We come back to
this.

51 / 1

RISC-V memory alignment

RISC-V has fixed-length 32-bit instructions that must be
aligned on 32-bit boundaries (i.e. at memory locations divisible
by 4).

But ... Accessed memory addresses need not be aligned, but
accesses to aligned addresses may be faster; for example,
simple CPUs may implement unaligned accesses with slow
software emulation driven from an alignment failure interrupt.

The assembler will help you with alignment. We come back to
this.

52 / 1

RISC-V memory alignment

RISC-V has fixed-length 32-bit instructions that must be
aligned on 32-bit boundaries (i.e. at memory locations divisible
by 4).

But ... Accessed memory addresses need not be aligned, but
accesses to aligned addresses may be faster; for example,
simple CPUs may implement unaligned accesses with slow
software emulation driven from an alignment failure interrupt.

The assembler will help you with alignment. We come back to
this.

53 / 1

RISC-V instructions

CPU instructions are organized into the following functional
groups:

I Load and store (memory access)
I Immediates (handling of constants)
I Computational (e.g. integer arithmetic and boolean logic)
I Jump and branch (conditional and unconditional)
I Many others (e.g. SIMD, vectoring)

Each instruction is 32 bits long in memory.

Important: RISC-V processors use a simple load/store
architecture; all operations (e.g. addition, comparison) are
performed on operands held in processor registers.

Main memory is accessed only through load and store
instructions.

54 / 1

RISC-V instructions

CPU instructions are organized into the following functional
groups:

I Load and store (memory access)
I Immediates (handling of constants)
I Computational (e.g. integer arithmetic and boolean logic)
I Jump and branch (conditional and unconditional)
I Many others (e.g. SIMD, vectoring)

Each instruction is 32 bits long in memory.

Important: RISC-V processors use a simple load/store
architecture; all operations (e.g. addition, comparison) are
performed on operands held in processor registers.

Main memory is accessed only through load and store
instructions.

55 / 1

RISC-V instructions

The command

lw reg1 offset(reg2)

(where offset is a 16-bit integer) adds the content reg2 and
the 16 bit value offset, obtaining a new number n, and then
looks up the 32 bit value stored in memory at n. That value is
then loaded into register reg1 as a signed integer.

The sum of reg2 and offset must be word aligned (i.e. the
two least significant bits must be 0), otherwise an error will
occur.

56 / 1

RISC-V instructions

lw r2 100(r3)

2000 ...

r1 r2 r3 r31r0

...

pc

17

2100

lw r2 100(r3)

17 2000 ...

r1 r2 r3 r31r0

...

pc

17

2100

57 / 1

RISC-V instructions

The command

add reg1 reg2 reg3

Adds the contents of registers reg2 and reg3, and stores the
result in reg1.

Note that the reg1, reg2 and reg3 don’t have to be distinct.

58 / 1

RISC-V instructions

add r1 r2 r3

666 999 ...

r1 r2 r3 r31r0

pc

666 999 ...1665

r1 r2 r3 r31r0

...

pc

...

add r1 r2 r3

59 / 1

RISC-V instructions

The command

sw reg1 offset(reg2)

(where offset is an integer) stores the 32 bit word currently in
reg1 at the address obtained by adding the 16 bit value
offset to the content of register reg2.

The sum of reg2 and offset must be word aligned (i.e. the
two least significant bits must be 0), otherwise an error will
occur.

60 / 1

RISC-V instructions

sw r1 100(r2)

2000 ...33

r1 r2 r3 r31r0

...

pc 2100

sw r1 100(r2)

2000 ...33

r1 r2 r3 r31r0

...

pc

33

2100

61 / 1

RISC-V instructions

The command

addi reg1 reg2 imm

Adds the 16 bit signed integer imm to the word currently in
reg2, storing the result in register reg1. Here the ’u’ in addiu
means unsigned. In first approximation that means overflow is
not checked when adding (no error is caused by overflowing).

Not checking overflow is useful e.g. when you want ’wrap
around’ a sum at 0 or 232 − 1. You want this e.g. when doing
cryptography. In addition we consider e.g. the SP an unsigned
integer.

But imm is signed, so we can increment and decrement e.g. the
SP.

