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Abstract

One major obstacle to efficient processing of large wide coverage grammars in unification-
based grammatical frameworks such as HPSG is the time and space cost of the unification
operation itself. In a grammar development system it is not appropriate to address this
problem with techniques which involve lengthy compilation, since this slows down the
edit-test-debug cycle. Nor is it possible to radically restructure the grammar.

In this paper we describe novel extensions to an existing efficient unification algorithm
which improve its space and time behaviour (without affecting its correctness) by sub-
stantially increasing the amount of structure sharing that takes place. We also describe
a fast and automatically tunable pre-unification filter (the ‘quick check’) which in prac-
tice detects a large proportion of unifications that if performed would fail. Finally, we
present an efficient algorithm for checking for subsumption relationships between two fea-
ture structures; a special case of this gives a fast equality test. The subsumption check is
used in a parser (described elsewhere in this volume) which ‘packs’ local ambiguities to
avoid performing redundant sub-computations.

1 Introduction

Unification-based grammatical frameworks such as Lexical-Functional Grammar
(Bresnan & Kaplan, 1982) or Head-Driven Phrase Structure Grammar (Pollard
& Sag, 1994) have emerged as the dominant linguistic theories for computational
applications. Unfortunately, the complexity of these linguistically sophisticated ap-
proaches to grammar has made them difficult to use in large-scale applications.
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A major obstacle to efficient processing of unification-based grammatical frame-
works is the unification operation itself. Roughly ninety per cent of the CPU time
expended in parsing a sentence using a large-scale unification based grammar goes
into feature structure unification (or copying necessitated by the use of destruc-
tive unification, see Section 2). Therefore, any improvements in the efficiency of
unification have direct consequences for the overall performance of the system.

There are a variety of approaches to improving efficiency via grammar compi-
lation, as discussed in other papers in this volume for instance. These techniques
hold great promise for improving the throughput of a production system, but seem
less appropriate for use in a grammar development environment. For development,
grammar loading time is as important as sentence processing time, since the most
important factor is the time required for the edit-test-debug cycle, and in this con-
text the compilation process itself may be too expensive. Also, debugging will only
be possible if compilation is (efficiently) reversible, so that the grammar writer is
able to view familiar structures.

Thus, for a development system, what is needed is a way to reduce the cost of
unification without lengthy compilation and while still preserving feature structure
representations that fit in with a computational linguist’s intuitions. In this pa-
per, we describe a number of optimisations that, when taken together, lead to a
significant improvement in the performance of the LKB system, a unification-based
grammar development, parsing and generation platform originally designed as part
of the ACQUILEX project and currently being developed at CSLI' (Copestake,
1992, 1999). The version of the typed feature structure formalism assumed in the
LKB system is essentially a superset of that given in the appendix to this volume.
The main extension to the formalism is that the LkB allows the use of default
unification as defined by Lascarides & Copestake (1999). However, in the current
paper we will be concerned with purely monotonic processing which is essentially
unaffected by the availability of defaults. A somewhat more relevant point is that
the LKB system enforces an acyclicity condition on feature structures, though the
unification algorithm described in the next two sections can also be used for cyclic
feature structures.

2 Graph unification

Unification can be defined in terms of the subsumption ordering of feature struc-
tures, as in the appendix to this volume, but computationally, it is easier to think
of feature structure unification as graph unification of the corresponding DAGs (see
Figure 1).

Unification of two DAGs can be carried out in a simple and efficient manner using
a variation of the UNION-FIND algorithm (Aho, Hopcroft, & Ullman, 1974; Huet,
1976; Sikkel, 1997). Unification proceeds as in Figure 2. First, the root nodes of

! The LKB system is freely available (in source code and various binary formats) from
‘http://wuw-csli.stanford.edu/~aac/1kb.html’. The experiments reported in this
paper were carried out with the (unreleased) version of October 5, 1999.
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Fig. 1. Feature structure unification and graph unification

