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Granger-Geweke causality (GGC) is a powerful and popular method for identifying directed functional (‘causal’)
connectivity in neuroscience. In a recent paper, Stokes and Purdon (2017b) raise several concerns about its use.
They make two primary claims: (1) that GGC estimates may be severely biased or of high variance, and (2) that
GGC fails to reveal the full structural/causal mechanisms of a system. However, these claims rest, respectively, on
an incomplete evaluation of the literature, and a misconception about what GGC can be said to measure. Here we
explain how existing approaches resolve the first issue, and discuss the frequently-misunderstood distinction
between functional and effective neural connectivity which underlies Stokes and Purdon's second claim.
Granger-Geweke causality (GGC) is a powerful analysis method for
inferring directed functional (‘causal’) connectivity from time-series
data, which has become increasingly popular in a variety of neuro-
imaging contexts (Hesse et al., 2003; Roebroeck et al., 2005; Ding et al.,
2006; Dhamala et al., 2008a; Bressler and Seth, 2011; Valdes-Sosa et al.,
2011; Barrett et al., 2012; Seth et al., 2015). GGC operationalises a sta-
tistical, predictive notion of causality in which causes precede, and help
predict their effects. When implemented using autoregressive modelling,
GGC can be computed in both time and frequency domains, in both
bivariate and multivariate (conditional) formulations. Despite its popu-
larity and power, the use of GGC in neuroscience and neuroimaging has
remained controversial. In a recent paper, Stokes and Purdon (2017b)
raise two primary concerns: (1) that GGC estimates may be severely
biased or of high variance, and (2) that GGC fails to reveal the full
structural/causal mechanisms of a system. We explain why these con-
cerns are misplaced.

We note that Stokes and Purdon (2017a) have since responded to
critiques of their claims by Barnett et al. (2017),1 and Faes et al. (2017).
Here, we expand on the points made in those articles [see also Dhamala
et al. (2018)], and reply in detail to Stokes and Purdon (2017a).

Regarding the first claim, Stokes and Purdon (2017b) describe how
bias and variance in GGC estimation arise from the use of separate, in-
dependent, full and reduced regressions. While true, this problem has
long been recognised (Chen et al., 2006; Barnett and Seth, 2014), and has
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already been solved by methods which derive GGC from a single full
regression.2 These methods essentially extract reducedmodel parameters
from the full model via factorisation of the spectral density matrix.
Well-documented approaches include Wilson's frequency-domain algo-
rithm (Wilson, 1972; Dhamala et al., 2008b, 2018), Whittle's
time-domain algorithm (Whittle, 1963; Barnett and Seth, 2014), and a
state-space approach which devolves to solution of a discrete-time
algebraic Riccati equation (Lancaster and Rodman, 1995; Barnett and
Seth, 2015; Solo, 2016). Thus, the source of bias and variance discussed
in Stokes and Purdon (2017b) has already been addressed and resolved
by previously published methods.

In their reply, Stokes and Purdon (2017a) acknowledge some of this
work by saying: “We also described the state space solution to these
problems in Dr. Stokes' Ph.D. thesis [Stokes (2015)] in January 2015, but
felt it was important to first characterize and describe the problem,
before laying out a solution to that problem.” It is however worth noting
that, at that time, the problem itself was already long-acknowledged
(Chen et al., 2006) and, even prior to publication of the state-space
method, the distinct and equally effective methods of Dhamala et al.
(2008b) and Barnett and Seth (2014) were already in the public domain.