62 / 1

RISC-V instructions

addi r1 r2 55

2000 ...

r1 r2 r3 r31r0

...

pc

addi r1 r2 55

2000 ...2055

r1 r2 r3 r31r0

...

pc

63 / 1

RISC-V instructions

The pseudo instruction

li reg imm

Stores the 32 bit integer imm in register reg.

It is a pseudo instruction in that there is no RISC-V assembly
command that directly implements this (MPIS cannot load 32
bit words directly), instead the RISC-V assembler will
automatically expand li reg imm into a sequence of real
assembler commands. When compiling you can easily treat
pseudo instructions as real instructions.

64 / 1

RISC-V instructions

li r2 123

...

r1 r2 r3 r31r0

...

pc

li r2 123

123 ...

r1 r2 r3 r31r0

...

pc
65 / 1

Our first RISC-V program

Let’s write the program 7+5, we want the result in register r5.

li r6 7
li r5 5
add r5 r5 r6

66 / 1

Our second RISC-V program

Let’s write 7+5, in accumulator machine form.
I One argument is in the accumulator.
I Remaining arguments on the stack.
I Result should be in accumulator.

Recall RISC-V doesn’t have an explicit SP.

Also: no explicit accumulator!

We must simulate both, and that is easy: each register can be
used as SP or as accumulator.

67 / 1

Our second RISC-V program

Let’s write 7+5, in accumulator machine form.
I One argument is in the accumulator.
I Remaining arguments on the stack.
I Result should be in accumulator.

Recall RISC-V doesn’t have an explicit SP.

Also: no explicit accumulator!

We must simulate both, and that is easy: each register can be
used as SP or as accumulator.

68 / 1

Our second RISC-V program

Let’s write 7+5, in accumulator machine form.
I One argument is in the accumulator.
I Remaining arguments on the stack.
I Result should be in accumulator.

Recall RISC-V doesn’t have an explicit SP.

Also: no explicit accumulator!

We must simulate both, and that is easy: each register can be
used as SP or as accumulator.

69 / 1

Our second RISC-V program

Let’s write 7+5, in accumulator machine form.

Convention: we use register x2 as stack pointer, and register
x10 as accumulator.

It is customary in RISC-V assembly to write sp for the stack
pointer (r29) and a0 for register r4.

70 / 1

Our second RISC-V program

Let’s write 7+5, in accumulator machine form.

Convention: we use register x2 as stack pointer, and register
x10 as accumulator.

It is customary in RISC-V assembly to write sp for the stack
pointer (r29) and a0 for register r4.

71 / 1

Our second RISC-V program

Recall that in the accumulator machine model, memory
operations work only via the accumulator.

With this in mind,
here is the program 7+5 we are seeking to translate to RISC-V
in pseudo-code.

acc <- 7
push acc
acc <- 5
acc <- acc + top of stack
pop

72 / 1

Our second RISC-V program

Recall that in the accumulator machine model, memory
operations work only via the accumulator. With this in mind,
here is the program 7+5 we are seeking to translate to RISC-V
in pseudo-code.

acc <- 7
push acc
acc <- 5
acc <- acc + top of stack
pop

73 / 1

Our second RISC-V program

To translate

acc <- 7
push acc
acc <- 5
acc <- acc + top of stack
pop

into RISC-V we adhere to the conventions that

I The stack grows downwards (i.e. from high to low
addresses).

I The stack pointer sp points to the first free memory cell
below (in terms of addresses) the top of the stack.

74 / 1

Our second RISC-V program

To translate

acc <- 7
push acc
acc <- 5
acc <- acc + top of stack
pop

into RISC-V we adhere to the conventions that
I The stack grows downwards (i.e. from high to low

addresses).

I The stack pointer sp points to the first free memory cell
below (in terms of addresses) the top of the stack.

75 / 1

Our second RISC-V program

To translate

acc <- 7
push acc
acc <- 5
acc <- acc + top of stack
pop

into RISC-V we adhere to the conventions that
I The stack grows downwards (i.e. from high to low

addresses).
I The stack pointer sp points to the first free memory cell

below (in terms of addresses) the top of the stack.

76 / 1

Our second RISC-V program

I The stack grows downwards (i.e. from high to low
addresses).

I The stack pointer sp points to the first free memory cell
below (in terms of addresses) the top of the stack.

