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Summary. One of the most popular approaches to developing bipedal walking ma-
chines has been to record the human gait and use it as a template for a walking
algorithm. In this paper we demonstrate a different approach based on passive dy-
namics, neural networks, and genetic algorithms. A bipedal machine is evolved in
simulation that when pushed walks either forward or backwards just enough to re-
lease the pressure placed on it. Just as a tango dancer uses a dance frame to control
the movements of their follower, external forces are a subtle way to control the ma-
chines speed. When the machine is subjected to noise in its body’s size, weight, or
actuators as well as external forces it demonstrates the ability to dynamically adapt
its gait through feedback loops between its actuators and sensors.

1 Introduction

Human walking is an elegant solution to bipedal locomotion. It is both resilient to
disturbance and efficient. Recently the companies Honda, Sony, and Toyota have
all developed their own androids that try to capture these qualities. To walk, these
machines use an algorithm based on zero moment point (ZMP) [10] that computes
their leg trajectories in order to keep the machines dynamically stable. The result are
robots that are robust to disturbance but not particularly efficient. When humans
walk they generally step forward on a straight leg and allow the opposing leg to
swing past like an inverted pendulum. However these trajectory based machines
step down on a bent leg to ensure a dynamically stable gait. The result is a walk
that may be inefficient due to the extra power required to support their torso. To
explore simpler more efficient models of walking, passive dynamic machines have
been built that can walk like inverted pendulums un-powered down small inclines
[6]. However, these machines’ ability to resist disturbance and balance weight above
their hips is limited due to their lack of an active control system. It would seem that
humans somehow combine these two ideas to attain a gait that is both robust and
efficient. Somehow their motor system keeps their gait stable while leveraging the
passive dynamic properties of the body.

In this paper we design a bipedal robot that combines the concepts of dynamic
stability and passive dynamics. While we are currently exploring a 3D machine with
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12 degrees of freedom, to match the scope and size of this paper we have simplified
it to 2 dimensions and 6 degrees of freedom (Figure 1). Our simplified machine was
simulated in a physics simulator. An active control system based on neural networks
was used to keep the machine stable. Using a genetic algorithm the bodies’ and
control systems’ parameters were evolved to minimise energy consumption while
exploiting the passive dynamic properties of the body. The result was a machine
that walked both forward and backward. It was dynamically stable and resistant to
external noise as well as discrepancies in its body’s construction. It took advantage
of passive dynamic properties by supporting its torso on a straight leg and using a
passive knee joint.

2 Previous work

In our previous work we evolved a three-dimensional bipedal robot in simulation
that had 10 degrees of freedom but no torso above the hips. The parameters of the
body and neural network were encoded in an artificial genome and evolved with
a genetic algorithm. The machine started out as a passive dynamic walker on a
slope and then over many generations the slope was lowered to a flat surface. The
machine demonstrated resistance to disturbance while retaining passive dynamic
features such as a passive swing leg. [12].

At MIT the bipedal robot simulation M2 was created with 12 degrees of freedom
[7]. It had passive leg swing and used actuators that mimicked tendons and mus-
cles. Its control system was composed of a series of hand written dynamic control
algorithms. A genetic algorithm was used to carefully tune the machines parameters.

3 Methods

The body of our simulated machine had six-degrees of freedom: one at each hip,
one at each knee, and one at each ankle (Figure 1). While the machine was built
in a 3D simulator only the x and y planes were explored. To make this possible the
machine’s legs were allowed to move freely though each other.

The physics of the body were simulated using the open dynamics engine (ODE)
physics simulator [11]. Weights and measures were computed in meters and kilo-
grams with gravity set to earth’s constant of 9.81 m/s2. The body on average was
one meter tall and had 12 parameters (Figure 1): Mw is mass of waist, Mt is mass
of thigh, Ms is mass of shank, Mf is mass of foot, L is length of a leg segment, Yt

is offset of thigh mass on the y-axis, Ys is offset of shank mass on the y-axis. Xt is
offset of thigh mass on the x-axis, Xs is offset of shank mass on x-axis, Lf is length
of foot, W is radius of waist. The weight of the torso Mt was 1.5 times the weight
of Mw. W was 1/3 of L. T was 2 ∗L + W