To further illustrate the issue of bias and variance highlighted by
Stokes and Purdon (2017a), and its resolution by single-regression
methods, in Fig. 1 we plot estimated frequency-domain GGC for the
3-node vector-autoregressive (VAR) model in Stokes and Purdon
ncorrect; see, e.g., Solo (2016).
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Fig. 1. Granger-Geweke frequency-domain causalities estimated by the single-
regression state-space method (Barnett and Seth, 2015; Solo, 2016) for the
3-node VAR model in Stokes and Purdon (2017b), (Example 1, cf. Fig. 2). The
true model order of 3 was used for the (single, full-model) VAR estimates. Plots
are based on 10;000 time series realisations of 500 observations: red lines plot
the exact causality for the model and blue lines sample estimate medians. The
shaded areas indicate 90% central confidence intervals, while the green lines
plot representative sample estimates. The dashed horizontal lines indicate crit-
ical thresholds over all frequencies [see Stokes and Purdon (2017b), Supporting
Information, S9] at 95% significance, derived from simulation of the corre-
sponding null model.
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(2017b), Example 1, using the single-regression state-space method
(Barnett and Seth, 2015; Solo, 2016); see also Faes et al. (2017), Fig. 1
and Dhamala et al. (2018), Fig. 1. We remark that identical results are
obtained using the time-domain spectral factorisation method of Barnett
and Seth (2014), as implemented in the current (v1.0, 2012) release of
the associated MVGC Matlab© software package (Barnett and Seth,
2012). Our Fig. 1 may be directly compared with Fig. 2 in Stokes and
Purdon (2017b); we see clearly that all estimates are strictly
non-negative, and that exaggerated bias and variance associated with the
dual-regression approach are absent. Therefore, Stokes and Purdon
(2017b) are in error when they state that “Barnett and Seth […] have
proposed fitting the reduced model and using it to directly compute the
spectral components …”. This is important to note because our MVGC
toolbox has been widely adopted within the community, with > 3;500
downloads and a significant number of high-impact research publica-
tions using the method (e.g., Yellin et al., 2015; Bruneau et al., 2015;
Place et al., 2016; Schmitt et al., 2017; Wilber et al., 2017). Thus, we can
reassure users of the toolbox that problems of bias and variance as
described by Stokes and Purdon (2017b) do not apply.

Sample variance is, of course, still evident, as is bias due to non-
negativity of the GGC sample statistic (which may be countered by
standard surrogate data methods), but both remain well below their
minimum values across all model orders for the dual-regression case (as
evidenced by Stokes and Purdon, 2017b, Fig. 2). Fig. 2 further compares
bias and variance of time-domain GGC for the example system for single
and dual regressions, at model order 3, across a wide-range of time-series
lengths. A single regression consistently leads to substantially less bias
and variance, except at high time-series lengths where there is a drop-off
of bias and variance for both methods.

Stokes and Purdon (2017b) do correctly identify a fundamental cause
of the problem with dual-regression GGC estimation: even if the full
process is a finite-order autoregression, the reduced process will gener-
ally not be finite-order autoregressive; rather, it will be
vector-autoregressive moving-average (VARMA), or equivalently, a
finite-order state-space process (Hannan and Deistler, 2012) –whichmay
be poorly modelled as a finite-order VAR (Barnett and Seth, 2014). The
problem is in fact more pervasive than this: the full process itself may
have a strong moving-average (MA) component and be poorly-modelled
as a finite-order VAR. This is because common features of neurophysio-
logical data acquisition, sampling and preprocessing procedures such as
subsampling and other temporal aggregation, filtering, measurement
noise and sub-process extraction will all, in general, induce an MA
component (Barnett and Seth, 2011; Seth et al., 2013; Solo, 2016). This is
particularly pertinent to fMRI data, where the haemodynamic response
acts as a slow, MA filter. Fortunately, the state-space and non-parametric
approaches handle VARMA data parsimoniously, hence avoiding this
problem.