1484

66
221488

1492

166
991496

1500

SP = 1484...

Top of stack element

77 / 1

Our second RISC-V program

acc <- 7
push acc
acc <- 5
acc <- acc+topOfStack
pop

li a0 7
sw a0 0(sp)
addi sp sp -4
li a0 5
lw t1 4(sp)
add a0 a0 t1
addi sp sp 4

Note that the program on the right is really doing almost exactly
what we did a few weeks ago when we looked at the
accumulator machine, except that

I we use a temporary t1
I we use RISC-V assembly
I we have to adjust the stack ’by hand’, rather than using

built-in push and pop

78 / 1

Our second RISC-V program

acc <- 7
push acc
acc <- 5
acc <- acc+topOfStack
pop

li a0 7
sw a0 0(sp)
addi sp sp -4
li a0 5
lw t1 4(sp)
add a0 a0 t1
addi sp sp 4

Note that the program on the right is really doing almost exactly
what we did a few weeks ago when we looked at the
accumulator machine, except that

I we use a temporary t1
I we use RISC-V assembly
I we have to adjust the stack ’by hand’, rather than using

built-in push and pop

79 / 1

Our second RISC-V program

acc <- 7
push acc
acc <- 5
acc <- acc+topOfStack
pop

li a0 7
sw a0 0(sp)
addi sp sp -4
li a0 5
lw t1 4(sp)
add a0 a0 t1
addi sp sp 4

Note that the program on the right is really doing almost exactly
what we did a few weeks ago when we looked at the
accumulator machine, except that

I we use a temporary t1
I we use RISC-V assembly
I we have to adjust the stack ’by hand’, rather than using

built-in push and pop

80 / 1

Our second RISC-V program

acc <- 7
push acc
acc <- 5
acc <- acc+topOfStack
pop

li a0 7
sw a0 0(sp)
addi sp sp -4
li a0 5
lw t1 4(sp)
add a0 a0 t1
addi sp sp 4

Note that the program on the right is really doing almost exactly
what we did a few weeks ago when we looked at the
accumulator machine, except that

I we use a temporary t1

I we use RISC-V assembly
I we have to adjust the stack ’by hand’, rather than using

built-in push and pop

81 / 1

Our second RISC-V program

acc <- 7
push acc
acc <- 5
acc <- acc+topOfStack
pop

li a0 7
sw a0 0(sp)
addi sp sp -4
li a0 5
lw t1 4(sp)
add a0 a0 t1
addi sp sp 4

Note that the program on the right is really doing almost exactly
what we did a few weeks ago when we looked at the
accumulator machine, except that

I we use a temporary t1
I we use RISC-V assembly

I we have to adjust the stack ’by hand’, rather than using
built-in push and pop

82 / 1

Our second RISC-V program

acc <- 7
push acc
acc <- 5
acc <- acc+topOfStack
pop

li a0 7
sw a0 0(sp)
addi sp sp -4
li a0 5
lw t1 4(sp)
add a0 a0 t1
addi sp sp 4

Note that the program on the right is really doing almost exactly
what we did a few weeks ago when we looked at the
accumulator machine, except that

I we use a temporary t1
I we use RISC-V assembly
I we have to adjust the stack ’by hand’, rather than using

built-in push and pop

83 / 1

RISC-V

We will soon write a compiler that compiles a simple language
with procedures to RISC-V code.

To understand this, you need to familiarise yourself with RISC-V
in the tutorials and in self study.

RISC-V machine code is really straightforward, and not really
different from the pseudo machine code we used a few weeks
back, except that the assembler syntax is slightly different.

84 / 1

RISC-V

We will soon write a compiler that compiles a simple language
with procedures to RISC-V code.

To understand this, you need to familiarise yourself with RISC-V
in the tutorials and in self study.

RISC-V machine code is really straightforward, and not really
different from the pseudo machine code we used a few weeks
back, except that the assembler syntax is slightly different.

85 / 1

RISC-V

We will soon write a compiler that compiles a simple language
with procedures to RISC-V code.

To understand this, you need to familiarise yourself with RISC-V
in the tutorials and in self study.

RISC-V machine code is really straightforward, and not really
different from the pseudo machine code we used a few weeks
back, except that the assembler syntax is slightly different.