Fig. 2. Destructive graph unification

the two feature structure graphs are joined into a single equivalence class, and one
member of the class is selected to be the representative of the class (in this case,
node 1 is selected to be the representative of the class {1,6}). Next, the outgoing
edges from all members of the class need to be transferred to the representative. If a
particular label appears on only one edge, then this edge can simply be copied to the
representative. This is the case for the edge labelled H from node 6 to node 9. If the
same label occurs more than once as the label of an outgoing edge from a node in a
single equivalence class, then the algorithm proceeds recursively, joining the target
nodes into a single equivalence class. In the example, the label F appears more than
once, so the target classes {2} and {7} are joined into a class {2,7} (with 2 as
the representative). The label G also appears more than once, so the target classes
{2,7} and {4} are also joined into the class {2,4,7} (with 2 as the representative).
Unification proceeds in this manner until the input graphs have been fully traversed
or an incompatibility is found. If unification has completed successfully, the result
can be read off by finding the representative of each equivalence class constructed
by the UNION-FIND algorithm.

Graph unification is quite simple to implement and is also relatively efficient—it
requires very little space beyond what is necessary to store the input feature struc-
ture graphs, and its time complexity is almost linear in the size of the input feature
structures. Unfortunately, though, this kind of graph unification is destructive. At
least one of the input feature structure graphs is consumed in the course of the
unification, making it unsuitable for use with chart-based parsing and generation
schemes as used by the LKB.

As the parser or generator constructs the chart, each edge must be built without
modifying the edges that contributed to it. One option to avoid modifying daughter
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Fig. 3. Quasi-destructive graph unification

edges during parsing is to copy the input feature structures graphs before perform-
ing a destructive unification operation on them. Unification will change the copy
of the input structures, leaving the original edge unchanged. However, this will re-
sult in many structures being built which never become part of the chart. While
parsing with the LinGO English Resource Grammar (described in the introduction
to this volume), more than ninety per cent of the unifications that are attempted
ultimately fail. If one were to copy the input structures before each unification,
then that means that more than ninety per cent of the structures which were built
would be discarded without being used.

A more conservative option, taken by Wroblewski (1987), is to apply a non-
destructive unification algorithm which constructs a new node to serve as the rep-
resentative of each equivalence class, rather than using a node from one of the input
structures. This has the effect of producing a copy of the result up to the point at
which a failure occurs. While this is an improvement over copying the entire struc-
ture, either approach will result in some structures being built in the course of an
unsuccessful unification, wasting space and reducing the overall throughput of the
system.

To avoid these problems, Tomabechi (1991) proposed a quasi-destructive vari-
ant of the unification algorithm sketched above. Tomabechi’s algorithm is based on
two observations: copying structures is expensive, and unification usually fails dur-
ing parsing. Therefore, an algorithm which only copies structures when unification
succeeds will be more efficient than one which always copies.

The challenge, of course, is to know when unification will succeed. To avoid
copying unnecessarily, Tomabechi’s algorithm traverses the input structures to ver-
ify that they are compatible. Only when it is guaranteed that unification will be
successful is the output structure produced.

Quasi-destructive unification proceeds as in Figure 3. As in Figure 2, nodes 1 and
6 are joined into a single equivalence class. However, this is done non-destructively
by setting a temporary forward pointer (indicated by a dashed line) from 6 to 1, the
representative of the class. And, again as in Figure 2, the edge corresponding to the
feature H is copied from node 6 to node 1. In this case, however, only a temporary
edge (indicated by a dotted line) is constructed. Unification proceeds recursively, as
before, until the input structures are traversed or a conflict is found. If conflicting
values cause unification to fail, the input structures can be returned to their original
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Fig. 4. Subgraph sharing

state simply by invalidating all the temporary forward pointers and edges.? Since
no new nodes have been built, a failed unification incurs no copying costs. While
this method requires constructing temporary pointers whether unification succeeds
or not, with careful memory management the space costs of these pointers can be
minimised, as Callmeier (this volume) shows. If unification succeeds, on the other
hand, then a new output structure needs to be built. This can be done simply by
constructing a new node to represent each equivalence class built in the first stage.

3 Subgraph sharing

Tomabechi’s unification algorithm is an improvement over simple non-destructive
unification when unification fails (which, as we have seen, is most of the time).
However, when unification succeeds it builds a complete copy of the result even
when parts of the result are identical to parts of the input structure. Compare the
output in Figure 3: the nodes 3c, 5¢, and 9c are identical to their counterparts in
the input. The result could be equivalently constructed as in Figure 4. In this case,
the only new nodes that need to be constructed are 1c and 4c. Input nodes 3, 5,
and 9 are reused in the output structure, leading to a reduction in the cost of a
successful unification compared with Tomabechi’s algorithm.

