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Abstract

In 1994, Yamauchi and Beer (1994) attempted
to evolve a dynamic neural network as a control
system for a simulated agent capable of perform-
ing learning behaviour. They tried to evolve an
integrated network, i.e. not modularized; this at-
tempt failed. They ended up having to use inde-
pendent evolution of separate controller modules,
arbitrarily partitioned by the researcher. More-
over, they “provided” the agents with hard-wired
reinforcement signals.

The model we describe in this paper demon-
strates that it is possible to evolve an integrated
dynamic neural network that successfully controls
the behaviour of a khepera robot engaged in a
simple learning task. We show that dynamic neu-
ral networks, based on leaky-integrator neuron,
shaped by evolution, appear to be able to inte-
grate reactive and learned behaviour with an n-
tegrated control system which also benefits from
its own evolved reinforcement signal.

1 Introduction

In 1994, Yamauchi and Beer (1994) pointed out how re-
search on learning robots typically drew a sharp distinc-
tion between the mechanisms responsible for an agent’s
behaviour and those responsible for learning (Kaelbling,
1993). They claimed that this distinction is difficult to
defend biologically, because many of the same biological
processes are involved in both reactive and learned be-
haviour. They based their claim looking at current the-
ory in the study of learning in biology, which seems to
suggest that animals’ learning capabilities are exquisitely
tuned by evolution, to the particular niche that they oc-
cupy (Garcia and Koelling, 1966; Wilcoxon et al., 1971;
Davey, 1989).

Therefore, they set out an experiment in which they
tried to evolve an autonomous learning robot by selec-
tively integrating the necessary plasticity directly into

the mechanisms responsible for the robot’s behaviour.
Their methodology was meant to guarantee that any
structural or functional decomposition that may be
found in the analysis of the behaviour or in the evolved
control system should result entirely from the evolution-
ary contingencies (as it is in animals). Previous research
on learning robots relied on explicitly hand-designed de-
composition or modularization both of the behaviour
and of the robot’s control system (Kaelbling, 1993).

The approach undertaken by Yamauchi and Beer
(1994), is part of a more general way of assuming an
evolutionary perspective in designing control architec-
ture for autonomous agents. This research area is gener-
ally referred to as Evolutionary Robotics (Harvey et al.,
1997; Nolfi and Floreano, 2000). The potential benefits
of an evolutionary approach to the design of simulated
or real agents’ control systems and possibly agents’ mor-
phologies, either for engineering purposes or as a new
methodology for biology, are widely debated (see Webb,
2000; Nolfi, 1998). However, generally speaking, the ap-
peal of an evolutionary approach to robotics is two-fold.
Firstly, and most basically, it offers the possibility of au-
tomating a complex design task (Meyer et al., 1998; Nolfi
and Floreano, 2000; Harvey et al., 1997). Secondly, since
artificial evolution needs neither to understand, nor to
decompose a problem in order to find a solution, it offers
the possibly of exploring regions of the design space that
conventional design approaches are often constrained to
ignore (Harvey et al., 1992).

A growing amount of research in Evolutionary
Robotics has been focusing on the evolution of con-
trollers with the ability to modify the behaviour of a
robot, in order to adapt to variation in its operating
conditions. By variation we mean changes in the rela-
tionship between a robot’s sensors and actuators, and its
environment (e.g. Floreano and Urzelai, 2000, 2001b,a;
Floreano and Mondada, 1996; Nolfi and Floreano, 1999;
Eggenberger et al., 1999; DiPaolo, 2000). Yamauchi
and Beer’s approach clearly represents one of the first
attempts in which continuous time recurrent neural net-



works have been exploited to integrate reactive, sequen-
tial and learned behaviour in a simulated robot.

Apart from Yamauchi and Beer (1994), current re-
search in this area has been investigating the use of
neural network controllers with some form of synaptic
plasticity, that is, networks which incorporate mecha-
nisms that change connection weights. Yamauchi and
Beer (1994) did something distinctively different and
unique, due to the characteristics of the control sys-
tem and the singularity of the learning task employed.
They employed continuous time recurrent neural net-
works (CTRNNs: described in their paper and also
briefly in section 3.4 below), with genetically defined
and fized (as contrasted with plastic) connection weights,
and leaky-integrator neuron (i.e. neurons whose activa-
tion decays with time). There is a further difference
between the learning task described in their paper and
the robot learning experiments of (e.g. Nolfi and Parisi,
1997; Floreano and Urzelai, 2000). The former specif-
ically required the robot to learn the current relation-
ship between a goal and a landmark, a relationship that
changes from time to time; the latter require the robot
to adapt to rather general variation concerning the re-
lationship between a robot’s sensors and actuators, and
its environment — such as variation in the color of the
arena walls (as in Nolfi and Parisi, 1997) or variation in
lighting levels (as in Floreano and Urzelai, 2000).

