
LTL learning on GPUs

Mojtaba Valizadeh1, 2 Nathanaël Fijalkow3 Martin Berger2, 4

1 University of Sussex

2 Neubla UK Ltd

3 CNRS, LaBRI and Universite de Bordeaux

4 Montanarius Ltd

Montreal, 26 July 2024

LTLf learning in a nutshell

▸ Input: Two sets P and N of finite traces over a fixed alphabet.
▸ Output: An LTLf formula ϕ that is

▸ sound: all traces in P are accepted by ϕ, all traces in N are rejected by ϕ;
▸ minimal: meaning no strictly smaller sound formula exists.

Bottom-up enumeration solves this in-the-small, but scaling is unsolved

Approximate LTLf learning: formula should be not too far from minimal

LTLf learning in a nutshell

▸ Input: Two sets P and N of finite traces over a fixed alphabet.
▸ Output: An LTLf formula ϕ that is

▸ sound: all traces in P are accepted by ϕ, all traces in N are rejected by ϕ;
▸ minimal: meaning no strictly smaller sound formula exists.

Bottom-up enumeration solves this in-the-small, but scaling is unsolved

Approximate LTLf learning: formula should be not too far from minimal

LTLf learning in a nutshell

▸ Input: Two sets P and N of finite traces over a fixed alphabet.
▸ Output: An LTLf formula ϕ that is

▸ sound: all traces in P are accepted by ϕ, all traces in N are rejected by ϕ;
▸ minimal: meaning no strictly smaller sound formula exists.

Bottom-up enumeration solves this in-the-small, but scaling is unsolved

Approximate LTLf learning: formula should be not too far from minimal

Problem with GPU programming

Hard

Problem with GPU programming

Hard

Summary: what makes program GPU-friendly?

▸ Minimise data movement
▸ Minimise data-dependent branching
▸ Maximise parallelism (and avoid synchronisation between threads)
▸ Maximise lock-step parallelism (SIMD)

CPU (highly idealised)

GPU (highly idealised)

LTL = linear temporal logic

Linear temporal logic (LTL) is widely used in industrial verification.

LTL is a modal logic for specifying properties of finite or infinite traces / strings.

LTL over finite traces (aka LTLf) is (semantically) a strict subsystem of regular
expressions (≈ "aperiodic" regular expressions)

LTL, linear temporal logic

LTL formulae over Σ = {p1, ...,pn} are given by the following grammar.

ϕ ∶∶= pi ∣∣ ¬ϕ ∣∣ ϕ ∧ ϕ ∣∣ ϕ ∨ ϕ ∣∣ Xϕ ∣∣ Fϕ ∣∣ Gϕ ∣∣ ϕU ϕ

We assume a simple cost(⋅) function that gives the cost of each formula. (E.g.
size)

LTLf semantics: satisfaction relation

Let tr be a finite trace and ϕ a formula.

tr , i ⊧ ϕ

▸ tr , i ⊧ p if p ∈ tr(i)
▸ ...
▸ tr , i ⊧ Xϕ, if tr , i + 1 ⊧ ϕ,
▸ tr , i ⊧ Fϕ, if there is i ≤ j < len(tr) with tr , j ⊧ ϕ,

LTLf semantics: satisfaction relation

Let tr be a finite trace and ϕ a formula.

tr , i ⊧ ϕ

▸ tr , i ⊧ p if p ∈ tr(i)
▸ ...
▸ tr , i ⊧ Xϕ, if tr , i + 1 ⊧ ϕ,
▸ tr , i ⊧ Fϕ, if there is i ≤ j < len(tr) with tr , j ⊧ ϕ,

LTLf semantics: language of a formula

Each ϕ induces languages:

Lang(ϕ, i) = {tr ∣ tr , i ⊧ ϕ} Lang(ϕ) = Lang(ϕ,0)

LTLf -learning by program synthesis on a
GPU.

Program synthesis

Algorithmic generation of syntactic entities from specifications.

