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Abstract 

Recently designed wind energy systems use large traction kites to drive electricity 
generation equipment at ground level; this exploits stronger and more consistent 
winds available at higher altitudes than used by traditional wind turbine systems. 
These kites require active control; in this study we build upon past work 
demonstrating the use of evolutionary robotics techniques to build neural network 
controllers that maximize energy recoverable from wind in a simulated kite system 
using only information available at ground level from the line angles and forces. 
Neurocontrollers are evolved under selective pressure to fly the kite in order to 
maximise forces through the lines, resulting in optimal figure-eight trajectories. 
We allow evolution to converge completely and compare the flight trajectory with 
analytically derived solutions. We consider the robustness of the neurocontrollers 
to large gust deviations in speed and direction. Finally we address the problem of 
controlling the kite with different line lengths, which dramatically alters the 
response properties of the kite. 
 

1. Introduction 
The wind resource at high altitude has been known for some time to be of much higher quality in 

terms of strength and consistency than that exploitable by traditional wind turbine technology. This 

knowledge has spurred the exploration of a number of high altitude wind concepts using kites. Here 

we address the control of a kite in simulation using evolved neural network controllers. Initially we 

continue previous work which has shown that evolution can configure recurrent neural networks to 

robustly steer a kite in an appropriate trajectory for power generation, using only data available at 

ground level from line angles and tension data. We then consider a further subset of the operating 

conditions under which the neural network must maintain robust and adaptive control, namely lateral 

wind deviations and varying line length. 

2. Background 
The use of kites for electricity generation was first 

addressed by Loyd, who demonstrated that steering a 

tethered airfoil in sweeping crosswind passes maximises 

the power generated at a ground based generator (Loyd, 

1980), as the lines are reeled out from a spool which is 

coupled to a dynamo. The basis for this strategy is that 

power generated by a wind generator scales with the 

cube of the wind speed (Canale et al, 2006). This lends itself to the periodic power generation 

strategy as shown in Figure 1; the difference in energy between that recovered in the reel-out phase 

A where dynamic manoeuvres are performed to augment apparent wind velocity, and that spent in 

phase B where the lines are reeled in with the kite at low attack angles, is the net gain of energy. Here 

we take a bio-inspired method and use evolutionary robotics (ER) techniques to develop controllers 

for a single four-line kite with in-trial variation in wind speed and wind direction and between-trial line 

length variation. 

 
Figure 1. Generation (reel out) phase A 
and retraction (reel in)  phase B. 
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3. Methodology 
Following Furey et al (2007), neurocontrollers are selected in an iterative process directly inspired by 

evolution. The key elements are summarised below, a more precise description is given in the earlier 

paper. 
3.1 Physics simulation 

In order to capture some of the dynamics of the kite’s flexible 

structure that affect its flight and response to steering input, the 

kite is considered to be a collection of particles with mass, whose 

relative distances are constrained. Assuming that the enforcement 

of the constraints is not fully rigid, the kite will flex according to the 

relative forces on different 

parts of the canopy and the 

layout of the constraints 

(see Fig. 2). The kite’s 

canopy is split into 5 slices, the drag (Eq. 1.4) and lift (Eq. 1.2) 

forces on each section are calculated separately using the 

section’s own angle of attack (α in Eqs 1.2,1.4), area,  leading 

edge vector and apparent wind vector at that section (A ,e and a 

respectively in eq 1.3.). The drag and lift coefficients (CL and CD) 

are determined using the slice angle of attack (see Furey et al 

2007). The aerodynamic and gravitational forces upon each 

slice are distributed among its constituent particles, and 

acceleration calculated via Newton’s second law. In the simulation the particles positions (x in eq 1.1) 

over time are integrated using the Verlet method as shown in equation 1.1 where a is acceleration 

and ∆t is 0.004, Gauss-Seidel iteration is used to enforce constraints. 

Figure 2. Configuration of 
constraints and particles. Slices 
marked by zigzag lines. 
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3.2 Genetic Algorithm and Neural Network 

We use a simple microbial genetic algorithm (Harvey 2001), with a population of genotypes or artificial 

‘DNA’, randomly initialised, specifying possible parameter values. A wind trace is generated with a 

heuristic that produces the wind speed modulated at different rates and amplitudes around a 

predetermined background wind speed. Two neurocontrollers are then picked at random from the 

population and their fitnesses, the average of the component of the aerodynamic force in line with the 

lines, are determined. The worse performer’s DNA is overwritten by the better, with a small random 

mutation of ± 0.01 applied to every parameter. This process continues for several hundred iterations, 

each consisting of 15 competitive trials. There is no restriction on the form of the flight trajectory, 

fitness is the only criteria and suitable flight patterns should emerge from the evolutionary process. 