However, Yamauchi and Beer (1994)’s attempts to
evolve an integrated (i.e. not modularized) dynamic neu-
ral network, as a control system for a simulated agent
capable of performing learning behaviour, failed. They
ended up having to use independent evolution of sep-
arate controller modules, some of which are dedicated
to reactive and sequencing behaviour and others dedi-
cated to learning. Moreover, they hard-wired into the
model a reinforcement signal that works as a feedback
signal for the learning module. For reasons to be ex-
plained in section 2 we believe that is important to carry
through the Yamauchi and Beer experiments as origi-
nally intended, even though they were forced to make
compromises that we find unsatisfactory.

The model we are describing in this paper is intended
simply as a proof of concept. We go beyond the Ya-
mauchi and Beer (1994) approach, demonstrating that
it is possible to evolve an integrated dynamic neural net-
work, with fixed connection weights and leaky-integrator
neurons that successfully control the behaviour of a
khepera robot engaged in a learning task, similar to one
proposed by (Yamauchi and Beer, 1994). We will bring
evidence that the leaky-integrator neuron, if shaped by
evolution, appears to be able to integrate reactive and
learned behaviour within a single control system that is
not explicitly modularized. The integrated control sys-
tem we are describing also benefits from its own evolved
reinforcement signals to generate the appropriate be-

havioural responses; this is in contrast to their explicit
introduction of hard-wired reinforcement signals.

1.1 Structure of the paper

In what follows, we will firstly present a very brief de-
scription of the Yamauchi and Beer (1994) experiment
(see section 2). We will then point out that, although
a promising one, the Yamauchi and Beer (1994)’s ap-
proach is not completely satisfactory because the auton-
omy of the simulated agent is severely compromised by
an external reinforcement signal and externally imposed
modularization of the controller 2.1.

In section 3 we describe the methodology used, the
task, the evaluation function used for evolution, the in-
tegrated network, the simulated robot and the Genetic
Algorithm.

In section 4 we show experimental results. In sec-
tion 5 we make comparisons with the original Yamauchi
and Beer (1994) experiment. We discuss the differences
that might have singularly contribute to make it possi-
ble for us to evolve an integrated dynamic neural network
where we assume neither an a priori separated controller
module nor an a priori external reinforcement signal as
in Yamauchi and Beer (1994). Conclusions are drawn in
section 6.

2 Yamauchi and Beer’s model of a
learning robot

Yamauchi and Beer set up an experiment where a sim-
ulated robot had to repeatedly find a goal using a land-
mark for guidance. The relationship between the posi-
tion of the goal and the position of the landmark changed
occasionally within the sequence of searches, so success-
ful behaviour required the robot to “learn” when these
changes occurred.

A
ol —

B
—5 0
Figure 1: This picture is adopted from Yamauchi and Beer

(1994).
task. The triangle represents the agent, the circle represents

Environment for the one-dimensional navigation

the goal and the rectangle represents the landmark. The
landmark-near environments (A and B) are on the left, the
landmark-far environments (C and D) are on the right.

In the Yamauchi and Beer’s model, an agent could
move in either direction along a one-dimensional con-
tinuum environment (see figure 1). The environment



contains a goal and a landmark. At the start of each
trial, the agent was positioned in the center, and the
goal was positioned randomly at either the left or right
end. There were two possible way in which the landmark
can be located within the environment. In the landmark-
near environments 1A and 1B, the landmark was located
on the same side of the agent as the goal. In landmark-
far environments 1C and 1D, the landmark was located
on the opposite side of the agent from the goal. The
agent’s task was to learn, over a series of successive tri-
als, whether the current environment was landmark-far
or landmark-near, and then reach the goal. Each trial
lasted until either the agent reached the goal, the agent
reached the non-goal end of the continuum, or the time
limit was exceeded.

Attempts by Yamauchi and Beer to evolve a single
fully CTRNN capable of solving the task were unsuc-
cessful, so they used a modular, incremental approach
instead, one in which the network architectures was split
into three separately evolved subnetworks: one for goal-
seeking behaviour in a landmark-far environment, one
for goal-seeking behaviour in a landmark-near environ-
ment and one for environment classification. Each sub-
network consisted of a five-neuron fully interconnected
CTRNN. All of these subnetworks had a sensor input
for landmark detection, activated when the agents were
directly in contact with the landmark, and two motor
outputs (i.e. a left and a right motor neuron). In addi-
tion, the classifier network had a sensor input for rein-
forcement, which was provided every time the network
reached the goal, and a classification output used to de-
termine the environment type.