When applied to chart-based parsing or generation, subgraph sharing can yield
significant improvements in efficiency. In the construction of the chart, much of
the structure associated with an edge is contributed unchanged from the daughter
edges. Subgraph sharing means that only a small part of the feature structure needs
to be constructed from scratch for each new edge.

2 This can be done in constant time by marking each temporary pointer with a genera-
tion counter (Wroblewski, 1987). Pointers are only considered valid if their generation
number is the same as the current global generation. When unification fails, the global
generation counter is incremented, invalidating all pointers from the earlier computation
in a single operation.
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In particular, a node in a feature structure graph only needs to be copied if it
meets one of four criteria:

1. has any temporary feature pointers

2. is atomic and its value has changed

3. has a descendant which needs to be copied
4. is part of the grammar

The first three cases are fairly obvious: a new output node has to be constructed
when it is not identical to one of the input nodes.

The fourth case however may not be so clear. Feature structures in a parse chart
should not share substructures with feature structures from grammar rules or lexical
entries. Reusing parts of grammar rules or lexical entries during parsing can lead
to spurious cyclic structures and structure sharing. For example, with a grammar
which represents coindexing via graph reentrancies, subgraph sharing may lead to
multiple occurrences of a pronoun in a sentence like Chris introduced him to him
being incorrectly coindexed. Even more subtle problems can arise when a single rule
is used more than once in the derivation of a single sentence, or when the parser
modifies a node through a mechanism other than unification (e.g. by restriction).
An inelegant way to avoid this is to instantiate the chart with fresh copies of all
rules and lexical entries, and to copy nodes before applying a restriction operator.
This extra copying however defeats the purpose of quasi-destructive unification.
Instead, we can mark each node in a feature structure graph with a SAFE flag.?
Nodes built while constructing a parse chart are guaranteed to be unique, so they
are SAFE to reuse in subgraph sharing. Nodes built while constructing the grammar,
on the other hand, may be introduced more than once during parsing, and so are
un-SAFE. Only SAFE nodes are eligible for subgraph sharing.

The algorithm described here implements subgraph sharing in much the same
way as the variant of quasi-destructive unification described by Tomabechi (1992).
However, there is a crucial difference. Since Tomabechi does not distinguish be-
tween SAFE and un-SAFE nodes, his version of structure sharing requires that the
parser often make a complete copy of a node before using it. This greatly limits the
improvement in efficiency that subgraph sharing can offer. Using the algorithm de-
scribed here, the parser is only required to make a copy of a feature structure before
using it when the same lexical entry is introduced more than once as a daughter of
a single chart edge. Fortunately, this situation is easy to detect and almost never
occurs with realistic grammars.

On the other hand, the present algorithm is quite different from other approaches
to structure sharing found in the literature. Unlike, for example, Pereira’s (1985) or
Emele’s (1991) technique, this implementation of structure sharing adds no over-
head to the cost of dereferencing a feature structure. This difference is especially

3 Note that the addition of this flag need not increase the size of the data structures
or the cost of copying. For example, the SAFE flag may be efficiently represented by a
single bit ‘packed’ into the node data structure, or even, since a node is either SAFE or
un-sAFE for its entire lifetime, by using the type system of the underlying programming
language rather than part of the data structure itself.
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Fig. 5. Mean parse time for items of one to ten words in length from the ‘blend’ test
suite (see the introduction to this volume), using Tomabechi’s quasi-destructive (QD)
unification, QD unification with subgraph sharing (SS), QD unification with quick check
(QQ) filtering using thirty paths, and QD unification with both optimisations. Parse times
do not include the cost of garbage collection.