2
. Parameter ranges were selected based on

observations of the human body. The mass of the foot was restricted to be less than
that of the shank, the mass of the shank was less than that of the thigh, etc. All
parameters were encoded in a genome, for optimisation through a genetic algorithm.
Feed-forward continuous time neural networks (CTNN) were used to add power to
the machine. Unlike traditional neural networks, a CTNN uses time constants to
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Fig. 1. Left: Degrees of freedom in the body. Right: body parameters evolved by
the genetic algorithm.

allow neurons to activate in real time and out of phase with each other. For a de-
tailed analysis of this kind of network refer to [1]. The state of a single neuron was
computed by the following equation:

τiẏi = −yi +

[ N∑
j=1

wjiσ(gj(yj))

]
+ Ii + Ω (1)

Where y is the state of each neuron, τ is a time constant, w is the weight of an
incoming connection, σ is the sigmoid activation function tanh(), g is the gain, I is
an external input, Ω is a small amount of noise in the range of [-0.0001, 0.0001]. The
state of each neuron was integrated with a time step of 0.2 using the Euler method.
In our model neurons were encoded in the genome with τ and g while the axon’s
weights were encoded with real values in the range of [-5, +5]. Biases were omitted.

Two islands [13] of a geographically distributed genetic algorithm [4] were used
each with a population of 50 individuals. The genotype of each individual contained
real valued genes. After each mating each gene was mutated by adding a small
random number in the range of [− m

2.0
, + m

2.0
]. Initially the mutation rate m was set

to 0.5 and then lowered slowly during evolution. Crossover was random. This kind of
evolutionary algorithm was used as it has previously proved effective in this context
but we do not discount other algorithms being equally effective.

4 Network Design

Each leg was given a copy of an identical neural network each of which had two
different states either stance or swing. Upon creation they were connected to each
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other by sharing two neurons called centre of mass (COM) and winner (Figure 2).
To walk one network became stance keeping the leg straight and supporting the
torso while the other became swing and guided the leg either forward or backward.
On each step the roles of the networks were swapped. Each network decided its state
by using a winner take all circuit (Figure 2). The leg with the most foot pressure
became the stance leg and inhibited the other to become the swing leg. When the
stance leg’s foot later lost contact with the ground the other leg became the stance
leg and inhibited the first. The stance state was implemented making a positive
connection between a gyroscope that detected the orientation of the waist around
the x axis and the desired hip velocity (a) in (Figure 2). If the torso fell forward
the leg moved under it by powering the hip. An Inhibitory connection between the
winner take all circuit inhibited this behaviour when the network was not in stance
state (b).

When a network was in swing state it needed to move the leg forward just
enough to catch the machine’s centre of mass (COM). This is a similar problem to
that of a Segway human transporter [9]. A Segway has only two wheels but must
support a person standing on top by computing how fast it must turn its wheels to
drive under its COM. A simple algorithm to do this is to attach a gyroscope and
wheel encoder to the machine and to set up a simple feedback loop to the wheel
motors. If the sum of the gyroscope angle and its derivative added to the sum of
the wheel angle and its derivative is connected to the wheel motor the machine will
automatically balance itself. In our machine the legs take the place of the wheels so
we compute our COM by summing our gyroscope and current hip angle with the
velocity of the torso. Velocity can be computed by a function of the derivative of
the hip angle, the length of the leg, the derivative of the gyroscope and the length
of the torso. However, for simplicity we have taken the velocity directly from the
physics simulator (c). The hip torque was computed by taking the derivative of the
hip angle and subtracting the desired hip velocity (e). To move the leg negative
connections were made from the leg’s hip angle sensor and the other leg’s COM to
the hip actuator’s desired velocity (f). This allowed the leg to move to an equilibrium
point just in time to catch its mass falling forward. Similar to the stance leg this
behaviour was inhibited when not in swing state (g). To keep the knee straight
when the foot was touching the ground a positive connection was made from the
foot’s pressure sensor to the knee velocity (h). When the foot was off the ground,
the knee was completely un-actuated and allowed to passively swing. Knee torque
was set to the magnitude of its velocity. Ankles were implemented by placing a
negative connection between their angle sensors and desired velocity. Ankle torque
was automatically set to the magnitude of their desired velocity making the ankles
act as damped spring (i). To inject power into the stride when the COM was forward
a positive connection was made from the COM to the ankle velocity (j).