The two goal-seeking networks were specifically
evolved to properly navigate in one or the other type
of environment.

The classifier network were specifically evolved to con-
trol the behaviour of the agent during the first trial and
to decide whether the agent was living in a landmark-far
or in a landmark-near environment. The classification of
the environment was landmark-far if the output of the
classification neuron at the end of the first trial was less
than 0.5, and landmark-near otherwise.

The evolved strategy was quite simple. The classifier
network starts with the classifier output high, indicating
a choice for landmark-near environment, and moving the
robot towards the left side. Sensing a landmark causes
the reversion of the direction of movement, while a re-
inforcement signal, hard-wired in to the model, makes
the classifier output go low, indicating a choice for the
landmark-far environment. If no reinforcement is pro-
vided, the classifier output remains high regardless of
whether or not the agents had encountered a landmark.

These evolved responses make the classifier network
able to correctly identify all four possible combination
of environment type and goal location.

2.1 Thoughts and comments

We believe that the Yamauchi and Beer’s model of
evolved learning behaviour in artificial agents is valuable
because it clearly represents one of the first attempts in
which artificial evolution has been exploited to design the
internal dynamics of a CTRNN to integrate the percep-
tions of the agents and to determine the agent’s actions
based upon these perceptions. In their model a fitness
function rewards the behavioural responses that fulfil the
conditions for learning.

However, they made use of an ‘external’ (i.e. not
evolved) reinforcement signal, directly available to the
robot, which signals to the robot when it performs cor-
rectly. This reward signal is clearly an externally im-
posed supervision, which severely compromises the au-
tonomy of the system. Moreover, their attempts to
evolve an integrated CTRNN, as a control system for
a simulated agent capable of performing learning be-
haviour, failed. They ended up having to use inde-
pendent evolution of separate controller modules, some
of which are dedicated to reactive and sequencing be-
haviour and others dedicated to learning. This modu-
larization of the controller reintroduces a structural and
functional decomposition which is also externally im-
posed to facilitate the time-integration of different be-
havioural responses.

We argue that the Yamauchi and Beer (1994)’s model,
relying as it does on independent evolution of separate
controller modules (that are arbitrarily designed by the
researcher and clearly dedicated to separate behavioural
responses), and on an external reinforcement signal,
failed to evolve an autonomous learning robot by selec-
tively integrating the necessary plasticity directly into
the mechanisms responsible for the robot’s behaviour.

3 Evolving CTRNNs as controllers for
autonomous learning robots

Drawing inspiration from the Yamauchi and Beer
(1994)’s experiment, we set out to evolve an integrated
dynamic neural network, with fixed synaptic weights and
‘leaky integrator’ neurons, as a control system for a robot
engaged in a task where learning behaviour is required.

3.1 Description of the task

The task requires navigation within a rectangular arena
in order to find a goal represented by a black stripe on
the white arena’s floor. The learning aspect requires the
robots “to learn”, over a series of successive trials, the
relationship between the position of the goal with respect
to a landmark that the robot must use for guidance to
find the goal.

At the start of each trial, a robot is positioned in
the left or right side of an empty arena (see the black
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Figure 2: Depiction of the task. The small circle represents

Landmark-near

the robot. The white oval represents the landmark (i.e. a
light source) and the black stripe in the arena is the goal.
Picture A at the top represents the arena at the beginning of
each single trial without landmark and goal. The black filled
circles represent two possible starting points. The curved
dotted lines represent two possible routes to the central part
of the arena which is delimited by dashed lines. Pictures B
and C represent the two possible arrangement of the land-
mark and goal within the landmark-near environment. The
pictures D and E represent the two possible arrangement of
the landmark and goal within the landmark-far environment.
The arrows, in pictures B,C,D,E represent the directions to-
wards which a successful robot should move.

filled circles in figure 2A). As soon as the robot reaches
the central part of the arena (delimited in figure 2A by
dashed lines), a goal (represented by a black stripe) is
randomly positioned on the white arena’s floor. This
can be either in front of, or behind the robot, and
is not perceivable by its proximity sensors (see fig-
ure 2B, 2C, 2D, 2E). The robot’s behaviour will be eval-
uated according to a fitness function that rewards or pe-
nalises certain behaviours; this evaluation will be used
to determine how many offspring it has within the evolu-
tionary algorithm, but is not in any sense a reinforcement
directly available to the robot. The robot is rewarded for
leaving its current central position towards the goal until
it finds it (see arrows in figure 2B, 2C, 2D, 2E); but it
is penalized if it sets off away from the goal. The robot
must “decide” which way to go; however, without any
clue as to where the goal is, it can do no better than
making a random decision.

