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Stokes and Purdon (1) raise several concerns
about the use of Granger-Geweke causality (GGC)
analysis in neuroscience. They make two primary
claims:
1. That GGC estimates may be severely biased

or of high variance, and

2. That GGC fails to reveal the full struc-
tural/causal mechanisms of a system.

Unfortunately, these claims rest, respectively, on an
incomplete evaluation of the literature and a mis-
conception about what GGC can be said to mea-
sure.
Stokes and Purdon explain how bias and variance

in GGC estimation arise from the use of separate,
independent full and reduced regressions. How-
ever, this problem has long been recognised (2, 3)
and, moreover, has already been solved by meth-
ods which derive GGC from a single full regres-
sion. These methods effectively calculate reduced
model parameters from the full model via factori-
sation of the spectral density matrix. Published
approaches (also implemented in freely-available
software) include Wilson’s frequency-domain algo-
rithm (4), Whittle’s time-domain algorithm (3),
and a state-space method involving solution of a
discrete-time algebraic Riccati equation (5). Thus,
the source of bias and variance discussed in (1) has
already been resolved (see also 6). We note that
(1) erroneously state that “Barnett and Seth [. . . ]
have proposed fitting the reduced model and us-
ing it to directly compute the spectral components
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. . . ” whereas, as mentioned, we derive GGC from
a single full regression (3).

Stokes and Purdon then note that GGC reflects
a combination of ‘transmitter’ and ‘channel’ dy-
namics, and is independent of ‘receiver’ dynam-
ics. This independence has also been previously
identified; it follows directly from the invariance
of GGC under certain affine transformations (7).
Stokes and Purdon argue that this runs “counter
to intuitive notions of causality intended to explain
observed effects” since, as they put it, “neuroscien-
tists seek to determine the mechanisms that pro-
duce ‘effects’ within a neural system or circuit as a
function of inputs or ‘causes’ observed at other lo-
cations”. However, this perspective is more closely
aligned with approaches such as dynamic causal
modelling (DCM)—usually characterised as effec-
tive connectivity—which attempt to find the opti-
mal mechanistic (circuit level) description that ex-
plains observed data. GGC, by contrast, models
statistical dependencies among observed responses
and is therefore a measure of (directed) functional
connectivity (8). Essentially, the distinction is be-
tween making inferences about an underlying phys-
ical causal mechanism (DCM) and making infer-
ences about directed information flow (GGC; 9).
Both address valid questions.

Our view is that the real problems associated
with GGC analysis of neurophysiological data re-
side elsewhere: with issues of stationarity, linearity
and exogenous influences, as noted in (1), but also
with the noise, sampling rates and temporal/spatial
aggregation engendered by neural data acquisition
(10).
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