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Abstract

We describe and argue for a strategy of performance profiling and comparison in the en-
gineering of parsing systems for wide-coverage linguistic grammars. A performance profile
is a precise, rich, and structured snapshot of system (and grammar) behaviour at a given
development point. The aim is to characterize system performance at a very detailed
technical level, but at the same time to abstract away from idiosyncracies of particular
processors.

Profiles are obtained with minimal effort by applying a specialized profiling tool to a set
of structured reference data (taken from both existing test suites and corpora), in conjunc-
tion with a uniform format for test data and processing results. The resulting profiles can
be analyzed and visualized at various levels of granularity in order to highlight different
aspects of system performance, thus providing a solid empirical basis for system refine-
ment and optimization. Since profiles are stored in a database, comparison with earlier
versions, different parameter settings, or other processing systems is straightforward.

We apply several salient performance metrics in a contrastive discussion of various
(one-pass, bottom-up, chart-based) parsing strategies (viz. passive vs. active and uni- vs.
bidirectional approaches). Based on insights gained from detailed performance profiles,
we outline and evaluate a novel ‘hyper-active’ parsing strategy. We also present prelim-
inary profiles for techniques for ‘packing’ of local ambiguities with respect to (partial)
subsumption of feature structures.

1 Background

[...] we view the discovery of parsing strategies as a largely experimental
process of incremental optimization. (Erbach, 1991a)

Until recently, the primary test corpus used in the development of the LinGO HPSG
grammar (Flickinger & Sag, 1998) was the ‘csli’ test suite (see the introduction to
this volume). This test suite was designed to contain as little ambiguity as possible
so that each sentence would exercise the grammar with respect to a single linguistic
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phenomenon or type of interaction between phenomena. The test suite therefore
necessarily contains only short sentences. Extensions to grammatical coverage have
been driven in part by the requirements of the Verbmobil project (Kay, Gawron,
& Norvig, 1994), which has provided word-level transcriptions of human-human
dialogs as a development corpus. The majority of sentences in this corpus are also
relatively short.

Carroll (1994) argues that parsers developed in tandem with large unification-
based grammars often become tuned to the grammar concerned, in that the process-
ing algorithms adopted are optimised for the particular grammar. It is likely that the
LinGO grammar has had this effect on the LkB development environment (Copes-
take, 1992) parser—and also to some extent on the other parsers described in this
volume. In addition, the tuning has extended to the type of input expected since
the test suites and development corpora typically contain only short sentences.

Although the worst-case time complexity of parsing with current linguistically-
motivated grammar formalisms such as HPSG and LFG is intractable, some progress
has been made in improving average case complexity by devising parsing strate-
gies which factor the search space intelligently (e.g. the combination of top-down
and bottom-up control in van Noord (1997), and the contexted representation of
disjunctive information in Maxwell and Kaplan (1995)). Such strategies have only
just started to be investigated for parsing with the LinGO grammar (and HPSG
implementations in general), since:

o the large size of grammars, and particularly of feature structures, means that
primitive operations such as unification are potentially very expensive; this
has led to the development of techniques for compilation of feature structure
operations into abstract machine instructions (Miyao, Makino, Torisawa, and
Tsujii, this volume), and pre-unification filtering and minimisation of feature
structure copying (Malouf, Carroll, and Copestake, this volume); and

e the concentration of grammatical information in the lexicon and the lack of a
context-free phrase structure backbone weakens the power of top-down pre-
diction; thus most work in this area on parsing strategies has been concerned
with refining purely bottom-up techniques;' an advantage of this, in the con-
text of Verbmobil for example, is that in the absence of top-down constraints
all complete constituents are available for robust partial parsing (van Noord
(1997) achieves a similar effect through underspecification of the initial parse
goal).

Parsing to support grammar development needs to be fast only for short strings,
but real-world applications may require fast processing of longer utterances, such
as occur in newspaper text, and more ambiguous input, such as word lattices pro-
duced by a speech recogniser. Unfortunately, no analytical technique exists that can
adequately characterize grammar complexity in a practical setting or can predict

! An exception is the work reported by Torisawa, Nishida, Miyao, and Tsujii (this volume)
on parsing with an automatically extracted context-free backbone, which then supplies
predictive information on feature-based constraint application in a second phase.
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from a given grammar what the best parsing strategy for it might be. We therefore
need to use an empirical approach to identifying good parsing strategies. In the rest
of this article we describe such an approach (Section 2), profile the performance
of a number of parsers using the LinGO grammar (Section 3), use evidence from
the profiling to synthesise a novel ‘hyper-active’ parsing strategy (Section 3.3), and
conclude with preliminary experimental results for a parsing regime that incorpo-
rates local ambiguity packing based on (partial) subsumption of feature structures
(Section 4).