The robot can use a landmark for guidance. The land-
mark is a light which lights up as soon as the goal is
positioned, and it can be perceived by the robot from
anywhere within the arena. The relationship between
landmark and goal can vary; in some trials the land-
mark is close to the goal (‘landmark-near environment’

figure 2B and 2C ), in other trials it is on the oppo-
site side (‘landmark-far environment’ figure 2D and 2E).
Both possibilities can be exploited by the robot to find
the right way to the goal. If a robot approaches the land-
mark within the landmark-near environment, or moves
away from the landmark within the landmark-far envi-
ronment, it will consequently find the goal significantly
more often than would be expected in a random walk.
However, the current relationship between the landmark
and the goal remains unknown to the robot until it has
gathered enough experience to be able to disambiguate
the environment between landmark-near or landmark-
far.

Therefore, the task requires a robot to learn, over a se-
ries of successive trials, which of these two landmark-goal
relationships currently holds true. The robot can dis-
ambiguate the environment between landmark-near or
landmark-far by predicating its behaviour on its previ-
ous experience of the relationship between the location of
the light and location of the goal. However, the simplic-
ity of our scenario means that the light is only significant
for the robot in this particular context. That is, the only
adaptive reason for the robot to “pay attention” to the
light is because the light is a cue to be exploited as part
of the learning process. The robot has no reason to “pay
attention” to the light in any other context. For a non-
learning robot, the light presents no useful information
because, on any given trial, there is no predictable rela-
tionship between the light and the goal. This presents
a slight problem given that we wish to evolve the con-
trol mechanisms necessary for the robot to learn from
the relative positioning of the light. It seems reasonable
to suggest that unless the robot has already evolved to
“pay some attention” to the light, it will be very difficult
for it to evolve to learn from the relative relationship of
the light position and the goal position. This problem
can be addressed by given the light some significance
other than as a learning cue. One way of doing this is to
bias the proportion of each type of environment that the
robots experience. For example, if robots are presented
with landmark-near environment more often than the
landmark-far environment, then the goal will be close to
the light more often than it is far from it. In this way,
the light can serve as a cue which can be exploited by
even a purely reactive robot, since a robot which moves
toward the light will be correct more often than it is
wrong. Fully successful behaviour will nevertheless still
require that the robot can learn to distinguish each type
of environment and act appropriately. Rather than bias
the proportion of times each environment is presented,
we kept the proportion equal, but biased the relative
weighting of the scores achieved in each environment,
(as detailed in section 3.2, parameter ¢ = 1 or 3.) in
order to achieve the same effect.

The robot undergoes two test sessions in the



landmark-near and two more in the landmark-far en-
vironment. Each time the environment changes, the
robot’s control system is reset, so that there is no in-
ternal state or “memory” remaining from the previous
environment. Within each of these four test sessions, a
trial corresponds to the lapse of time that is given to
the robot for reaching the middle of the arena and then
finding the goal. The robot has 18 seconds to reach the
middle of the arena. Then the landmark and the goal
are positioned, and the robot has another 18 seconds
to find the goal. Each trial can be terminated earlier
either because the first time limit to reach the middle
of the arena is exceeded; or because the agent reaches
and remains on the goal for 10.0 seconds; or because the
robot crashes into the arena wall. At the beginning of
the first trial, and for every trial following an unsuccess-
ful one the robot is positioned on either the left or the
right part of an rectangular arena close to the short side.
For every trial following a successful one, the robot nor-
mally keeps the position and orientation with which it
ended the previous trial, but there is a small probability
that it is replaced randomly. The simulation is deliber-
ately noisy, with noise added to sensors and motors (see
section 3.3); this is also extended to the environment di-
mensions. Every time the robot is replaced, the width
and length of the arena, and the width of the central
area that triggers the appearance of the landmark and
the goal, are redefined randomly within certain limits.
The robot undergoes 15 trials for each test session. Dur-
ing this time the relationship between landmark and the
goal is kept fixed; the relationship remains unknown to
the robot unless and until it can ‘discover’ it through
experience. The position of the goal within the arena
(i.e. left or right), is randomly determined every single
trial and the landmark is subsequently appropriately po-
sitioned (depending on whether it is currently landmark-
near or landmark-far). Over a full set of trials, all the
4 landmark/goal combinations (figure 2B, 2C, 2D, 2E)
occur with equal likelihood.