The second claim of Stokes and Purdon (2017b) is that GGC fails to
reveal the full structural/causal mechanisms of a system. In their reply to
our previous commentary, Stokes and Purdon (2017a) ask: “[Barnett
et al. (2017)] emphasize that Granger causality reflects a ‘directed in-
formation flow.’ But how does one meaningfully interpret that infor-
mation flow?” We address that question via a brief recap of the history,
definition and interpretation of Granger causality. Wiener and Granger,3

in their original conception, considered a notion of causality which, in
Granger's words (Granger, 2004) comprises two components: (1) The
cause occurs before the effect, and (2) The cause contains information
about the effect that is unique, and is in no other variable. Granger
refined these premises to a statement about dependencies between sto-
chastic processes, essentially as follows: given two jointly-distributed
stochastic processes Xt ;Yt in the context of a “universe of information”
U t (excluding Xt and Yt) at each time stamp t, then Y does not
Granger-cause X at time t iff
3 Granger explicitly attributes the original premise to Norbert Wiener (1956).



Fig. 2. Granger-Geweke time-domain causality bias (left column) and variance
(right column) for estimation by the single-regression state-space method (red
lines) and dual-regression method (blue lines), plotted aganst time series length,
for the example 3-node VAR model in Stokes and Purdon (2017b). Bias is
measured as the difference between the sample median and true causality, while
variance is measured as the mean absolute deviation of the sample causality (we
use non-parametric measures, as the GGC sample estimators are non-negative,
non-Gaussian, and potentially highly skewed). The true model order of 3 was
used for all VAR estimates. Plots are based on 10;000 time series realisations for
each number of observations.
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where Pð�j �Þ denotes conditional distribution and superscript ‘-’ denotes
history up to (but not including) time t. That is, the distribution of X at
time t, contingent on the full historical information set, is unchanged by
exclusion of the history of Y. Granger (1963, 1969, 1981) then went on to
devise statistical tests for the null hypothesis of non-causality. To do so,
he considered (1) for linear VAR processes. The parametric VAR oper-
ationalisation was subsequently formalised by Geweke in two seminal
papers (Geweke, 1982, 1984), where he defines (Geweke-)Granger
causality as a log-likelihood ratio test statistic for the null hypothesis of
non-causality, written FY→X j U , and also introduces a spectral decom-
position of the statistic.

An explicit information-theoretic expression of Wiener-Granger cau-
sality surfaced nearly two decades later in the guise of transfer entropy
(TE; Schreiber, 2000; Palu�s et al., 2001), a form of conditional mutual
information (MI):

TY→XjU � I
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where Ið� : � j �Þ denotes conditional MI. Noting that variables A;B are
independent conditional on variable C iff IðA : B j CÞ ¼ 0, the connection
with (1) is immediately clear: Y does not Granger-cause X at time t iff
TY→X j U vanishes at t. In this sense, TE is arguably a “pure-
r”—nonparametric—expression of Wiener and Granger's notion than the
parametric GGC form. Its interpretation as a metric for information
transfer between stochastic variables rests on the appealing intuition of
information as reduction of uncertainty. The precise quantitative rela-
tionship between GGC and TE was established by Barnett et al. (2009)
and Barnett and Bossomaier (2013) which demonstrate, respectively,
that if all stochastic processes are jointly Gaussian then there is an exact
equivalence between GGC and TE, and that, more generally, if they are
jointly Markovian (possibly nonlinear and/or non-Gaussian) then the
corresponding Granger-Geweke log-likelihood ratio statistic is asymp-
totically equivalent to the TE. GGC and TE, in short, are parametric and
nonparametric cousins, which instantiate the same formal concept.4

Interpretation and intuition accordingly transfer between the notions.
The relationship between parametric GGC and information-theoretic TE
in fact closely mirrors that between correlation and MI, which, again, are
equivalent for jointly Gaussian variables. Indeed, correlation statistics are
widely regarded as standard—and uncontentious—measures of (undi-
rected) functional connectivity.