Total CPU GC Space

time (s) time (s) time (s) (mb)

quasi-destructive unification 1-99 0-62 1.37 4.76
QD wunification with quick check 1-30 0-27 1-03 3-53
QD with structure sharing 0-91 0-56 0-35 1-44
QD, structure sharing, quick check 0-51 0-23 0-28 0-79

Table 1. Mean figures for sentences of one to ten words from the ‘blend’ test set.

important for a chart-based parser, in which a large number of alternate derivations
needs to be explored at once, but in which it is never necessary to undo the effect
of more than one unification.*

The effect of typed feature structure unification with subgraph sharing on the
cost of unification when compared to a typed version of Tomabechi’s (1991) quasi-
destructive unification is shown in Figures 5 and 6 and in Table 1. The figures we
give here, and in the rest of this article, are with the LinGO grammar and the LKB
system, running in Franz Allegro Common Lisp 5.0 (Linux) on a 450 megahertz

4 For a more detailed comparison of quasi-destructive unification with other approaches,
see Tomabechi (1991, 1992).
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Fig. 6. Mean space used parsing items of one to ten words in length from the ‘blend’ test
suite, using Tomabechi’s quasi-destructive (QD) unification, QD unification with subgraph
sharing (SS), QD unification with quick check (QC) filtering using thirty paths, and QD
unification with both optimisations.

Pentium PC with 512 megabytes of memory. The figures were collected using the
[incr tsdb()] package (Oepen & Flickinger, 1998). Subgraph sharing alone brings a
modest reduction in CPU times but a more dramatic reduction in the amount of
space required. We have omitted garbage collection (GC) times in Figure 5 because
global garbage collections cannot be accurately allocated to sentences of a given
length, but we include them in Table 1.5 As this shows, the reduction in space used
brings an even greater improvement in parser throughput than Figure 5 would
suggest. And, when combined with the ‘quick check’ filter described in Section 5,
subgraph sharing brings an even more significant improvement in both space and
time efficiency.

4 Type operations

We have described the unification algorithms as though they were operating on un-
typed feature structures, but the LKB system and the LinGO grammar both assume
that structures are typed. This means that when combining nodes their types have
to be compared, with the type on the resulting node being the greatest lower bound
of the types on the input nodes. Although this operation is often implemented by

% The high GC overheads in this experiment are caused by Lisp being unable to inter-
pret the temporary pointer mechanism. We now explicitly free temporary pointers in
structures that are part of the grammar after a parse has completed, resulting in GC
overheads dropping to below ten percent of total parse time.
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Fig. 7. Deriving quick check vectors.

table lookup, this technique is problematic for grammars that contain a large num-
ber of types, such as the LinGO grammar, both because of the size of the table
and the time taken to compute it. Our solution rests on the observation that the
vast majority of type pairs are never compared, which means that during process-
ing we can use a relatively expensive operation on the uncompiled type hierarchy
combined with memoisation to cache the results as they occur. This is a technique
that has been known for some time,® but we mention it here to emphasise there is
no appreciable runtime performance cost compared with full table lookup, at least
with the LinGO grammar. For instance, around 98.5 per cent of type pairs com-
pared are found in the cache when parsing a five word sentence even when starting
with an empty cache. Starting with a perfect cache as opposed to an empty cache
caused no measurable difference in processing time. After parsing the first three
sentences from a randomised version of the ‘blend’ test suite, the hit rate was 99.6
per cent—it remained at roughly this level in subsequent sentences (cache misses
mostly being caused by semantic types introduced in newly encountered lexical
entries).

A second issue in typed feature structure unification is maintenance of well-
formedness with respect to a type system (as defined in the appendix to this vol-
ume). To maintain well-formedness, it is necessary to consider the constraint on a
type just in case the constraint is not equal to the unification of the constraints
on the types being compared. This situation requires an extra unification step to
maintain well-formedness, but this occurs in such a small percentage of unifications
in the LinGO grammar that it does not seriously impact performance.

5 Pre-unification filtering: the ‘quick check’

Subgraph sharing minimises the amount of structure that needs to be built when
unification succeeds, and quasi-destructive unification avoids unnecessary struc-
ture being built when unification fails. However, determining whether unification
will succeed or fail still potentially requires complete traversal of the input feature
structures. What is missing is a way to quickly identify the majority of cases where

5 We are grateful to an anonymous reviewer for informing us that it is discussed in the
context of the CUF system by Dorna (1992).
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FUNCTION collect-paths-using-counting (failure-paths,n);

sorted < sort failure-paths on |failures(failure-path)| in descending order;

return(first n elements of sorted);
END;
FUNCTION collect-paths-using-discounting (failure-paths,n);

paths < empty;