3.2 Evaluation function

The robot is rewarded by the evaluation function Fy
(per test session s, per trial ¢) for reaching the central
area within the arena and then moving towards the goal
until it find it (see arrows in figure 2B, 2C, 2D, 2E); but
it is penalized either if it fails to reach the central area
or if, once on the central area, it set off away from the
goal.

ds—dn
Fy = (abed)((3.017 %)) 4 -2
with:
s =[1,..,4], and ¢t = [2,...,15]. The robot doesn’t
get any score during the first trial of each test session,
because it is assumed that the robot doesn’t know what

kind of environment it is situated (i.e. landmark-near or
landmark-far environment).

dy represents the furthest distance that the robot
reaches from the goal after the light is on. At the time
when the light goes on, dyf is fixed as the distance be-
tween the centre of the robot body and the nearest point
of the goal. After this, dy is updated every time step if
the new dy is bigger than the previous one.

d, represents the nearest distance that the robot
reaches from the goal after the light is on. At the time
when the light goes on, d,, is fixed as equal to dy, and it
is subsequently updated every time step both when the
robot gets closer to the goal and when the robot goes
away from the goal. d,, is also updated every time dy is
updated. In this case d,, is set up equal to the new dy.

p represents the number of steps that the robot makes
into the goal during its longest period of permanence.
Pmaz = 50 is the maximum number of steps that the
robot is allowed to make into the goal before the trial is
ended;

a is a bias term for the type of environment; it is set to
3 in landmark-near environment, and to 1 in landmark-
far environment.

b, c,d are the penalties. b is set to 0 if the robot fails
to reach the central part of the arena, either because
time limit is exceeded, or because it crashes into the
arena wall; ¢ is set to % if the robot leaves the central
area towards the opposite side of the arena respect to
the goal (i.e unsuccessful behaviour); d is set to & if the
robot crashes into the arena wall; If the robot doesn’t
fall in any of these penalties, b, ¢, d are set to 1.

The total fitness of each robot is given by averaging
the robot performance assessed in each single trail of
each test session.

3.3 Simulated robot

A simple 2-dimensional model of a Khepera’s robot-
environment interactions within an arena was respon-
sible for generating the base set aspects of the simula-
tion (see Jakobi, 1997, for a definition of base set). The
implementation of our simulator, both for the function
that updates the position of the robot within the envi-
ronment and for the function that calculates the values
returned by the infra-red sensors and ambient light sen-
sors, closely matches the way in which Jakobi designed
his minimal simulation for a Khepera robot within an
infinite corridor (see Jakobi, 1997, for a detailed descrip-
tion of the simulator). During the simulation, robot sen-
sor values are extrapolated from a look-up table. Noise is
applied to each sensor reading. Our robot sensor ability
includes all its infra red sensors (Irg to Ir; in figure 3),
three ambient light sensors, positioned 45 degrees left
and right and 180 degrees with respect to its face direc-
tion (A;, A4, Ag in figure 3). The robot has a left and
right motor, which can be independently driven forward



Figure 3: Plan of a Khepera mini-robot showing sensors
and wheels. The robot is equipped with 6 infra red sen-
sors (Iro to Irs) and 3 ambient light sensors (A1, A4, Ag).
It also has a floor sensor indicated by the central gray circle

(F).

or in reverse, allowing it to turn fully in any direction.

The light is modelled as a bar that illuminates the
whole arena with the same luminosity. Each ambient
light sensor faces out from a point on the exterior of the
robot and detects any light within plus or minus +30
degrees from the normal to the boundary. The values
returned by the ambient light sensors when impinged by
the light, are set up to 1 if they exceed a fixed threshold
otherwise they return 0. Our robot has an extra floor
sensor, positioned on the belly of the robot, that can be
functionally simulated as an ambient light sensor, that
returns 0 when the robot is positioned over a white floor
and 1 for a black floor. The simulation was updated the
equivalent of 5 times a second.