86 / 1

Interlude on (RISC-V) assembler

Assembler language is a programming language that is close to
machine language but not the same.

Why bother with yet another language? Why not program
straight in machine language?

87 / 1

Interlude on (RISC-V) assembler

Assembler language is a programming language that is close to
machine language but not the same.

Why bother with yet another language? Why not program
straight in machine language?

88 / 1

That’s why

001001111011110111111111111000001010111110111111000000
000001010010101111101001000000000000100000101011111010
010100000000001001001010111110100000000000000001100010
101111101000000000000000011100100011111010111000000000
000111001000111110111000000000000001100000000001110011
100000000000011001001001011100100000000000000000010010
100100000001000000000110010110101111101010000000000000
011100000000000000000001111000000100100000001100001111
110010000010000100010100001000001111111111110111101011
111011100100000000000110000011110000000100000100000000
000010001111101001010000000000011000000011000001000000
000000111011000010010010000100000001000011000010001111
101111110000000000010100001001111011110100000000001000
000000001111100000000000000000100000000000000000000001
000000100001

89 / 1

That’s why

Here is same code written in assembly language, but no
symbolic labels are used as name of registers or memory
locations.

addi $29, $29, -32
sw $31, 20($29)
sw $4, 32($29)
sw $5, 36($29)
sw $0, 24($29)
sw $0, 28($29)
lw $14, 28($29)
lw $24, 24($29)
multu $14, $14
addi $8, $14, 1
slti $1, $8, 101
sw $8, 28($29)

mflo $15
addu $25, $24, $15
bne $1, $0, -9
sw $25, 24($29)
lui $4, 4096
lw $5, 24($29)
jal 1048812
addi $4, $4, 1072
lw $31, 20($29)
addi $29, $29, 32
jr $31
move $2, $0

90 / 1

That’s why

It gets even better with symbolic names such as sp or loop.

.text

.align 2

.globl main
main:

subu sp, sp, 32
sw ra, 20(sp)
sd a0, 32(sp)
sw 0, 24(sp)
sw 0, 28(sp)

loop:
lw t6, 28(sp)
mul t7, t6, t6
lw t8, 24(sp)
addu t9, t8, t7
sw t9, 24(sp)

addu t0, t6, 1
sw t0, 28(sp)
ble t0, 100, loop
la a0, str
lw a1, 24(sp)
jal printf
move v0, 0
lw ra, 20(sp)
addu sp, sp, 32
jr ra
.data
.align 0

str:
.asciz "The sum from

0 .. 100 is %d\n"

91 / 1

Assembler vs assembly language

We must carefully distinguish between
I Assembly language, the symbolic representation of a

computer’s binary machine language.
I Assembler, a program (a mini-compiler) that translates

assembly language into real machine code (long
sequences of 0s and 1s).

92 / 1

Assembler, the program

The assembler primarily does two things.

I Translate commands in assembly language like addi t3
t6 t8 into machine code.

I Convert symbolic addresses such as main or loop into
machine addresses such as
100011010011010011010011010101001. This task is
sometimes deferred to the linker.

The symbolic addresses in assembly language name
commonly occurring bit patterns, such as opcodes and register
names, so humans can read and remember them. In addition,
assembly language permits programmers to use labels to
identify and name particular memory words that hold
instructions or data, or that the program can jump to.

93 / 1

Assembler, the program

The assembler primarily does two things.

I Translate commands in assembly language like addi t3
t6 t8 into machine code.

I Convert symbolic addresses such as main or loop into
machine addresses such as
100011010011010011010011010101001. This task is
sometimes deferred to the linker.

The symbolic addresses in assembly language name
commonly occurring bit patterns, such as opcodes and register
names, so humans can read and remember them. In addition,
assembly language permits programmers to use labels to
identify and name particular memory words that hold
instructions or data, or that the program can jump to.

94 / 1

Assembler, the program

Source
file Assembler Object

file

Source
file Assembler Object

file

Source
file Assembler Object

file

Linker Executable

Library

Source files are produced by a compiler. They may contain
labels that are not defined in the source file, reference to
external code (e.g. print).