Dominant flavours:
▸ PBE (= programming by example), where the input is a set of examples
▸ PBF (= programming by formula), where the input is a logical formula

Program synthesis

Naive algorithm: bottom-up enumeration

def enumerate(P, N):
cost = 0
while true:

phi = next_formula(cost)
if phi satisfies (P, N):

return with phi
cost += 1

aka generate-and-filter, guess-and-check, ...!

if enum(0) satisfies (P, N) then return enum(0);

if enum(1) satisfies (P, N) then return enum(1);

if enum(2) satisfies (P, N) then return enum(2);

if enum(3) satisfies (P, N) then return enum(3);

if enum(4) satisfies (P, N) then return enum(4);

if enum(5) satisfies (P, N) then return enum(5);

...

if enum(0) satisfies (P, N) then return enum(0)
PAR

if enum(1) satisfies (P, N) then return enum(1)
PAR

if enum(2) satisfies (P, N) then return enum(2)
PAR

if enum(3) satisfies (P, N) then return enum(3)
PAR

if enum(4) satisfies (P, N) then return enum(4)
PAR

if enum(5) satisfies (P, N) then return enum(5)
PAR

...

Embarrassingly parallel!

Branch-free algorithms and data-structures: search space

We are going a (refined variant of) bottom-up enumeration, so each step needs to
be fast!

Branch-free algorithms and data-structures: search space

Search space Representation Data Structure Issue
Formula Tree Pointers Slow, redundant
Language Σ∗ → B – Infinite
Language up to P ∪N (P ∪N)→ B Bitvector Non-compositional
Language up to cl(P ∪N) cl(P ∪N))→ B Bitvector More space

Branch-free algorithms and data-structures: search space

Need to prove ϕ ⊧ (P,N) so quotient formulae by equality up to Lang(ϕ) ∩ (P ∪N)

(P ∪N)→ B is (isomorphic to) bitvector, assuming a fixed total order on P ∪N.

1L ∶ P ∪N → B

Branch-free algorithms and data-structures: search space

Need to prove ϕ ⊧ (P,N) so quotient formulae by equality up to Lang(ϕ) ∩ (P ∪N)

(P ∪N)→ B is (isomorphic to) bitvector, assuming a fixed total order on P ∪N.

1L ∶ P ∪N → B

Branch-free algorithms and data-structures: search space

Need to prove ϕ ⊧ (P,N) so quotient formulae by equality up to Lang(ϕ) ∩ (P ∪N)

(P ∪N)→ B is (isomorphic to) bitvector, assuming a fixed total order on P ∪N.

1L ∶ P ∪N → B

Bitvector representation of ϕ

For trace tr of length n satisfaction is isomorphic to bitvector bv of same length.

bv(i) =
⎧⎪⎪
⎨
⎪⎪⎩

1 tr , i ⊧ ϕ
0 else

Example for tr = “squeegee” and atomic proposition g:

ϕ bv
g 00000100

Xg 00001000
XXg 00010000

XXXg 00100000
XXXXg 01000000

XXXXXg 10000000
XXXXXXg 00000000

Note:
▸ Bitvector is suffix-closed
▸ Bitshifts only implements X

branch-free
▸ Bitshifts are machine

instructions
▸ Bitshifts assume locality

Bitvector representation of ϕ

For trace tr of length n satisfaction is isomorphic to bitvector bv of same length.

bv(i) =
⎧⎪⎪
⎨
⎪⎪⎩

1 tr , i ⊧ ϕ
0 else

Example for tr = “squeegee” and atomic proposition g:

ϕ bv
g 00000100

Xg 00001000
XXg 00010000

XXXg 00100000
XXXXg 01000000

XXXXXg 10000000
XXXXXXg 00000000

Note:
▸ Bitvector is suffix-closed
▸ Bitshifts only implements X

branch-free
▸ Bitshifts are machine

instructions
▸ Bitshifts assume locality

Bitvector representation of ϕ

For trace tr of length n satisfaction is isomorphic to bitvector bv of same length.

bv(i) =
⎧⎪⎪
⎨
⎪⎪⎩

1 tr , i ⊧ ϕ
0 else

Example for tr = “squeegee” and atomic proposition g:

ϕ bv
g 00000100

Xg 00001000
XXg 00010000

XXXg 00100000
XXXXg 01000000

XXXXXg 10000000
XXXXXXg 00000000

Note:
▸ Bitvector is suffix-closed
▸ Bitshifts only implements X

branch-free
▸ Bitshifts are machine

instructions
▸ Bitshifts assume locality

Bitvector representation of ϕ

Suffix closure of P ∪N = {anna, tina} is {tina, ina,na,a,anna,nna}

Irredundant Redundant

▸ Preserves locality
▸ Allows compositional construction of

(representations of) LTLf formulae
▸ Space/time trade-off

Branch-free X

Let bv represent formula ϕ. Want bitvector for Xϕ.