3.4 The Network

Fully connected, 13 neuron CTRNNs are used. All neu-
rons are governed by the following state equation:

- k
Wi = L(—yi+ 35, wjizj + gLi)

i=1,.,13

. — 1
with 2; = e rED b

where, using terms derived from an analogy with real
neurons, y; represents the cell potential, 7; the decay
constant, 3; the bias term, z; the firing rate, wj; is the
strength of synaptic connections from neuron j** to neu-
ron it*, k corresponding to the number of input connec-
tions to neuron i both from other neurons and from itself,
I; the intensity of the sensory perturbation on sensory

neuron ¢. 11 neurons receive input (I;) from the robot
sensors. These input neurons receive a real value (in the
range [0.0 : 1.0]), which is a simple linear scaling of the
reading taken from its associated sensor (i.e. neuron Ny
from infra red sensor Irg, Ny from Iry, N3 from Irs, Ny
from Irs, Ny from Iry, Ng from Irs, N; from ”‘*gﬁ, Ng
from ambient light A;, Ng from A4, Ny from Ag, Ni;
from floor sensor F'). The 12® and the 13" neuron don’t
receive any input from the robot’s sensors. Their cell po-
tential y;, mapped into [0.0 : 1.0] by a sigmoid function,
and then linearly scaled into [—10.0 : 10.0], set the robot
motors output. The strength of synaptic connections
wji, the decay constant 7;, the bias term f3;, and the
gain factor g are genetically encoded parameters. States
are initialized to 0 and circuits are integrated using the
forward Euler method with an integration step-size of
0.2. States are set to 0 every time the network is reset.

3.5 The Genetic Algorithm

A simple generational genetic algorithm (GA) was em-
ployed (Goldberg, 1989). Populations contained 100
genotypes. Each genotype is a vector of real numbers
(length 196, given by 13 neurons, 169 connections, 13
decay constants, 13 bias terms, 1 gain factor). Initially,
a random population of vectors is generated by initializ-
ing each component of every genotype to random values
uniformly distributed over the range [0, 1]. Subsequent
generations were produced by a combination of selec-
tion with elitism, recombination and mutation. In each
new generation, the two highest scoring individuals (“the
elite”) from the previous generation were retained un-
changed. The remainder of the new population was gen-
erated by fitness-proportional selection from the 70 best
individuals of the old population. 100% of new geno-
types, except “the elite”, were produced by recombina-
tion. Mutation entails that a random Gaussian offset is
applied to each real-valued vector component encoded in
the genotype, with a probability of 0.1. The mean of the
Gaussian is 0, and its s.d is 0.1. During evolution, vector
component values were constrained within the range [0,
1].

Search parameters were linearly mapped into CTRNN
parameters with the following ranges:

- biases 8; € [-2,2];
- connection weights wj; € [—4,4];
- gain factor g € [1,7].

Decay constants were firstly linearly coded in the
range ; € [—0.7,1.3] and then exponentially mapped
into 7; € [10707,10!3]
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Figure 4: The graph shows the normalized fitness of the best

robot (continuous line), and the normalized average fitness

of the population (dotted line), for each generation for each

run.

4 Results

Ten evolutionary simulations, each using a different ran-
dom seed, were run for 5000 generations (see figure 4).
We examined the best individual of the final generation
from each of these runs in order to establish whether
it had evolved an appropriate learning strategy. Recall
that to perform its task successfully the robot makes
use of the light source in order to navigate towards its
goal. Thus, over the course of a test session, the robot
must learn—and come to exploit—the relationship be-
tween the light source and the goal that exists in the
particular environment in which it is placed. In order to
test their ability to do this, each of these final generation
controllers was subjected to 500 test sessions in each of
the two types of environment (i.e. landmark-near and
landmark-far). As before each session comprised 15 con-
secutive trials, and controllers were reset before starting
a new session. During these evaluations we recorded the
number of times the controller successfully navigated to
the target (i.e. found the target directly, without first
going to the wrong end of the arena).

i J

1 2 3 4 ) 6
1] 31 4 |-1.7| 36 | 0.2 |-3.7
2 28|30 |-06)|-21]|-2.0] 04
3 1-21|-33|-07|-18| -4 -4
4 |-07|24 |27 | -4 |07 28
5 -30] 31|10 |14 |-12]-3.7
6 |-15| 4 |-00|-16]| 08 4
7120 ]-16|23 |34 |-34]-23
8 4 1.6 | -2.7 | 2.2 | -2.2 | -0.6
9|28 |-05|-10|09 |-39]| 4
10 -37| 4 |-28]| 4 4 -4
11| 4 | 29 |-28] 01 |29 ]| 1.9
12 1-29|-26| 0.1 | 4 -4 1.0
13|-04| 0.8 | 25 |-01]| 4 1.5

Table 1: The table above gives connection weights w;; from
neuron N;, (with ¢ = 1,...,13) to neuron N; (with j =
1,...,6) of the best network at generation 5000 of run n.1.