2 Performance profiling

In system development and optimization, subtle algorithmic and implementational
decisions often have a significant impact on system performance, so the ability to
monitor system evolution very closely is crucial. Developers should be enabled to
obtain a precise record of the status of the system at any point; also, comparison
with earlier results and between various parameter settings should be automated
and convenient. System performance, however, cannot be adequately characterized
merely by measurements of overall processing time (and perhaps memory usage).
Properties of (i) individual modules (in a classical setup, especially the unifier,
type system, and parser), (ii) the grammar being used, and even of (iii) the input
presented to the system all interact in complex ways. In order to obtain a good
understanding of the strengths and weaknesses of a particular configuration, finer-
grained records are required. By the same token, developer intuition and isolated
case studies are often insufficient, since in practise, people who have worked on
a particular system or grammar for years still find that an intuitive prediction of
system behaviour can be incomplete or plainly wrong.

Most grammar development environments supply facilities to batch-process a
test corpus and record the results produced by the system. However, these systems
are typically restricted to processing a flat, unstructured input file (listing test
sentences, one per line) and outputing a small number of processing results into
a log file. (Meta-)Systems like PLEUK (Calder, 1993) and HDRUG (van Noord &
Bouma, 1997) that facilitate the exploration of multiple descriptive formalisms and
processing strategies come with slightly more sophisticated benchmarking facilities
and visualization tools. However, they still largely operate on monolithic, unanno-
tated input data sets, restrict accounting of system results to a small number of
parameters (e.g. number of analyses, overall processing time, memory consumption,
possibly the total number of chart edges), and only offer a limited, predefined choice
of analysis views.

Oepen & Flickinger (1998) propose a methodology which they term grammar
profiling that builds on structured and annotated collections of test and reference
data (traditionally known as test suites) and an adaptation to grammar engineer-
ing of the profiling metaphor familiar in software development. The performance
profiling approach we elaborate in this article can be viewed as a generalization
of this methodology to the development, refinement, and empirical evaluation of
constraint-based processing systems—in line with the experimental paradigm sug-
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i-length length of test item in words; see Oepen, Netter, & Klein (1997)

readings number of complete analyses obtained; when applicable, after unpacking
ftasks number of argument instantiations filtered prior to execution

etasks number of attempts to instantiate an argument position in a rule

filter® percentage of parser actions predicted to fail: ftasks / (etasks + ftasks)
stasks number of successful instantiations of argument positions in rules

pedges number of passive edges built by the parser (typically in all-paths search)

unifications number of top-level calls into the feature structure unification routine

copies number of top-level feature structure copies made
tepu amount of cpu time (in milliseconds) spent in processing
space amount of dynamic memory allocated during processing (in bytes)

Table 1. Some of the parameters making up a competence & performance profile.

gested by, among others, Erbach (1991a) and Carroll (1994). We define a compe-
tence & performance profile as a rich, precise, and structured snapshot of system
behaviour at a given development point. The production, maintenance, and inspec-
tion of profiles is supported by a specialized software package (called [incr tsdb()]?)
that supplies a uniform data model, application program interface to the grammar-
based processing components, and facilities for profile analysis and comparison.
Profiles are stored in a relational database which accumulates a precise record of
system evolution, and which serves as the basis for flexible report generation, vi-
sualization, and data analysis via basic descriptive statistics. All tables and figures
used in this article, as well as most of the data collection for other contributions to
this volume, were generated using [incr tsdb()].

We have defined a common set of descriptive metrics which aim both for in-depth
precision and also for sufficient generality across a variety of processing systems.
Most parameters are optional, though analysis potential may be restricted for par-
tial profiles. Roughly, profile contents can be classified into information on (i) the
processing environment (grammar, platform, versions, parameter settings and oth-
ers), (ii) grammatical coverage (number of analyses, derivation and parse trees per
reading, corresponding semantic formulae), (iii) ambiguity measures (lexical items
retrieved, number of active and passive edges, where applicable, both globally and
per result), (iv) resource consumption (various timings, memory allocation), and
indicators of (v) parser and unifier throughput. Excluding relations and attributes
that encode annotations on the input data, the current competence & performance
database schema includes some one hundred attributes in five relations. Table 1
summarizes some of the parameters relevant to the discussion of parsing strategies
in this article and to other contributions in this volume; individual parameters will
be discussed in more detail in the sections to come.

2 See ‘http://www.coli.uni-sb.de/itsdb/’ for the (draft) [incr tsdb()] user manual, pro-
nunciation rules, and instructions on obtaining and installing the package.