UNTIL (failure-paths is empty OR n = 0) DO

best < element of failure-paths maximising |failures(failure-path)];

IF (|failures(best)| = 0) THEN {no more unification failures?}
return(paths);
failure-paths <« failure-paths © best; {remove best from failure-paths}
paths < paths @ best; {add best to end of paths list}
n<<n-1;
FOR EACH path IN failure-paths DO {remove best’s unification failures
failures(path) < failures(path) © failures(best); from all other failure-paths}
return(paths);
END;

Fig. 8. Two quick check path collection algorithms.

unification will fail. Recall that a feature structure can be represented either as
a graph or as a set of path value and path equivalence constraints. In order for
two feature structures to be unifiable, all of their path value constraints must be
compatible. This observation provides us with a simple mechanism for filtering out
unifications that cannot possibly succeed. While processing a sentence, in addition
to representing each feature structure used as a graph, we also derive from and as-
sociate with the feature structure a vector of path values (which we call the ‘quick
check’ vector), as in Figure 7. The vector can be derived efficiently, and is computed
once only for any given feature structure.

Before attempting to unify two feature structures, we verify that corresponding
values in the respective quick check vectors are compatible. If any pair is incom-
patible we do not carry out the unification since it is guaranteed to fail.

If all paths were equally likely to cause unification failure then this pre-unification
check would not yield much of an improvement. Fortunately, in practice it turns
out that the vast majority of unification failures are caused by a relatively small
number of paths. For example, features encoding syntactic information such as
part of speech are very frequent points of failure, whereas unification never fails on
semantic features which are used merely to accumulate portions of the logical form.
Since all substructures are typed, unification failure is manifested by a failure to
find a greatest lower bound when attempting a type comparison. So, in the quick
check vector we store the (type) values at the end of each of a pre-determined small,
fixed set of paths that cause unification to fail most often. The paths are ordered
from most to least frequently failing. This pre-unification check allows us to filter
out a large percentage of failed unifications in constant time.

To find a set of suitable quick check paths we perform an offline computation, pro-
cessing a set of sentences using a version of the normal unification engine modified
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Fig. 9. Mean parse time, filter rate, and space used parsing items of one to ten words in
length from the ‘blend’ test suite, with the discounting quick check path collection algo-
rithm and varying the numbers of quick check paths collected. The paths were computed
from a 300-item random sample of the ‘csli’ test suite.

so that it does not return immediately after the first type comparison failure, but
instead records in a global data structure all paths at which failure occurred, each
with an identifier that represents the unification attempt itself.” Figure 8 shows two
alternative algorithms for computing from the set of paths that failed (failure-paths)
a set of n quick check paths. The first, more straightforward, algorithm returns the
n paths with the highest total counts for failed unifications (calling failures(path)
to obtain the set of identifiers for unification attempts that failed for a given path).
However, this approach is in general not optimal. We want the minimal set of paths
that are responsible for the maximum number of unification failures, but this al-
gorithm might return more than one path accounting for the exact same failure.
The problem is fixed in the second algorithm, which collects the paths with the
highest total counts one by one, for each one discounting in all remaining paths the
unification failures it covers.

Clearly, when considering the number of paths n required there is a tradeoff be-
tween the time savings from filtered unifications and the effort required to create
the vectors and compare them. The main factors involved are the relative speeds of
type comparison and feature structure unification® and the percentage of unifica-
tion attempts filtered out with a given set of paths. The optimum number of paths
therefore cannot be determined analytically. With the LkB and the LinGO gram-
mar, and using the discounting algorithm, we obtain the best parsing performance
with around thirty paths (Figure 9). The best performance with the counting al-
gorithm is also at around thirty paths, but resulting parse times are around eight
per cent slower, and space usage is three per cent higher. The paths derived are