i
1 2 3 4 5 6
| 183183 02 | 0.2 | 189 | 0.2

B; | 09| 14| 14| 05 01 |00

Table 2: Decay constants 7; and the bias terms £;, for neurons
N;, (with i = 1,...,6) of the best network at generation 5000
of run n.1.

i J

7 8 9 10 11 12 13
1(-09(03] 20 |-33| 14| 34 | 27
2 |21 4 4 -4 1-18|-16|-34
3 1-06|-23|32|-01|-19| 4 |-3.6
4 |-31|-14]03 |13 |-24]|20]| 4
5 1-38| 16 |-1.3|-0.7|-18| 1.5 | -2.8
6 | 18| 4 | 3.8 | 34 |-06]|-25]-35
7131 ]-07| 14|12 4 3.0 | -0.9
8 |-07-39|-11|-32|02]| 24| 4
9 -4 -4 |-05|-00|-18| 1.0 | -0.5
10 | -05 | 4 29 | 00 |14 31 ]|-19
11119 |-31|-35] 26 | 29 |-24| 4
12 1-29| 4 | 24 |-1.5|-39]| 2.6 4
13-36| 33 |-32 |14 | 30| 3.0 | 04

Table 3: The table above gives connection weights w;; from
neuron N;, (with ¢ = 1,...,13) to neuron N; (with j =
7,...,13) of the best network at generation 5000 of run n.1.

i
7 8 9 10 | 11 | 12 | 13
7| 34(106]02]03]02]13|02
Bi|-09] -2]-00]-14]|07|08]-19

Table 4: Decay constants 7; and the bias terms (3;, for neurons
N;, (with ¢ =7, ...,13) of the best network at generation 5000
of run n.1. The gain factor g is equal to 6.88.
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Figure 5: Each single graph refers to the performance of the
best control system of the final generation of a single run,
evaluated over 500 test sessions in both types of environ-
ment. Dashed lines indicate the percent of successful be-
haviour per trial in landmark-near environment. Continuous
lines indicate the percent of successful behaviour per trial in

landmark-far environment.

The results for the best controller of each of the ten
runs can be seen in figure 5, which shows the percent
of successful behaviour per trial during a session under
each environmental condition. It is clear that in six of
the runs (i.e. Run n.1, 3, 5, 7, 9 and 10) robots quickly
come to successfully use the light to navigate toward the
goal, irrespective of whether they are in an environment
which requires moving towards or away from the light
source. All these controllers employ a default strategy of
moving toward the light, and hence are always successful
in the landmark-near environment (see figure 5 dashed
lines). Consequently they are initially very unsuccessful
in the landmark-far environment (see figure 5 continuous
lines). Nevertheless, as can be seen from figure 5, when
these controllers are placed in the landmark-far environ-
ment they are capable of adapting their behaviour over
the course of very few trials and subsequently come to
behave very differently with respect to the light. Each
of these controllers, when placed in the landmark-far en-
vironment, initially navigates toward the light, fails to
encounter the target and subsequently reaches the wrong
end of the arena. At this point it turns around and pro-
ceeds back toward the correct end of the arena where it

ultimately encounters the target stripe. The fact that in
subsequent trials the robot moves away from the light
rather than towards it, demonstrates that the robot has
learnt from some aspect, or aspects, of its earlier experi-
ence of the current environment. More prosaically, these
controllers learn from their mistakes.

It should be noted that the controllers from the other
five runs (i.e. 2, 4, 6, and 8), whilst performing the
task with varying degrees of success, all modify their
behaviour over the course of the initial trails; in each
case this results in improved performance. For exam-
ple, the controller from run 6 initially has a 80% success
rate in landmark-near environment and a 0% success rate
in landmark-far environment. In the landmark-near en-
vironment its success rate climb from around 80% to
100%. In the landmark-far environment its success rate
will climb from 0% to around 50% within the course a
few trials. Similarly, with the controller from run 2, 4
and 8, success in a landmark-far environment increases
rapidly from 0% up to around 50% whilst success in the
landmark-near remains consistently around 100%.

As reference, we provide connection weights (see ta-
ble 1 and table 3), bias terms, decay constants and gain
factor (see table 2 and table 4), of one of the best evolved
networks, i.e. the best network at generation 5000 of
run n.1. Tt should be notice that few weights are near
to zero (i.e. 3 out of 169). This suggests that there is
no immediately obvious evidence that the network can
be meaningfully carved up into modularized structures
of smaller number of neurons, functionally dedicated to
particular sub-tasks. Unless and until such evidence is
forthcoming, the default assumption is that functions are
distributed across the network.

