
Embracing Plagiarism: Theoretical, Biological and Empirical

Justification for Copy Operators in Genetic Optimisation

S. McGregor (sm66@sussex.ac.uk) and I. Harvey (inmanh@sussex)
Centre for Research in Cognitive Science, University of Sussex, UK

Abstract. A novel genetic operator, the plagiarism operator, is introduced for
evolutionary design and optimisation. This operator is analogous in some respects
to crossover and to biological transposition. Plagiarism is shown to be theoretically
superior to uniform mutation for generalised counting-ones problems, and also to
outperform uniform mutation on certain classes of random fitness landscapes. Ex-
perimental results are presented showing that plagiarism speeds up the artificial
evolution of certain digital logic circuits. The performance of this operator is in-
terpreted in terms of the non-uniform distribution of genetic primitives in good
solutions for certain problems.

Keywords: Genetic operators, Boolean logic, evolutionary design, translocation,
transposition

1. Introduction

This paper discusses some findings in relation to the identification of
useful primitives during evolution. The use of repeated structures in
artificial evolution has proved valuable in a number of domains (e.g.
ADFs, CGP-ADFs, symmetrical robot controllers). The n-bit even par-
ity problem in digital logic synthesis is a commonly-used test problem
for novel evolutionary methodologies. However, little investigation of
the reusable-component principle has been done at the single-primitive
level. We describe a simple, novel, genetic plagiarism operator similar to
non-homologous crossover between a genome and itself. The plagiarism
operator simply copies a genetic primitive from one locus to another.
There are some analogies for this process in biology.

The paper is organised as follows: a background section summarises
work on reusable components in GP, transposition and translocation
in nature and artificial evolution, and the discovery of useful gate-level
primitives in digital logic evolution. This is followed by a methodology
section describing the genetic encoding, evolutionary algorithm and
target problems used in this study. A section on post hoc and ad hoc

discovery of useful primitives introduces the plagiarism operator. Em-
pirical results are presented indicating that this operator is beneficial
in the evolution of digital logic circuits for binary arithmetic. The
statistical properties of the plagiarism operator are analysed in terms

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

Plagiarism.tex; 13/07/2005; 18:22; p.1



2

of its exploration of the distribution of primitives space. This analysis
is supported by experiments using an unbalanced plagiarism opera-
tor. Plagiarism is compared analytically to uniform mutation for the
counting-ones problem and some generalised variants of that problem,
and shown to be superior. Finally, the search performances of idealised
hill-climbing and random walk algorithms using both plagiarism and
mutation are compared on random fitness landscapes.

The paper’s purpose is to illustrate the practical value of using
copy operators in relevant evolutionary domains and to analyse this
phenomenon in terms of copy operators genetically exploring a differ-
ent space (distribution-of-primitives space) than conventional mutation
does. We see the use of copy operators as complementary to other
evolutionary techniques rather than constituting an alternative.

2. Background

A number of researchers e.g. [5, 8, 19] have applied artificial evolution
to the design of Boolean logic circuits. These are circuits made out of
binary logic gates such as AND, OR or NOT gates. Such research is
often regarded as belonging to the field of evolvable hardware, but in
fact Boolean circuits can also be regarded as purely idealised mathe-
matical entities. Unlike many other sorts of electronic circuit [17, 16],
the physical characteristics of the medium can be effectively ignored
for Boolean circuits.

2.1. Transposition & Gene Duplication

In biological evolution, copying errors can result in genetic duplication,
inversion or transposition. Some transposons are prone to being copied
into other locations as well as merely transferred. Although transposons
in some respects function like genetic parasites, they are thought to
have played an important role in human genetic evolution [2]. Gene
duplication occurs in nature and is postulated to be a major evolu-
tionary mechanism [10], though of course there are important relevant
differences between artificial and biological genomes: for instance, the
significance of gene location on the genome.

Some evolutionary computing studies already use translocation and/or
transposition as a genetic operator [13, 14, 12, 20]. These studies have
focused on transfer rather than copying but of relevance here is Ur-
banek’s [18] finding that translocation was ineffective on an analogue
circuit design problem in which genetic loci were semantically unre-
lated; we would expect the same to be true of the plagiarism operator.

Plagiarism.tex; 13/07/2005; 18:22; p.2



3

2.2. Gene Reuse in Artificial Evolution

The principle of reuse, i.e. repeating the use of valuable structures,
seems to occur both in human endeavour (e.g. subroutines or classes

in programming) and in nature (e.g. vertebrae in the vertebrate spine
or indeed cells in multicellular organisms). One common method for
implementing this principle in artificial evolution is an automatically

defined function (ADF) or similar scheme (see, e.g. [5, 15, 11, 9, 1, 21]).
However, these schemes are not geared towards the reuse of single
primitives; indeed, many of them explicitly prohibit automatically-
discovered subroutines from consisting of a single primitive.