7 We implement this as a counter which is incremented before every unification attempt.

8 To further reduce the time spent in quick check vector compatibility tests, type com-
patability checking is replaced by a single logical and bit-vector operation in the case
of paths whose maximal types have only a small number of descendents.
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Path Frequency (discounted)
SYNSEM LOCAL CAT HEAD 247123
INFLECTED 125914
SYNSEM LOCAL CAT VAL COMPS FIRST OPT 65262
SYNSEM LOCAL CAT VAL COMPS 52893
SYNSEM LOCAL CAT HEAD VFORM 36799
SYNSEM LOCAL CAT HEAD MOD 36608
SYNSEM LOCAL KEYS KEY 33576
SYNSEM LOCAL CAT MC 21762
SYNSEM NON-LOCAL QUE 21113
SYNSEM LOCAL CAT HEAD MOD FIRST LOCAL CAT HEAD 17137
SYNSEM LOCAL CONT MESSAGE 16553
SYNSEM NON-LOCAL SLASH LAST 11683
SYNSEM 9383
SYNSEM LOCAL CAT HEAD MOD FIRST LOCAL 8353
SYNSEM LOCAL CAT VAL SPR FIRST 7938

Table 2. First few quick check paths and associated frequencies.

somewhat surprising (Table 2), and in many cases do not fit in with grammar writer
intuitions. In particular, some of the paths are very long. An optimal set of paths
for a grammar of this complexity could not be produced manually. Although path
collection is more expensive than a normal parsing or generation run® it only needs
to be re-done when the grammar has changed significantly.

The quick check technique will only be of benefit if type comparison is computa-
tionally cheap—as indeed it is in our implementation (Section 4)—and if the filter
rate is high (otherwise the extra work performed essentially just duplicates work
carried out later in unification). We also apply a simple statically-computed filter
on rule application (described by Kiefer, Krieger, Carroll, & Malouf, 1999) in con-
junction with the quick check. Although the quick check is the more powerful filter
of the two because it functions dynamically, taking into account feature instanti-
ations that occur during the parsing process, the rule filter is still valuable when
executed first since it consists of a single, very fast table lookup. With the LinGO
grammar the overall filter rate is around ninety six per cent. Thus almost all failing
unifications are identified quickly without incurring the cost of full unification.

Kogure (1990) outlines a related idea to the quick check, designed to detect
failing unifications quickly (but unfortunately he does not quote any performance
figures). In this approach information is acquired in a training phase about which
features introduced by which types most frequently lead to failed unifications. This
is done by randomising the order in which the features occur in feature structures
and recording the failure point; then arcs are sorted dynamically during the course
of each unification to arrange that these features are considered first. (A similar
technique was developed, independently, by Backofen & Krieger (1993)). However,

9 We have found that the sets of paths collected differs little between our parsers (Oepen
& Carroll, this volume) and (chart-based) generator (Carroll, Copestake, Flickinger, &
Poznanski, 1999).
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the quick check technique has a number of advantages over this approach, since it
guarantees to collect all failures in the training phase (so more reliable information
is collected from less training data), complete global paths are recorded rather
than individual feature-type pairs (resulting in finer tuning to the actual points of
failure and avoiding even entering the unification procedure for unifications which
are bound to fail), and a time-consuming sort operation at each feature structure
node is not required during unification.!°

There is also an interesting relationship between the set of paths computed by the
quick check and the construction of context-free (CF) backbones from unification
grammars (see Torisawa, Nishida, Miyao, and Tsujii, this volume). However, while
approaches to CF backbone computation perform a static analysis of the grammar,
quick check path computation is dynamic since it is based on data collected during
the processing of a training corpus. It would be interesting to to see if the dynamic
approach could be used in CF backbone construction. We also note that applying
the quick check in a system that also used CF pre-filtering is unlikely to be as
effective as in our experiments since the quick check paths and the CF backbone
encode similar kinds of information.

6 Efficient subsumption and equality checking

The most important operation when processing with unification based grammatical
frameworks such as HPSG is the unification operation itself. However, in parsers
that perform local ambiguity packing (see Oepen & Carroll, this volume), a second,
central operation is subsumption checking (defined in the appendix to this volume).

The feature structure subsumption algorithm we describe here!! employs similar
machinery to the quasi-destructive unification algorithm. In particular, it uses tem-
porary pointers to keep track of intermediate results in processing, in conjunction
with a generation counter which is incremented at the end to invalidate all pointers
in a single operation. But whereas the unification algorithm makes two passes—an
initial traversal of both feature structures, followed by a second traversal to make
a copy if the unification is successful—the subsumption algorithm makes only one
pass, checking reentrancies and type-supertype relationships at the same time. The
algorithm also simultaneously checks if either feature structure subsumes the other,
or if there is no subsumption relation between them in either direction.