5 Discussion

Clearly there are strong similarities between Yamauchi
and Beer (1994) and our experiment. We employed the
same network style to control the behaviour of the robot,
and we tested our robot in similar environmental condi-
tions to those described in (Yamauchi and Beer, 1994).
However there are also several differences which might
have singularly contributed to our successful results.
First of all, contrary to (Yamauchi and Beer, 1994),
we biased the relative weighting of the score achieved in
each environment in order to give the landmark some
significance other than as a learning cue. The effects of
this feature of our fitness function can be clearly singled
out both in figure 4 and in figure 5. From an evolu-
tionary perspective, almost all the best robots in each
run get to a stage in which they employ photo-taxis (see
the plateau in continuous lines around fitness 0.8 in fig-
ure 4). This means that all the best robots make use
of the light to navigate within the arena. Although the
evolution of the mechanisms for photo-taxis contributes
only three quarters of the total score, they might have



significantly helped and guided the evolution towards the
subsequent appearance of the learning controllers. The
evolved learning robots consistently look for the light,
and only when the conditions which reinforce the photo-
taxis run out (i.e in the ‘landmark-far environment’) the
robots change their behaviour to anti-photo-taxis (see
figure 5).

Secondly, we didn’t terminate the trial every time a
robot finished up in the wrong end of the arena, far away
from the goal, as it was for Yamauchi and Beer (1994)’
agents. The robots, although slightly penalized for this,
are allowed to recover from their mistakes. This pro-
duces a richer environment in which having more “time”
and “freedom” to explore might help to evolve a proper
reinforcement signal which makes the robot employ the
right behaviour for each environment (i.e. landmark-
near or landmark-far). However, the complexity and
richness of our set up makes it harder to identify the
condition of reinforcement as exploited by each learning
robot. This is clearly an aspect of the evolved learning
behaviour which needs to be clarified by further investi-
gation.

Thirdly, our fitness function has not been designed
in a discrete fashion either to strongly reward success-
ful behaviour or to strongly penalize unsuccessful be-
haviour. In (Yamauchi and Beer, 1994) the agents get
1 for reaching the goal and 0 if they don’t reach the
goal. Instead of this ‘black-and-white’ approach, we ar-
ranged for ‘shades of grey’ by gradually increasing the
reward starting from completely unsuccessful behaviours
(e.g robots that don’t manage to make the landmark and
the goal appear on the arena) to very successful ones (e.g
robots that reach the central part of the arena and then
head successfully to the goal).

These are the three main differences between Ya-
mauchi and Beer (1994) and our experiment which might
have contributed to our successful results. However to
assess the contribution that each of them brought to
the achievement of our results, further tests and anal-
ysis need to be carried out.

6 Conclusion

In 1994 Yamauchi and Beer wanted to determine
whether dynamic neural networks could provide an effec-
tive control mechanism for integrating reactive, sequen-
tial and learned behaviour in autonomous systems, with-
out having to assume a sharp division between the com-
ponents that are reactive and those that are in charge of
sequencing or learning (Yamauchi and Beer, 1994). We
gave a brief description of their experiment, which due to
the characteristics of the control system and the singu-
larity of the learning task employed, still is a distinctive
and unique example in the area of autonomous learning
robots (see section 2).

Their approach clearly represents one of the first at-

tempts in which CTRNNs, with fixed connection weights
and leaky-integrator neurons, have been exploited to in-
tegrate reactive, sequential and learned behaviour in a
simulated robot. However, their attempts to evolve inte-
grated CTRNNS, as controllers for simulated agents ca-
pable to perform learning behaviour, failed. They ended
up having to use independent evolution of separate con-
troller modules, some of which were dedicated to reac-
tive and sequencing behaviour and others dedicated to
learning. Moreover, they hard-wired into the model a
reinforcement signal intended to be a feedback signal for
the learning module.

The model we described in this paper demonstrated
that it is possible to evolve integrated CTRNNs that suc-
cessfully controls the behaviour of a simulated khepera
mini-robot engaged in a learning task. We showed that
dynamic neural network, if shaped by evolution, can in-
tegrate reactive and learned behaviour with a single con-
trol system that does not rely on independent evolution
of separate controller modules, arbitrarily partitioned by
the researcher, and does not rely on a hard-wired rein-
forcement signal. The evolved integrated control systems
benefits from its own evolved reinforcement signals to
generate the appropriated behavioural responses.

We hope that the evolutionary approach undertaken
in our model might represent both a further methodolog-
ical tool to test specific hypothesis about the selection
pressures involved in the evolution of specific learning
skills possessed by particular species, and a possible so-
lution for engineering plastic control systems for learning
robots.
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