3 Note that our definition of the pre-unification filter rate differs from that used by Kiefer,
Krieger, Carroll, & Malouf (1999): in the denominator they subtract the number of
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While the current [incr tsdb()] data model has already been successfully adapted
to six different parsing systems (with another two pending; see Section 5), it re-
mains to be seen how well it scales to the description of a larger variety of processing
regimes. And although absolute numbers must be interpreted with care, the com-
mon metric has already increased comparability and data exchange among several
processing platforms and sites, and has in some cases also helped to identify un-
expected sources of performance variation. For example, we have found that two
Sun UltraSparc servers with identical hardware configuration (down to the level
of cpu revision) and OS release reproducably exhibit a performance difference of
around ten per cent. This appears to be caused by different installed sets of vendor-
supplied operating system patches. Also, average cpu load and availability of main
memory have been observed to have a noticeable effect on cpu time measurements;
therefore, the data reported in this article, was collected in an (artificial, in some
sense) environment in which sufficient cpu and memory resources were guaranteed
throughout each complete test run. Finally, in the Lisp-based LKB and PAGE en-
vironments garbage collection (gc) creates an additional element of noise. Firstly,
ge frequency and efficiency are highly dependent on how the basic Lisp system is
configured, and especially on the overall process size and tuning of the garbage col-
lection strategy. Secondly, it seems there is a penalty on non-gc time after a garbage
collection has finished; this may be due to rehashing after object relocation or other
system-internal bookkeeping, and requires further investigation.

3 Analyzing and comparing parser strategies

In the following sections we apply the performance profiling methodology to a va-
riety of parsing strategies and show how the analytical parameters sketched earlier
can be used in the contrastive study of different algorithms. Sections 3.1 to 3.3
review a development cycle that resulted in a refinement of traditional parsing
algorithms (the ‘hyper-active’ parser) that was found beneficial in both all-paths
(typical in grammar development) and best-first modes (in time-critical applica-
tions like Verbmobil). Hyper-active parsing is now the standard algorithm for the
majority of processing environments represented in this volume.

3.1 Starting point: LKB vs. PAGE

We start with an empirical comparison of the performance of a passive and an
active chart parser, the former implemented in the LKB (by Ann Copestake and
the second author) and the second in PAGE (by Bernd Kiefer). While collaboration

successful unifications (stasks), giving a measure relating filter successes to the number
of unifications that ultimately fail. They therefore obtain seemingly higher filter rates
since their baseline is what a filter could maximally achieve, i.e. one hundred per cent if
all failures could be predicted. In contrast, our definition of filter gives the percentage of
(potential) parser actions that were not executed, providing a slightly more direct handle
on the share of the total search space that was not explored using (full) unification.
Although both definitions can be justified, there is unfortunately potential for confusion.
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and exchange between the LKB and PAGE developers have already resulted in ho-
mogenization of approaches and individual modules (the conjunctive PAGE unifier,
for instance, was developed at CSLI Stanford), the parsing regimes deployed in the
two systems differ significantly. Both parsers are implemented in Common Lisp, use
the Tomabechi (1991) quasi-destructive unification algorithm with the copy oper-
ation structure sharing improvements of Malouf et al. (this volume), are purely
bottom-up, compute all possible analyses, and perform no ambiguity packing (but
see section 4 below). Before any unification is attempted, both parsers apply the
same set of pre-unification filters, viz. a test against a static rule compatibility table
(Kiefer et al., 1999), and the ‘quick check’ partial unification test (Malouf et al.,
this volume).

The LKB passive chart parser uses a breadth-first CKY-like algorithm; it pro-
cesses the input string strictly from left to right, constructing all possible complete
constituents whose right vertex is at the (current) right boundary of the chart be-
fore moving on to the next lexical item. All complete constituents found are entered
in the chart. Attempts at rule application are made from right to left (i.e. rightmost
daughter first). All daughter unifications must succeed before the copy operation
on the rule mother is attempted. The basic strategy is similar to that used by ALE,
version 3.2 (Penn & Carpenter, 1999).

The active chart parser implemented in PAGE uses a variant of the algorithm
sketched by Erbach (1991b). It operates bidirectionally, both in processing the
input string and instantiating rules; crucially, the key daughter (see Section 3.2 for
details) of each rule is analyzed first, before the other daughter(s) are instantiated.
As all active edges are added to the chart, the parser must perform a copy operation
after each successful unification.