95 / 1

Assembler, the program

Source
file Assembler Object

file

Source
file Assembler Object

file

Source
file Assembler Object

file

Linker Executable

Library

Assembler translates source files to object files, which are
machine code, but contains ’holes’ (basically references to
external code). Because of holes, object files cannot be
executed directly. The holes arise because the assembler
translates each file separately.

96 / 1

Assembler, the program

Source
file Assembler Object

file

Source
file Assembler Object

file

Source
file Assembler Object

file

Linker Executable

Library

The linker gets all object files and libraries and puts the right
addresses into holes, yielding an executable.

97 / 1

Assembler, the program
Here is an example of using names: main is a global name in
the sense that other programs can use it. OTOH loop is a
local name: it can only be used (jumped to) inside this
program.

.text

.align 2

.globl main
main:

subu sp, sp, 32
sw ra, 20(sp)
...

loop:
lw t6, 28(sp)
...
ble t0, 100, loop

It is the declaration (assembler directive) .globl main that
makes main global.

98 / 1

Assembler, the program

The assembler processes a source file line by line, translating
assembly commands. It keeps track of the size of each
command.

loop:
subu sp, sp, 32
sw ra, 20(sp)

When the assembler encounters a line starting with a label, like
loop: ... it calculates what address in memory the
command just below would be at, and stores the pair of label
and address in its symbol table. If it encounters this label later,
e.g. ble t0, 100, loop, the assembler replaces the label
with the address (if local, otherwise the linker does this).

99 / 1

Helpers

Assembly languages typically offer various features making
assembly programming easier. Here are some RISC-V
examples.

I Data layout directives
I Pseudo instructions
I Alignment instructions

100 / 1

Data layout directives

Data layout directives describe data in a more concise and
natural manner than its binary representation. Example:

.asciz "The sum from 0 .. 100 is %d\n"

stores characters from the string in memory. Alternatively we
can use the .byte directive to obtain the same effect.

.byte 84, 104, 101, 32, 115, 117, 109, 32

.byte 102, 114, 111, 109, 32, 48, 32, 46

.byte 46, 32, 49, 48, 48, 32, 105, 115

.byte 32, 37, 100, 10, 0

The .asciz directive is easier to read for text strings.

101 / 1

Pseudo instructions

You remember

li reg imm?

Turns out that li is not a RISC-V assembly command.

RISC-V cannot load a 32 bit word in one instruction. Two
instructions are needed (one for the lower 16 bits of imm, and
another one for the upper 16 bits.)

Instead it is a pseudo command: the assembler replaces each
occurrency of li appropriately.

The RARS simulator shows pseudo instructions and the
instructions that the former translate to together.

102 / 1

Pseudo instructions

You remember

li reg imm?

Turns out that li is not a RISC-V assembly command.

RISC-V cannot load a 32 bit word in one instruction. Two
instructions are needed (one for the lower 16 bits of imm, and
another one for the upper 16 bits.)

Instead it is a pseudo command: the assembler replaces each
occurrency of li appropriately.

The RARS simulator shows pseudo instructions and the
instructions that the former translate to together.

103 / 1

Pseudo instructions

You remember

li reg imm?

Turns out that li is not a RISC-V assembly command.

RISC-V cannot load a 32 bit word in one instruction. Two
instructions are needed (one for the lower 16 bits of imm, and
another one for the upper 16 bits.)

Instead it is a pseudo command: the assembler replaces each
occurrency of li appropriately.

The RARS simulator shows pseudo instructions and the
instructions that the former translate to together.

104 / 1

Pseudo instructions

You remember

li reg imm?

Turns out that li is not a RISC-V assembly command.

RISC-V cannot load a 32 bit word in one instruction. Two
instructions are needed (one for the lower 16 bits of imm, and
another one for the upper 16 bits.)

Instead it is a pseudo command: the assembler replaces each
occurrency of li appropriately.

The RARS simulator shows pseudo instructions and the
instructions that the former translate to together.

105 / 1

Pseudo instructions

You remember

li reg imm?

Turns out that li is not a RISC-V assembly command.

RISC-V cannot load a 32 bit word in one instruction. Two
instructions are needed (one for the lower 16 bits of imm, and
another one for the upper 16 bits.)

Instead it is a pseudo command: the assembler replaces each
occurrency of li appropriately.

The RARS simulator shows pseudo instructions and the
instructions that the former translate to together.

106 / 1