def branchfree_X(bv):
return bv << 1

Branch-free X

Let bv represent formula ϕ. Want bitvector for Xϕ.

def branchfree_X(bv):
return bv << 1

Branch-free F
Let bv represent formula ϕ. Want bitvector for Fϕ.

def branchfree_F(bv):
L = len(bv)
for i in range(log(L)+1):

bv |= bv << 2**i
return bv

def branchfree_F(bv): // Assume length(bv) == 64
bv |= bv << 1
bv |= bv << 2
bv |= bv << 4
bv |= bv << 8
bv |= bv << 16
bv |= bv << 32

return bv

Branch-free F
Let bv represent formula ϕ. Want bitvector for Fϕ.

def branchfree_F(bv):
L = len(bv)
for i in range(log(L)+1):

bv |= bv << 2**i
return bv

def branchfree_F(bv): // Assume length(bv) == 64
bv |= bv << 1
bv |= bv << 2
bv |= bv << 4
bv |= bv << 8
bv |= bv << 16
bv |= bv << 32

return bv

Branch-free F
Let bv represent formula ϕ. Want bitvector for Fϕ.

def branchfree_F(bv):
L = len(bv)
for i in range(log(L)+1):

bv |= bv << 2**i
return bv

def branchfree_F(bv): // Assume length(bv) == 64
bv |= bv << 1
bv |= bv << 2
bv |= bv << 4
bv |= bv << 8
bv |= bv << 16
bv |= bv << 32

return bv

Branch-free U

def branchfree_U(bv1, bv2):
L = len(bv1)
for i in range(log(L)+1):

bv2 |= bv1 & (bv2 << 2**i)
bv1 &= bv1 << 2**i

return bv2

def branchfree_U(bv1, bv2): // Assume length(bv1) == 64
bv2 |= bv1 & (bv2 << 1)
bv1 &= bv1 << 1
bv2 |= bv1 & (bv2 << 2)
bv1 &= bv1 << 2
bv2 |= bv1 & (bv2 << 4)
bv1 &= bv1 << 4
bv2 |= bv1 & (bv2 << 8)
bv1 &= bv1 << 8
bv2 |= bv1 & (bv2 << 16)
bv1 &= bv1 << 16
bv2 |= bv1 & (bv2 << 32)

return bv2

Complexity

Theorem
Algorithm implements the LTLf semantics branch-free in O(logn) time (n trace
length), assuming bitwise boolean operations and shifts by powers of 2 have costs.

Previous implementations are O(n2) or worse

Main loop (1)

language_cache = []

def enum(p, n, cost):
if (p, n) can be solved with Atom then return Atom
language_cache.append([Atom])
for c in range(cost(Atom)+1, cost(overfit(p, n))):

language_cache.append([])
for op in [F, U, G, X, And, Or, Not]:

handleOp(op, p, n, c, cost)
return overfit(p, n)

Main loop (2)

def handleOp(op, p, n, c, cost):
match op:

case F:
for all phi in language_cache(c-cost(F)):

phi_new = branchfree_F(phi)
if phi_new |= (p, n): then exit(phi_new)
if phi_new is unique in language_cache:

language_cache[c].append(phi_new)
case U:

...

Redundancies of syntax

We cache bitvectors (representing formulae) in a
(read-only) language cache. Why?

Problem: LTLf operators don’t reserve
uniqueness.

If bv1 represents ϕ and bv2 represents ψ, both
are unique, i.e., have not been seen before, then
it is not guaranteed that the bitvector
representing ϕU ψ is unique.

Uniqueness check of newly constructed
(representation of) formula. Using fast hashing
library. Most expensive part of search.

Density conjecture

Conjecture
Density of unique formulae among all formulae is 0

Explosive growth of language cache main scaling limit. Two solutions

▸ Relaxed uniqueness check
▸ Divide-and-conquer

Relaxed uniqueness

(Pseudo-)Randomly reject unique representations of formulae from language
cache

This is sound: if we find ϕ that satisfies (P,N) we are done

But might increase size of returned formula.

Relaxed uniqueness

(Pseudo-)Randomly reject unique representations of formulae from language
cache

This is sound: if we find ϕ that satisfies (P,N) we are done

But might increase size of returned formula.

I♡ exponential algorithms

Divide & conquer

Relaxed uniqueness checks, and bitvector representation are not enough to
improve on our scalability issue w.r.t. memory.