Both parsers have been used in large-scale grammar development for quite a while
and have been engineered and optimized to a similar degree. However, while the
LKB and the PAGE developers both assumed the strategy chosen in their own system
was the best-suited for parsing with large feature structures (as exemplified by the
LinGO grammar), the choices are motivated by conflicting desiderata. Not storing
active edges (as in the passive LKB parser) reduces the amount of feature structure
copying but requires frequent recomputation of partially instantiated rules, in that
the unification of a daughter constituent with the rightmost argument position of a
rule is performed as many times as the rule is applied to left-adjacent sequences of
candidate chart edges. Creating active edges that store partial results to the chart,
on the other hand, requires that more feature structure copies are made, which in
turn avoids the necessity of redoing unifications. However, given the effectiveness
of the pre-unification filters it is likely that for some active edges no attempts to
extend them with adjacent inactive edges will ever be executed, so that the copy
associated with the active edge was wasted effort.

A contrastive summary of performance profiles (using the LinGO grammar and
the ‘csli’ test suite) for the two parsers is presented in Table 2. For each of the
systems the table is broken down into two aggregates (divisions of the test set):
test items that are rejected by the grammar (the ‘readings = 0’ row), and items
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items filter etasks stasks pedges time space

‘CSl’L., Aggregate ﬂ % ¢ ¢ ¢ ¢ (S) ¢ (kb)
readings =0 476 941 477 401 75 026 1745

LKB  jeadings >0 817 942 764 645 125 043 2669
A readings = 0 470 95-5 160 140 78 0-29 3836
PAGE  ,eudings >1 818 956 284 238 144 0-56 3738

Table 2. Contrasting parser performance profiles: traditional LKB vs. PAGE.5

for which at least one analysis was derived (‘readings > 1°).* The performance
profiles confirm that the two parsers solve roughly the same problem, in that they
reject and accept almost identical subsets of test items, achieve comparable filter
efficiency, derive a similar number of passive edges, and exhibit the property that it
is computationally cheaper to reject an ungrammatical sentence than to enumerate
all analyses for well-formed input. Also, overall cpu time performance is similar for
both parsers. At the same time, the passive LKB parser executes dramatically more
parser actions (etasks, i.e. attempts to instantiate an argument position of a rule
by unification) while the active parser in PAGE requires significantly larger amounts
of memory (space).

Both observed differences can be explained given knowledge of the parsing regimes
deployed in the two systems. While the need to recompute partial analyses adds to
the number of executed parser tasks (in the LKB), the reduced copying of feature
structures results in lower memory consumption.® Thus, we can conclude that the
LKB successfully trades unifications for copies, and that the two distinctly different
parsing approaches achieve broadly equivalent performance.

However, one aspect in Table 2 requires further discussion: since grammar rules
in LinGO are at most binary branching, the LKB exhibits an imbalance between
the average number of passive edges built (pedges) and the number of parser tasks

4 While the LkB and PAGE behave very similarly in most respects, minor system
idiosyncracies—mostly in the treatment of inflectional morphology and irregular
spellings—result in small differences for the aggregate sizes in Table 2; a third class,
viz. items that were not parsed because of some processing error, typically because of
missing vocabulary, is omitted. Also, PAGE generates a few additional passive edges (the
pedges column) because it does not perform run-time type inference (i.e. the application
of constraints associated with a greatest lower bound that is computed at run-time) as
is done in the LkB. However, with the LinGO grammar and the types of profiling we
are reporting these minor differences can be ignored.

Performance measures, here and in subsequent tables, were obtained on a 300 megahertz
UltraSparc with 1.2 gigabytes of main memory, running Solaris 2.6. Throughout the
manuscript we use the symbol ‘f’ in table headings to indicate absolute numbers, while
‘@’ denotes average values.

See (Malouf et al., this volume) for details on why unification does not allocate larger
amounts of memory by itself. As will be discussed below, the choice of parsing strategy
crucially interacts with properties of other system components—like the unifier and
type system—and cannot be studied in isolation.
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(i.e. unifications) that succeed (stasks); the average ratio of five successful unifica-
tions per edge clearly suggests that a large number of attempts to instantiate a
grammar rule only fail when the second argument is instantiated. This is due to
the unidirectional rule instantiation strategy used in the LKB parser. Whenever the
input pointer is advanced to the right, the parser relies on the left corner of the
chart being complete (i.e. it contains all passive edges that can be derived for the
corresponding prefix of the input string). While applying rules to a new edge e, the
parser can thus restrict rule postulation to edges left-adjacent to e, only using e in
the rightmost daughter of each rule.” The following section elaborates the impor-
tance of bidirectionality and the right choice of key daughters that are instantiated
first in active parsing (although it constitutes a slight digression from the active vs.
passive comparison, it provides necessary background information for subsequent
sections).