4.1 Stepping Reflex

Two reflexes were used to automatically lift the swing leg forward or backward if
the COM shifted past a threshold. Without these the machine could support the
torso and guide the swing leg but had no way of initially getting a foot off the
ground. Each foot was given a recharge counter and four neurons were added to
each network: forward, backward, decay, and strength (k). If the foot was fully
charged and the COM shifted over a threshold, the forward or backward neurons
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Fig. 2. Left: Each network is identical and communicates through shared neurons.
Solid circles are actual neurons, transparent ones are references. Right: network
structure. Inhibitory connections push the activation toward zero regardless of sign.
Actuators had two inputs desired velocity and maximum torque available to achieve
that velocity. If torque was not specified it became the magnitude of the desired
velocity.

were pulsed lifting the leg and reseting the recharge counter. The rate of decay
and strength of the pulse was taken from the rate and strength neurons. Each of
these neurons were connected to the COM allowing the machine to take larger steps
depending on how far off balance it was. The greater the magnitude of the rate the
slower the decay of the pulse over time. The greater the magnitude of strength the
larger the magnitude of the initial pulse. To step forward or backward a positive
connection was made between the forward and backward neurons and the desired
hip velocity (l). In the forward case this allowed the hip to lift and the knee to
swing passively forward. In the backward case an additional negative connection
was made between the backward neuron and the knee torque(m). This momentarily
compressed the knee enough to allow it to passively swing past the stance leg.
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5 Experiments

5.1 Dynamic gait adjustment

In connected ballroom dances such as tango the lead communicates intended move-
ments to the follower through a dance frame. When the lead moves forward they
gently push into the follower causing them to step backward. The more the lead
pushes the faster the follower moves. In our first experiment we use this idea to
teach our machine to walk at different speeds both forward and backward. A pop-
ulation of machines were constructed and each one was evaluated for fitness in the
following way:
1. Place the machine standing upright with legs together on a flat surface.
2. Constantly push it forward with just enough force to get it to reach a desired
velocity chosen at random. Compute its fitness with the the following function:

fitness = t

(
1

1 + p

)(
1

1 + z

)(
1

1 + x

)(
1

1 + f

)
(2)

Where: t is time the machine walked before falling, p is the torque used, z is the
acceleration of the hip along the z dimension, and x is the rotation of the hip around
the x-axis. f is the force required to get the machine to the desired velocity. p, z, f ,
and x were averages taken over the entire evaluation time.
3. Put the machine back to the starting position and push it backward with just
enough force to reach a desired velocity chosen at random. Compute its fitness again.
4. Take the worse fitness of the two runs.
5. Repeat step (1-4) nine more times and take the average fitness.
This type of evaluation ensures a machine walks equally well forward or backward
with the minimum amount of force pushing on it. It also selects for machines that
walk as long and straight as possible without explicitly specifying how they move
their legs. This allows their leg trajectories to emerge from the dynamics of their
bodies rather than from the observations of a human gait. The machine’s gait after
800 generations is illustrated in Figure 3.

To determine how closely our machine was able to match a desired velocity two
graphs were made. One comparing the machine’s desired velocity with its actual
velocity Figure 4 and one showing its change in foot timing at several different
velocities. The first graph shows a valley. As the machine is pushed either forward
or backward its velocity increases or decreases respectively. If the machine is close
to zero it attempts to stand still.

5.2 Robustness to noise

One of the great difficulties with computer simulation is that it often fails to transfer
to a physical robot due to unforeseen differences found in the real world. Therefore
a controller that is adaptable to unforeseen changes may have a better chance of
making the transfer. To determine how adaptable our machine was we subjected
it to both internal and external noise. Internal noise was defined as errors in the
body itself such as incorrect body masses, leg lengths, or noisy actuators. External
errors were defined as random external forces that attempt to push the machine off
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Fig. 3. Top: gait of machine walking forward. Bottom: gait of machine walking
backward.
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Fig. 4. Left: Comparison of the machine’s desired velocity with its actual velocity.
The x axis is the desired velocity forward (positive) or backward (negative) and
the y axis is the absolute value of the machine’s actual velocity. Right: The foot
strike timing of the left leg at three different speeds 0.1, 0.2, and 0.3 m/s. Solid bars
indicate the foot is touching the ground while transparent indicate the foot has left
the ground.

balance. Internal noise was introduced by adding an error to each body parameter
and actuator upon construction (3).

p = p + p ∗ (rand()− 0.5) ∗ 2.0 ∗ e ae = (1− rand()) ∗ e (3)

Where: p is the body parameter, rand() is a function that returns a random
number in the range of 0 and 1, e is the percentage of error. Errors were introduced
to actuators by multiplying the desired velocity and torque from the network by ae
and adding random noise in the range of [− e