Figure 10 shows the algorithm. The top-level entry point dag-subsumes-p and sub-
sidiary function dag-subsumes-p0 each return two values, held in variables forwardp
and backwardp, both initially true, recording whether it is possible that the first dag

10°A number of typed-unification systems have provided facilities for manually specifying
a set of paths to be checked before unification is attempted; the quick check extends,
optimises, and automates the technique.

1 Although independently-developed implementations of essentially the same algorithm
can be found in the source code of The Attribute Logic Engine (ALE) version 3.2 (Car-
penter & Penn, 1999) and the SICStus Prolog (SICS, 1999) term utilities library (Penn,
personal communication), we believe that there is no previous published description of
the algorithm.
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FUNCTION dag-subsumes-p (dagl,dag2);
(forwardp,backwardp) « catch with tag subsume-fail
calling dag-subsumes-p0(dagl,dag2,true,true);
increment *unify-global-counter®; {invalidate temporary pointers}
return(forwardp,backwardp);
END;

FUNCTION dag-subsumes-p0 (dagl,dag2,forwardp,backwardp);

IF (dagl.copy is empty) THEN {check reentrancies}
dagl.copy < dag2;

ELSE IF (dagl.copy # dag2) THEN
forwardp « false;

IF (dag2.copy is empty) THEN
dag2.copy < dagl;

ELSE IF (dag2.copy # dagl) THEN
backwardp < false;

IF (forwardp = false AND backwardp = false) THEN {reentrancy check failed?}
throw(false,false) with tag subsume-fail;

UNLESS supertype-or-equal-p(dagl.type,dag2.type) THEN {check types}
forwardp « false;

UNLESS supertype-or-equal-p(dag2.type,dagl.type) THEN
backwardp « false;

IF (forwardp = false AND backwardp = false) THEN {type check failed?}
throw(false,false) with tag subsume-fail;
IF (has-arcs-p(dagl) AND has-arcs-p(dag2)) THEN {check arcs}

shared < intersectarcs(dagl,dag2);
FOR EACH arc IN shared DO
(forwardp,backwardp) < dag-subsumes-p0(destination of shared arc for dagl,
destination of shared arc for dag2,
forwardp,backwardp);
return(forwardp,backwardp);
END:;

Fig. 10. The feature structure subsumption algorithm.

subsumes the second and/or vice-versa, respectively. When one of these possibilities
has been ruled out the appropriate variable is set to false. (In the statement of the
algorithm the two returned values are notated as a pair, i.e. (forwardp,backwardp)).
If at any stage both variables have become set to false the possibility of subsumption
in both directions has been ruled out so the algorithm exits.

The (recursive) subsidiary function dag-subsumes-p0 does most of the work,
traversing the two input dags in step. First, it checks whether the current node
in either dag is involved in a reentrancy that is not present in the other: for each
node visited in one dag it adds a temporary pointer (held in the ‘copy’ slot) to the
corresponding node in the other dag. If a node is reached that already has a pointer
then this is a point of reentrancy in the dag, and if the pointer is not identical to
the other dag node then this reentrancy is not present in the other dag. In this
case the possibility that the former dag subsumes the latter is ruled out. After the
reentrancy check the type-supertype relationship between the types at the current



Efficient feature structure operations without compilation 43

nodes in the two dags is determined, and if one type is not equal to or a supertype
of the other then subsumption cannot hold in that direction. Finally, after success-
fully checking the type-supertype relationships, the function recurses into the arcs
outgoing from each node that have the same label. Since we are assuming totally
well-typed feature structures (Carpenter, 1992), it must be the case that either the
sets of arc labels in the two dags are the same, or one is a strict superset of the
other. Only arcs with the same labels need be processed; extra arcs need not since
the type-supertype check at the two nodes will already have determined that the
feature structure containing the extra arcs must be subsumed by the other, and
they merely serve to further specify it and cannot affect the final result.