3.2 Bidirectional active parsing

Kay (1989) and Bouma & van Noord (1993) have argued for a (bidirectional) head-
driven rule instantiation strategy, supplying supporting empirical evidence for a
Categorial Unification Grammar (for English) and an HPsG-like DCG (for Dutch),
respectively. Both grammars are strongly lexicalized. The approach, in general,
builds on the observation that lexicalist grammars often employ rules contain-
ing more or less unspecific argument positions that are only constrained by co-
indexation with another argument in the rule; a generic head —complement schema,
for example, imposes virtually no constraints on the complement daughter because
the category of the daughter will be fully determined by selectional and governmen-
tal constraints imposed by the actual head feeding into the rule. Thus, instantiating
a mostly unspecific argument position first will almost always succeed and in the
case of the active parser create a large number of active edges that ultimately fail.
The passive parser is less sensitive to this particular problem because it does not
copy out partial analyses, and moreover because unification with an underspeci-
fied argument position (represented by a small feature structure) is likely to be
computationally cheap.

Within the head-driven parsing paradigm, many authors implicitly (Kay, 1989)
or explicitly (Bouma & van Noord, 1993) assume the linguistic head to be the ar-
gument position that the parser should instantiate first. However, no known tech-
niques exist to analytically determine the right choice of the argument position in
each rule such that it best constrains rule applicability (with respect to all cate-
gories derived by the grammar). Though that choice is likely to be related to the

7 Without the left corner completeness condition on the chart, the parser would have
to postulate rules with each argument position applied to a new edge; effectively, for
a pair of adjacent edges, {e1, e2) say, all rules would be postulated twice, once when
e is derived and another time for e;. The left corner completeness condition can only
be maintained in breadth-first (or all paths) mode; therefore, the LKB parser when run
in best-first mode has to instantiate rules bidirectionally which degrades performance
significantly (see Figure 2 below).
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Fig. 1. Effects of rule instantiation strategy (head- vs. key-driven) on parser work load.

amount and specificity of information encoded for each argument, for some rules a
single feature value (e.g. the [WH +] constraint on the non-head daughter in one of
the instantiations of the filler —head schema used in LinGO) can be very important.
For terminological clarity, PAGE uses the term key daughter to refer to the argument
position in each rule that is the best discriminator with respect to other categories
that the grammar derives; thus, the notion of key-driven parsing emphasizes the
observation that for individual rules in a particular grammar a non-(linguistic)head
daughter may be a better candidate.

Figure 1 compares (active) parser performance for a rule instantiation strategy
that always fills the (linguistic) head daughter first (labelled ‘head-driven’ in both
graphs) with a variant that uses an idiosyncratically chosen key daughter for each
rule (termed ‘key-driven’; see below for how the keys are identified). The graphs
show that the number of executed (etasks) as well as the number of successful
(stasks) parser actions increase far more drastically with respect to input length in
the head-driven setup (on the ‘csli’ test suite, truncated above ten words due to
sparse data). Since successful parser tasks are directly correlated to overall parser
performance, the key-driven strategy on average reduces parsing time by more than
a factor of three; clearly, for the LinGO grammar at least, linguistic headedness is
not a good indicator for rule instantiation.

At this point, it should be clear that the choice of good parsing keys for a particu-
lar grammar is an entirely empirical issue. Key daughters, in the current setup, are
stipulated by the grammar engineer(s) as annotations to grammar rules; in choos-
ing the key positions, the grammarian builds on knowledge about the grammar—
especially on what is known about the feeding relation between rules—and observa-
tions from parsing test data. The performance profiling tools can help in this choice
since they allow the accounting of active and passive edges to be broken down by
individual grammar rules (as they were instantiated in building edges). Inspecting
the ratio of edges built per rule, for any given choice of parsing keys, can then
help to identify rules that generate an unecessary number of active edges. Thus,
in the experimental approach to grammar and system optimization the effects of
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P filter etasks stasks unifs copies tcpu space

arser % ¢ ¢ ¢ é ¢ (s) ¢ (kb)

o passive 942 658 555 663 114 0-37 2329
- active 95-8 283 180 288 180 0-31 2432
©  hyper-active  95-8 283 180 354 114 0-27 1686

) passive 94.2 1843 1604 1845 293 1-11 5692
& active 96-1 716 452 718 452 0-87 5449
%  hyper-active  96-1 716 452 928 293 0-71 3830

Table 3. Close-up of passive, active, and hyper-active parsing strategies in the LKB.

different key selections can be analyzed precisely and compared to earlier results.®
The remainder of this article assumes the key settings that are in effect in the July
1999 version of the LinGO grammar: exactly half of the twenty four binary rules
are specified as key-first, the other twelve as key-final; out of the seventeen rules
that actually assume a linguistic head daughter (the HPsG H-DTR feature), in only
six does the key daughter correspond to the linguistic head.