Divide & conquer

If (P,N) is too big, split (P,N), into disjoint (Pi ,Nj) for i , j = 1,2, such that

P = P1 ∪P2 N = N1 ∪N2

Learn recursively:
▸ ϕ11 = synth(P1,N1)

▸ ϕ12 = synth(P1,N2)

▸ ϕ21 = synth(P2,N1)

▸ ϕ22 = synth(P2,N2)

Combine all into (ϕ11 ∧ ϕ12) ∨ (ϕ21 ∧ ϕ22)

Not guaranteed to be minimal

Divide & conquer

Interesting variant: probabilistic sampling from (P,N) effective.

Two sources of losing minimality

▸ Divide & conquer
▸ Relaxed uniqueness checks

For small (P,N) we don’t need those and our algorithm learns minimal formula.

Benchmarks

Existing benchmarks are too easy, essentially all solved within measurement
threshold.

We made various new benchmarks. Please use them.

Comparison with SOTA (Scarlet)

Future

▸ Almost nothing we do in this paper is tied to LTLf . Almost any program
synthesis approach should be re-implemented on GPUs. In the future the
performance gap between CPUs and GPUs will grow!

▸ Scaling to richer languages.
▸ Need new form of computational complexity that is predictive for modern

hardware.
▸ Programming language support for GPUs needs improvement.

Thank you!

I♡ GPUs
Good talk from PLDI 2024 about programming contemporary compute https://www.youtube.com/live/66oKqvwoIv0?t=1238s

 https://www.youtube.com/live/66oKqvwoIv0?t=1238s

Relaxed uniqueness

We implement (pseudo-)random decision by hashing:

We check for uniqueness not using full bitvectors, but bitvectors hashed to k bits.

Choice of k = 126 bits is pragmatic, in experiments there is unexplained phase
transition at around 70 bits.

If size of bitvector is ≤ 126 then our LTLf -learner is precise: returns minimal
formula.

Density conjecture

Fix an enumeration # of all LTLf formulae (resp. aperiodic languages) over Σ.

Definition
L =#(n) is unique if for all i < n, L ≠#(i). ϕ is unique if ϕ’s language is unique.

Conjecture
In the limit the density of unique formulae among all formulae is 0:

lim
n→∞

#{ϕ ∣ cost(ϕ) ⋆ n, ϕ unique}
#{ϕ ∣ cost(ϕ) < n}

= 0

where ⋆ ranges over =,<. (Mutatis mutandis for aperiodic languages)

I doubt this depends on the chosen notion of cost / enumeration either.

Density conjecture

Fix an enumeration # of all LTLf formulae (resp. aperiodic languages) over Σ.

Definition
L =#(n) is unique if for all i < n, L ≠#(i). ϕ is unique if ϕ’s language is unique.

Conjecture
In the limit the density of unique formulae among all formulae is 0:

lim
n→∞

#{ϕ ∣ cost(ϕ) ⋆ n, ϕ unique}
#{ϕ ∣ cost(ϕ) < n}

= 0

where ⋆ ranges over =,<. (Mutatis mutandis for aperiodic languages)

I doubt this depends on the chosen notion of cost / enumeration either.

Noisy-learning conjecture

Conjecture
If we learn with an allowed ϵ fraction of misclassified strings from (P,N), then
learning becomes easier in a way that is exponential in ϵ.

Here easier means: the size of the bottom-up construction of formulae, before the
first solution is hit, shrinks.

▸ L. Pitt, M. K. Warmuth, The minimum consistent DFA problem cannot be approximated within any polynomial. (1989)
▸ M. Kearns, L. Valiant, Cryptographic Limitations on Learning Boolean Formulae and Finite Automata. (1994)

Density conjecture

Fix an enumeration # of all LTLf formulae (resp. aperiodic languages) over Σ.

Definition
L =#(n) is unique if for all i < n, L ≠#(i). ϕ is unique if ϕ’s language is unique.

Conjecture
In the limit the density of unique formulae among all formulae is 0:

lim
n→∞

#{ϕ ∣ cost(ϕ) ⋆ n, ϕ unique}
#{ϕ ∣ cost(ϕ) < n}

= 0

where ⋆ ranges over =,<. (Mutatis mutandis for aperiodic languages)

Phase transition conjecture
Recall: relaxed uniqueness checks map candidate to k bits. The smaller the k the
bigger the resulting learned formula. Experiment:

Conjecture
This is a phase transition.