Stokes and Purdon (2017b) note that GGC reflects a combination of
‘transmitter’ and ‘channel’ dynamics, and is independent of ‘receiver’
dynamics. Again, this independence has been previously identified, as a
direct consequence of the invariance of GGC under certain affine trans-
formations (Barrett et al., 2010; Barnett and Seth, 2011). But why should
this independence matter? They suggest that it runs “counter to intuitive
notions of causality intended to explain observed effects” since, accord-
ing to them, “neuroscientists seek to determine the mechanisms that
produce ‘effects’ within a neural system or circuit as a function of inputs
or ‘causes’ observed at other locations”. In fact, this view resonates more
strongly with approaches such as Dynamic Causal Modelling (DCM;
Friston et al., 2003)—usually characterised as effective connectivity—-
which attempt to find the optimal mechanistic (circuit-level) description
that explains observed data. GGC, on the other hand, models statistical
dependencies among observed responses and is therefore an example of
(directed) functional connectivity (see Seth et al., 2015; Friston et al.,
4 We concur with Stokes and Purdon (2017a) that other related, but
non-equivalent, measures have been misleadingly conflated with Granger cau-
sality, in particular the “directed transfer function” (DTF; Kaminski and Bli-
nowska, 1991) and “partial directed coherence” (PDC; Baccala and Sameshima,
2001). While these are valid (spectral) measures in their own right, they cannot
be said to explicitly reflect the Wiener-Granger notion of causality.
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2013, for in-depth comparison). Essentially, the distinction is between
making inferences about an underlying physical causal mechanism (DCM;
Valdes-Sosa et al., 2011) and—as explained above—making inferences
about directed information flow (GGC; Barnett et al., 2009). DCM is able to
deliver evidence for circuit-level descriptions of neural mechanism from
a limited repertoire of tightly-framed hypotheses, which must be inde-
pendently motivated and validated (Stephan et al., 2010); it is, in
particular, unsuited to exploratory analyses. GGC inference, on the other
hand, is data-driven and “data-agnostic” (it makes few assumptions about
the generative process, beyond that it be reasonably parsimoniously
modelled as a linear stochastic system), and as such is well-suited to
exploratory analyses. It delivers an information-theoretic interpretation
of the neural process which is both amenable to statistical inference, and
which also stands as an effect size for directed information flow between
components of the system (Barrett and Barnett, 2013). Our view is that
both approaches address valid questions of interest for neuroscientific
analyses, and indeed, that this is reflected in the burgeoning literature in
both effective and functional connectivity analysis.

Stokes and Purdon (2017a), in their reply, go on to say: “While
GG-causality is decipherable in reference to the selected model and its
component dynamics, it is not understandable without these details.”
This statement appears to be based on an (unfortunately common)
misunderstanding. The VAR (or, more recently, state-space) models that
underlie the most common GGC inference methods fulfil an entirely
different function from the circuit-level models that underpin, e.g., DCM.
They are, in a sense “generic” [this statement can be made more precise;
see, e.g., Geweke (1982)] and do not pretend to represent physical
mechanism. In the sense of the (asymptotic) equivalence with TE, GGC
may be considered an approximation to the nonparametric TE, and the
underlying VAR model a mathematical construct to operationalise this
approximation, in the same way that the linear regression model un-
derlying a parametric correlation statistic might be deployed to approx-
imate the information-theoretic MI. Indeed, the power of the
information-theoretic approach is precisely that it furnishes intuitive,
model-free accounts of dynamical processes.

Concluding, the primary claims in Stokes and Purdon (2017b) are
invalid. Currently available implementations deal appropriately with
issues of bias and variance associated with dual-regression methods, and
invariance to receiver dynamics does not undermine GGC's ability to
characterize information flow. Altogether, when used with appropriate
care, GGC represents a conceptually satisfying and statistically powerful
method for directed functional connectivity analysis in neuroscience and
neuroimaging. However, a range of additional challenges remain in
further developing this useful technique. These include issues of statio-
narity, linearity and exogenous influences, as noted by Stokes and Purdon
(2017b), and in addition the influences of noise, sampling rates and
temporal/spatial aggregation engendered by neural data acquisition
(Solo, 2016; Barnett and Seth, 2017).
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