10
, + e

10
] on each time step. ae and p

were computed just once on the construction of the machine. External noise was
added by applying a random force along the x and z axis (4) each time step.
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x = (rand()− 0.5) ∗ 0.5 ∗ e z = (rand()− 0.5) ∗ 0.5 ∗ e (4)

The machine was tested for the average number of forward steps it could take
over 20 trials when pushed forward at 0.2 m/s for error rates between 0 and 50%
(Figure 5). The graph shows a graceful degradation in the number of steps taken as
noise increases. With 10% noise the machine is able to take 93 steps on average and
after 50% noise the machine can still take an average 10 steps.
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Fig. 5. Graph illustrating robustness to error. The y axis is the average number of
steps taken over 20 trials while walking forward at a velocity of 0.2 m/s. x is the
percentage of error e. The number of steps taken was capped at 100.

5.3 Efficiency

In studies conducted in Kenya women there were observed to carry great weights on
their heads while using very little energy [2]. This was attributed to the observation
that they walk like inverted pendulums supporting the weight on a straight leg as
they move forward. To study the efficiency of our system the population of machines
was evolved for an additional 200 generations and evaluated for their ability to
walk forward while carrying varying amounts of weight. Initially the body weighed
42 kg, 32 kg of which were contributed by the torso. In the experiment 20 walks
were conducted increasing the torso’s weight by a percentage of the total body
mass. At 0% the torso was unchanged at 32 kg, at 200% (Figure 6) the torso was
32 + 42 ∗ 2 = 116kg. To start each walk the machine was pushed to a velocity of
0.25 m/s and its energy consumption was computed as it walked 60 meters. At 0%
it used 193 kg-m of torque and at 200% it required 292 kg-m. This revealed that
to carry twice its body weight (200%) this machine required only 51% more energy
(Figure 6).

5.4 Construction of a physical machine

To transfer our simulation to a physical machine we are currently developing actua-
tors based on series elastic actuators developed by MIT [8]. These devices combine
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Fig. 6. Left: The machine carrying 200% of its original weight (Boxes indicate mass
distribution). Right: Graph illustrating its ability to carry weight. The y axis is the
total torque required in kg-m and the x axis is the weight carried in kg.

a worm gear with a spring to make a device that has shock tolerance, high fidelity
and low impedance. By setting up a negative feedback loop between spring deflec-
tion and a desired deflection they can be used to apply varying amounts of force.
If the desired deflection is zero they can emulate passive components. When this is
combined with a proportional-derivative (PD) controller whose input is a desired
velocity and maximum torque, it can implement the type of actuators used in our
simulation. Our primary concern is issues involving unforeseen differences between
simulation and reality. While our experiments have demonstrated resistance to er-
rors in the body and actuators we also have other techniques that can aid in the
transfer. Jakobi successfully transfered a controller for a simulated khepera robot to
a physical one by carefully adding noise during evolution [5]. Plastic weight updating
rules have also been used to make the transfer to physical machines. In one experi-
ment, [3] evolved a controller that allowed a simulated Khepera robot to navigate a
maze and then transfered it to a physical one. To demonstrate how adaptive plas-
ticity could be they then transferred the same controller to a different six wheeled
Koala robot. In a second experiment they evolved a four legged walking robot in
simulation and successfully transfered it to a physical machine. While our physical
robot is only in its early stages we are taking appropriate measures to ensure our
machine will transfer successfully.

6 Conclusion

We have demonstrated a simulated machine that combined dynamic stability with
passive dynamics. Its control system was composed of two identical neural networks
that formed a dynamic system whose basin of attraction was walking. When pushed
forward or backward it walked just enough to support its centre of gravity. By us-
ing passive knee swing and stepping down on a straight leg it demonstrated the
ability to support large weights efficiently. The machine maintained stability even
when subjected to noise such as external forces, body parameter errors, and actua-
tor errors. This is an interesting result since the CTNNs of our model do not store
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information through weight changes, as many conventional artificial neural networks
do. Instead it had to rely entirely on the feedback between its sensors and actua-
tors. This adaptability may provide a mechanism for transferring simulated control
systems to physical robots.

This technique is very powerful and we are currently using it to explore more
complex 3 dimensional bipedal machines. Some of these simulated machines have
demonstrated the ability to dynamically run. We are now beginning to build a phys-
ical android based on this model and hope to discover further insights into how to
use these methods to develop practical bipedal machines. Videos of our simulated
machines can be found at (www.droidlogic.com).
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