3.3 A synthesis: hyper-active parsing

Returning to the LKB vs. PAGE comparison, we observed that the passive LKB parser
appeared to successfully trade unifications for copies. To obtain fully comparable
results, we imported the key-driven version of the PAGE active parser into the LKB,
and use the LKB as the (single) experimentation environment for the remainder
of this article. The direct comparison is shown in Table 3 for the ‘csli’ and ‘aged’
standard test sets. While the overall picture from the LKB vs. PAGE comparison is
confirmed, the re-implementation of the active parser in the LKB in fact performs
slightly better than the passive version and does not allocate very much more space.
On the ‘aged’ test set, the active parser even achieves a modest reduction in memory
consumption. This is because for this test set the passive parser carries out a larger
proportion of extra unifications compared to the savings in copies (columns five
and six).

Having profiled the two traditional parsing strategies and dissected each empiri-
cally, one could ask whether it is possible to synthesize a new algorithm combining
the good points of both strategies (i.e. reduced unification and reduced copying).
The answer is yes, and we outline such a synthesis below which we term hyper-active
parsing:

8 For a given test corpus, the optimal set of key daughters could be determined (semi- or
fully automatically) by comparing results for unidirectional left to right to pure right to
left rule instantiation; the optimal key position for each rule is the one that generates
the smallest number of active items. When this optimization was performed on the
LinGO grammar for the first (and only) time, it confirmed the choices of the grammar
writer in all but one case.
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(1) use the bottom-up, bidirectional, key-driven control strategy of the active
parser as sketched in Section 3.1;

(2) when an ‘active’ edge is derived (i.e. unification with an argument position in
a rule has succeeded), store this partial analysis in the chart but do not copy
the associated feature structure;’

(3) when an ‘active’ edge is extended (combined with a passive edge), recom-
pute the intermediate feature structure from the original rule and already-
instantiated daughter(s);

(4) only copy feature structures for complete passive edges; partial analyses are
represented in the chart but the unification(s) that derived each partial anal-
ysis are redone on-demand.

Storing ‘active’ (or, in a sense, hyper-active) edges without creating expensive fea-
ture structure copies enables the parser to perform a key-driven search effectively,
and at the same time avoid overcopying for partial analyses; additional unifica-
tions are traded for the copies that were avoided only where hyper-active edges are
actually extended in later processing. For the medium-complexity ‘aged’ test set,
each hyper-active edge is extended (necessitating recomputation of the intermedi-
ate structure) on average less than twice. It would therefore be desirable to take
advantage of the intermediate feature structure—even though it is not copied—at
the point at which it is available. So when a hyper-active edge is derived, the parser
deviates slightly (in the form of an excursion) from its normal agenda-driven control
strategy: while the intermediate structure is still valid, one attempt to combine it
with a suitable (adjacent) passive edge is made in the same unification generation.'°

Table 3 confirms that hyper-active parsing combines the desirable properties of
both basic algorithms: the number of copies made is exactly the same as for the
passive parser, while the number of unifications is only a little higher than for
the active parser (due to on-demand recomputation of intermediate structures).
Accordingly, average parse times are reduced by twenty seven (‘csli’) and thirty six
(‘aged’) per cent, while memory consumption drops by twenty eight and thirty three
per cent, respectively. The benefits of hyper-active parsing are thus more apparent
on the more complex data set. The observed differences in relative improvement for
the two data sets confirm the claim made earlier that performance profiling on the
basis of a small set of test data is limited in analytical potential.

To see how the hyper-active parsing regime scales up to the (currently) most
challenging reference corpus available for the LinGO grammar (see the introduc-
tion to this volume), Table 4 compares parser performance on the ‘blend’ test set

9 Although the intermediate feature structure is not copied, it is used to compute the
‘quick check’ vector for the next argument position to be filled; as was seen already, this
information is sufficient to filter the majority (in fact up to 95 per cent) of subsequent
operations on the ‘active’ edge.

Where the excursion is successful, one iteration in the main parser loop now results
in the creation of two new edges: the hyper-active edge to start with, and a passive
edge derived from the excursion. In any case, the one passive edge explored during the
excursion is recorded with the hyper-active edge to avoid redoing the same combination
later when regular processing of that edge is scheduled.