The function intersectarcs(dagl,dag2) is the same as that of Tomabechi and
Wroblewski (1987), returning the arcs with labels that exist in both dag! and dag2;
supertype-or-equal-p(typel,type2) succeeds if typel is either equal to or a supertype
of type2; and has-arcs-p(dag) succeeds if the dag has any arcs. Our implementation
of the algorithm contains extra redundant but cheap tests that give a slight speed
improvement but which for reasons of clarity are not shown in Figure 10: a test
for equality of the two node types which if successful circumvents the supertype
checking portion of the code, and tests that forwardp is true immediately before
the first supertype-or-equal-p check and that backwardp is true before the second'2.

The use of temporary pointers means that the space complexity of the algorithm
is linear in the sum of the sizes of the feature structures. However, in our imple-
mentation the ‘copy’ slot that the pointers occupy is already present in each dag
node (it is required for the final phase of unification to store new nodes representing
equivalence classes), so in practice the subsumption test does not allocate any new
storage. Assuming the supertype tests can be carried out in constant time (e.g. by
table lookup), and that the grammar allows us to put a small constant upper bound
on the intersection of outgoing arcs from each node, the processing in the body of
dag-subsumes-p0 takes unit time. The body may be executed up to N times where
N is the number of nodes in the smaller of the two feature structures. So overall the
algorithm has linear time complexity. Running on the processing platform specified
in Section 3, our implementation performs of the order of 34,000 feature structure
subsumption tests per second, when applied to all pairs of constituents covering
the same words in parses of all items of one to ten words in length from the ‘blend’
test suite (without any local ambiguity packing). Approximately eighteen per cent
of constituents were found to be related by subsumption.

The fact that the subsumption algorithm simultaneously and efficiently checks
whether either input feature structure subsumes or is subsumed by the other gives

12 There is scope for further optimisation of the algorithm in the case where dag! and
dag2 are identical: full processing inside the structure is not required (since all nodes
inside it will be identical between the two dags and any strictly internal reentrancies
will necessarily be the same), but we would still need to assign temporary pointers
inside it so that any external reentrancies into the structure would be treated correctly.
In tests with the LinGO grammar we have found that as far as constituents that are
candidates for local ambiguity packing are concerned there is in fact little of this type
of structure sharing between them, so the special equality processing is not worth the
extra complication.
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us an easy way to construct an efficient algorithm for checking if two feature struc-
tures are equal. The algorithm invokes dag-subsumes-p on the two input feature
structures, and if the two results forwardp and backwardp are both true (i.e. mu-
tual subsumption holds) then the feature structures are equal. Uses for the equality
test might include testing for duplication of analyses produced by a parser, perhaps
as part of a debugging tool in a grammar development environment; or as a weaker
alternative to the subsumption test, as used in some approaches to local ambiguity
packing (Miyao, Makino, Torisawa, and Tsujii, this volume).

7 Conclusions

Linguistically sophisticated grammatical frameworks rely heavily on feature struc-
ture unification. However, without an efficient unification operation such frame-
works are impractical for real-world computational applications, or indeed even for
development of large-scale grammars.

In this paper we have described a number of optimisations that make unification
more efficient. Destructive graph unification can be implemented efficiently, but
is not suited to chart-based parsing or generation. Tomabechi’s quasi-destructive
unification algorithm is well-suited, and avoids unnecessary structure building in
the majority of cases when unification fails. We have showed how the algorithm can
be made even more efficient by making use of subgraph sharing to minimise the
new structure that needs to be built when unification succeeds.

Since unification usually fails, we can further improve performance by making
unification fail as early as possible. The ‘quick check’ mechanism allows us to filter
out in constant time a large percentage of unifications that are bound to fail. In
effect, this gives us some of the performance benefits of a context-free backbone
without changing the way the grammar is represented. The technique has also re-
cently been adapted to give a fast filter on subsumption checking (Kiefer & Krieger,
2000).

We have also devised linear-time algorithms for feature structure subsumption
and equality checking. Feature structures that span the same segment of the input
string and that are in a subsumption relationship can be dynamically merged into a
single entity for further processing. A parser can thus avoid repeatedly performing
similar computations on the same portion of the input.

On-line feature structure operations can be made relatively efficient. The tech-
niques described in this paper are sufficient to meet the fairly modest performance
demands of a grammar development environment. Coupled with the compilation
techniques described elsewhere in this volume for a run-time system and the ever-
increasing computational power available to consumers, they may make large-scale
linguistically sophisticated grammars efficient enough for real-world applications.
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