We use a simple discrete time recurrent neural network due to its faster evolution relative to 

continuous time recurrent neural networks in previous work. As mentioned above, we do not feed the 

network with explicit position data of the kite, only data available from line angles and tension is 

allowed, the sensor values are subject to significant Gaussian noise with a standard deviation of 2% 

of the sensor range. There are 5 input nodes, which take their activation values directly from the 



simulation, describing (1) average line azimuth and (2) elevation, (3) average line force, (4) difference 

in line force and (5) azimuth between the left and right lines of the kite The activation a at each hidden 

and output neuron j at time t is given by equation 1.5 where σ is the logistic sigmoid function, θ the 

threshold, wij the weight from neuron i to neuron j. The six hidden nodes and the single output node 

have full recurrency, taking input from every other node and themselves. The activation value of the 

output node specifies the difference in left and right steering line length in the simulation. 

3.3 Experimental protocol 

We evolve a population of 30 neurocontrollers to produce the highest average aerodynamic force in 

line with the flying lines over a 42 second trial. Here we consider three scenarios, in the first the wind 

amplitude varies ±4ms-1 according to the heuristic described above. In the second we use the same 

type of heuristic to generate lateral deviations of the wind of ±20o around a central point during the 

tests. The ground attachment points and azimuth sensor readings are not rotated with the wind or 

direction of force as real kite hardware could be. In the third we consider the control of the kite under 

varying wind speed, but also with the line length varying from trial to trial. Across the whole set of 

experiments there is no explicit sensory information given to the network that relates directly to the 

factors being varied: wind speed, wind direction or line length. 

4.  Results 
Figure 3 (left) was presented 

previously in Furey et al 2007 and 

represents the trajectory of the kite 

in a 42 second trial when controlled 

by the best performing 

neurocontroller after 200 

generations. Whilst being a figure 

eight, it is clearly suboptimal as the 

eight in not centred downwind as is 

required in order to make most efficient use of a given wind. Figure 3 (right) however shows that after 

a further 800 generations of evolution, the figure 

eight is fully lying on its side and almost exactly 

centred downwind. The loop is qualitatively similar 

to the lying eight presented in (Houska et al 2007), 

with one half of the loop larger than the other. The 

DNA from the experiment described above was 

used to seed the population for the second 

experiment where relatively small lateral deviations 

of ±15o were introduced to the wind. Figure 4 

demonstrates a trajectory of the best performing 

neurocontroller after 600 generations, being flown 

with the 15 degree lateral deviation shown below. 

Unlike in the first experiment, where the controllers performed robustly across all of the range of 

Figure 3. Plot of best evolved controller’s trajectory over 42 
seconds after 200 (left) and 1000 (right) generations 
respectively. All axes in meters. 

Figure 4. Trajectory of the best evolved agent 
when subjected to the 15 degree lateral gust 
shown below. 



variation that they were exposed to in evolution, in the case of lateral deviation consistent non-

crashing trajectories were only experienced for deviations of 7-8 degrees either side; greater 

deviations than this would increasingly cause crashes or the neurocontroller would get ‘stuck’ at a 

certain point in the wind window before resuming its normal course upon the cessation of the lateral 

gust. The third experiment produced some unexpected results, controllers were produced that could  

fly the kite without crashing within a range of line lengths, however, the general pattern of the 

trajectory itself varied to a large extent depending on the line length. Figure 5 demonstrates the 

progression of trajectories from 25 to 400m line length using the same neurocontroller. Note the near 

circular trajectory at 50m which has been shown to be a local optima (Houska, 2007). Interestingly, 

the successful controllers generalised well to the variation in terms of keeping the kite aloft, controllers 

evolved to fly the kite with line lengths between 20 and 100 metres could also fly the kite successfully 

at 200 meters and more. In terms of maximising the aerodynamic forces, all the populations tested 

here sacrificed the performance at short line lengths in order to generalise to longer lengths. 

Figure 5. Trajectory of the best evolved agent at line lengths of 25,50,100,200 and 400m respectively. 

5. Discussion 
We have shown in the first experiment that ER can generate neurocontrollers that fly a kite in an 

appropriate trajectory to maximise forces through the lines in a wind of varying amplitude. When 

evolution is allowed to converge, the trajectory qualitatively resembles those derived through 

mathematical techniques. Secondly it was demonstrated that neurocontrollers could be evolved to be 

robust to small lateral wind deviations. The relatively poor performance in this task was potentially 

influenced by the experimental setup in which the base was not rotated meaning that actuator limits 

were being saturated. Finally ER was shown to generate controllers with good line length 

generalisation, the trajectory variations seen are likely determined by the evolutionary process 

working with networks with limited temporal dynamics. This will be addressed in future work, along 

with the problem of control under reel-out, and active control of reel-out speed. 
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