10
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passive hyper-active reduction

Aggregate items tcpu space tcpu space tcpu space

f ¢p(s) ¢(kb) ¢(s) ¢(kb) % %

5000 < pedges < 19690 112 50-59 213402 30-76 119453  39-2 440
1000 < pedges < 5000 337 8-55 32142 512 15198 40-1 52-7
500 < pedges < 1000 253 2-55 8017 1-60 3378 37-4 57-9

250 < pedges < 500 297 1-18 3923 0-80 1781 32-6 54-6
0 < pedges < 250 939 0-25 918 0-20 468 22-6 49-0
Total 1938 505 20014 3-09 10487 38.7 476

Table 4. Comparison of passive vs. hyper-active strategies on ‘blend’ test set.

for the original LKB passive parser and for the hyper-active parser. Here, the con-
trastive performance profile is aggregated by the number of passive edges derived
(a parameter that, in our non-predictive bottom-up paradigm, does not vary with
the parsing strategy), providing a very direct measure on input complexity. The re-
sults indicate that the effectiveness of hyper-active parsing actually increases with
input complexity; for the top two aggregates, hyper-active parsing reduces average
parsing times by around forty per cent. Taking into account the fact that the tcpu
measurements exclude garbage collection time (which increases in direct proportion
to memory consumption), a net speed-up of close to a factor of two is achieved in
actual parser throughput. As for memory usage, Table 4 shows a bigger space re-
duction than was found in earlier experiments. When processing the ‘blend’ corpus,
another optimization (adapted from the PET system; see Callmeier, this volume)
was enabled: the system maintains a statically allocated pool of dag objects that
can be recycled cheaply after a parse has completed and that therefore do not
show up in the dynamic space allocation figures. When dag creation is replaced
by recycling, memory consumption primarily reflects structure allocated during
unification (temporary arcs) and in the parser (edges); hence, space reduction in
Table 4 corresponds closely to the overall decrease in the number of unifications.!!
In an application such as Verbmobil—containing several concurrent modules each
of which may have a process size of a few hundred megabytes—savings in memory
may actually be more important than improvements in throughput.

Finally, we noted in Section 3.1 that the passive parser is not well-suited for
priority-driven best-first search (as is standard practise in applications like Verb-
mobil) since the left corner completeness condition on the chart cannot be main-
tained. This expectation is confirmed by the graphs in Figure 2, showing best-first

"1 The recycling pool used in the LKB has a fixed size, though. Once the pool is exhausted
the system falls back into regular allocation mode (creating garbage); therefore, the
reduction in memory usage reaches its maximum in the third class in Table 4 and then
decreases for the top two aggregates where the dag pool is typically exhausted during
the course of each parse.
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Fig. 2. Parsing times for passive vs. hyper-active strategies in first-only mode (‘blend’).

parse times for ungrammatical (‘readings = 0’) and grammatical (‘readings = 1°)
items from the ‘blend’ corpus. In contrast to exhaustive mode, finding just one
analysis is significantly cheaper than rejecting ungrammatical input.'? However,
for both grammaticality classes parse times are reduced by more than a factor of
two over passive mode, with the times increasing only slowly as sentences get longer.
The hyper-active parser, although it started out as a vehicle for experimentation
with parsing strategies, is now in regular use for grammar development and sys-
tem optimization in the LKB, and has been ported to both the PAGE and the PET
systems.

4 Packing ambiguity: preliminary results

The passive, active, and hyper-active parsers add every completely recognised con-
stituent to the chart as a separate edge. The parsers are therefore explicitly con-
structing a possibly (depending on the grammar and input string) exponential
number of analyses. One approach to this problem is to remove from the grammar
sources of exponential behaviour such as prepositional phrase attachment ambigui-
ties, perhaps by allowing only a single attachment point in the phrase structure tree
and creating an underspecified semantics which represents all of the alternatives.
An orthogonal, computational approach is to ‘pack’ local ambiguities in the parser
itself, such that if a constituent can be analysed in more than one way the differ-
ent structures are packed into a single representation. Alshawi (1992) and Carroll
(1993) have investigated this technique for unification grammars, using a feature
structure subsumption test to check if a newly derived constituent can be packed.

12 As is demonstrated by Kiefer et al. (1999), it may be necessary to impose an upper
limit—the average parse time for finding one reading as a function of input length,
say—on the amount of time available to the parser. Also, the priority computation
used in Figure 2 is naive in that it only deals with simple and local scores attached to
lexical entries and grammar rules; again, the Verbmobil experience suggests that more
sophisticated scoring, incorporating various knowledge sources, is necessary in practical
applications.
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Fig. 3. Effects of maximal ambiguity packing based on (partial) subsumption (‘blend’).

If the newly derived constituent is equivalent to or subsumed by an existing
constituent, then it can be packed into the existing one and will take no further
part in processing. However, if the new constituent subsumes an existing one, the
situation is not so straightforward: either (i) no packing takes place and the new
constituent forms a separate edge, or (ii) previous processing involving the old
constituent is undone or invalidated, and it is packed into the new one. In the
former case the parse forest produced will not be optimally compact; in the latter
it will be, but a potentially large amount of processing may end up being redone.

To explore the applicability of ambiguity packing to HPSG-type grammars, the
hyper-active LKB parser was extended to incorporate the efficient subsumption test
described by Malouf et al. (this volume). In order for the subsumption relation
to apply meaningfully to HPSG signs, two conditions must be met. Firstly, parse
tree construction cannot be duplicated in the feature structures (by means of the
HPSG DTRS feature) but is left to the parser (i.e. recorded in the chart); this is
standardly achieved by feature structure restriction (see Shieber, 1985, and Kiefer
et al., 1999). Secondly, semantic composition (performed via the HPSG attribute
CONT) must be delayed until a complete analysis is derived; in general, it seems
desirable to postpone processing of constraints that build up new structure but do
not restrict the search space.!® Again, this requirement is fulfilled by restricting
the structures, though in this case it is sufficient to remove all such attributes
(temporarily) in lexical entries as they are input to the parser and in the rule set
used during the first parsing phase.

Given a pair of edges e; and ez, the subsumption test in a single pass deter-
mines whether e; subsumes e; or vice versa; trivially, mutual subsumption indi-
cates equivalence of e; and es. When a new passive edge is derived, the parser

13 For the current reference version of the LinGO grammar, CONT unfortunately still em-
beds a small number of constraints that in rare cases can restrict rule applicability.
This leads to overgeneration in the (first) recognition phase, but does not affect overall
correctness of the parser because (currently) we validate all packed results in a second,
unpacking phase by applying the complete constraint sets.
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tests subsumption against all chart entries that span the same portion of the input
string. Depending on whether (i) a new edge e; is subsumed by an existing edge
e2 or (ii) the new edge e; subsumes an existing edge es, the parser distinguishes
between (i) proactive (or forward) packing and (ii) retroactive (backward) packing.
While proactive packing simply excludes e; from all further processing, retroactive
packing needs to invalidate the existing chart edge es, everything that was derived
from ey, and all pending computation involving es and its derivatives. However,
chart entries that are invalidated in retroactive packing can in principle already
host packed analyses; hence, while a host edge is invalidated, edges packed into it
still represent valid analyses and need to be repacked into a new (more general)
host edge derived from e; (once those new derivatives become available). In short,
retroactive packing requires specialized and efficient accounting mechanisms in the
chart and agenda. These are described in detail by Oepen & Carroll (2000).

Figure 3 presents first results achieved when both pro- and retroactive packing
are enabled in the parser. Compared to regular parsing, the average number of
passive edges is reduced by a good factor of three, while for a number of cases it
drops by factors of thirty and more. Without unpacking the parse forest, a similar
reduction in parse times is achieved, again not including reduced garbage collection
time. Even with short sentences and little ambiguity no measurable penalty for
the extra subsumption tests is observed. When the validation (unpacking) of the
complete parse forest is included in the accounting, the packing parser still achieves
a time and space reduction of fifty to seventy percent on medium-length input (ten
to fifteen words). Finally, we note that nearly two thirds of the packings done
by the parser involve equivalent feature structures; and using a simple breadth-
first parsing strategy, the majority of non-equivalent packings require retroactive
packing. Given these preliminary results, we conclude that subsumption-based local
ambiguity packing can be successfully applied to parsing with HPSG grammars, and
that we can gain dramatic reductions in chart size and achieve tractable average-
case complexity.

5 Future Directions

We intend to develop the competence and performance profiling work described
above in a number of different directions.

Firstly, by integrating [incr tsdb()] with further processing systems (connections to
the Alvey Tools GDE and the Xerox XLE system are currently under consideration)
we hope to gain a better understanding of the types of metrics that are useful for
grammar and parser engineering. We also want to gauge the generality of the hyper-
active parsing strategy by profiling with other systems and grammars; we have
obtained some encouraging preliminary results for all three Verbmobil grammars
(English, German, and Japanese) in the PAGE system.

Secondly, we will continue with the parser engineering line of research, informed
by regular performance profiling and analysis. We will continue to develop the
hyper-active parser and investigate techniques that reduce the cost of replaying
unifications that are known to succeed. Representing unification results as envi-
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ronments (Pereira, 1985) that only record changes made to the original structures
could be of benefit in this context.

Finally, we plan to run a series of experiments contrasting subsumption- vs.
equivalence-based packing strategies, and explore techniques for prioritized com-
putation to (i) try to minimize the amount of retroactive packing required and
(if) limit unpacking from the parse forest to incremental retrieval of preferred anal-
yses. At the same time, better fine tuning to properties of the grammar may be
required: if parts of the HPSG sign could be guaranteed to never restrict the search
space, validation of substructures packed under equivalence would be unnecessary.
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