2.3. Finding Primitives

In [8], Miller et al. evolved functionally correct circuits and then anal-
ysed them post hoc both automatically and by eye to try to discover
useful design principles. Of relevance here is their method for evolving a
3-bit multiplier circuit. They began by evolving 2-bit multiplier circuits
with an unconstrained set of gates, and then observed that one of the
evolved solutions was rather elegant and used only 3 different types of
gate: AND, XOR, and AND with one input inverted. They then evolved
a 3-bit multiplier using only these 3 types of gate as primitives.

3. Methodology

3.1. Genetic Encoding

We used a very simple Cartesian Genetic Programming encoding fol-
lowing Miller [8]. This encoding, or one very much like it, has been
extensively used in previous work [6, 7, 19]. The genome encodes a
fixed array of gates indexed by integers. Each gate comprises a gate

function (one of 16 possible) and two input indices. The input indices
specify which gates and/or circuit inputs are inputs to a given gate.
The genome also encodes a fixed number of output connection indices

which specify gates to draw the entire circuit’s outputs from. Because
the circuit is feed-forward, gate x’s input indices must refer to a gate
with a lower index than x, or to a circuit input. Typically, many gates
specified in the genome do not connect to the circuit’s outputs either
directly or indirectly, and these gates are not expressed in the circuit’s
phenotype. See figure 1 for an example.

Plagiarism.tex; 13/07/2005; 18:22; p.3



4

Figure 1. The genetic encoding used, on an array of only 5 gates. In actual evolution
the array would be of length 30 or more. The genome is shown above the circuit it
encodes. Gate functions are in effect characters in an alphabet. Note that gate 4 is
a trivial gate which copies one of its inputs to its output. Gate 4 is still considered
expressed in the phenotype, unlike gate 3 which is unexpressed.

3.2. Genetic Algorithm

The algorithm used was a simple 1+1 mutation-based generational one
with no crossover, effectively equivalent to hill-climbing with neutral
exploration. Previous work [7] had indicated that narrow, deep searches
are effective in digital logic evolution. Each generation consisted of the
elite individual and one mutated offspring. If the offspring’s fitness
was less than the parent’s, it was discarded; otherwise, it replaced
the elite individual (parents were replaced with equally fit offspring to
facilitate neutral exploration). Evolutionary runs were terminated when
a functionally correct circuit was found, or after a maximum number
of generations (i.e. fitness evaluations) was reached. This maximum
number varied with the test problem. The mutation operator operated
as follows: - the genome was divided into locus types depending on
the locus’s interpretation in the phenotype. Gate function loci were
mutated by setting the locus randomly to one of the 16 possible binary
gate functions. Input index loci were mutated by setting the locus ran-
domly to a legal input (a circuit input or previous gate output). Output

connection index loci were mutated by setting the locus randomly to
any gate output.

Evolutionary fitness was equal to the number of correct bits in the
evolved circuit’s truth table. Mutation rate was set to an average of 5
loci per genome, following preliminary experiments on the 1-bit adder.

Plagiarism.tex; 13/07/2005; 18:22; p.4



5

3.3. Target Problems

Circuits were evolved to perform basic binary arithmetic functions: the
inputs to a circuit are interpreted as two binary numbers, and the
outputs are interpreted as one or more binary numbers which are some
arithmetic function of the input. For example, a 2-bit multiplier is a
circuit with 4 binary inputs (representing two 2-bit binary numbers
in the range 0-3) and 4 binary outputs (representing one 4-bit binary
number in the range 0-16). Circuits were also evolved to be even n-

parity calculators. This type of circuit has n binary inputs and 1 output;
the output is true if the total number of true inputs is even, and false

otherwise.
A feed-forward binary logic circuit can be described by a truth table,

which exhaustively lists the desired circuit outputs for each possible
combination of inputs. Hence, a truth table has 2n rows where n is the
number of circuit inputs. The truth tables used were as shown in table
I.

Table I. Truth tables used as target functions for digital logic circuit evolution, along
with the CGP geometry and maximum number of generations during evolution.

Table Geometry Max
Gens

#In #Out Description

1-Bit
Adder

1 x 30 20K 3 2 1-Bit plus 1-Bit Binary
Adder with Carry

2-Bit
Multiplier

1 x 40 20K 4 4 2-Bit by 2-Bit Binary
Multiplier

2-Bit
Adder

1 x 40 20K 5 3 2-Bit plus 2-Bit Binary
Adder with Carry

2.5-Bit
Multiplier

1 x 50 200K 5 5 3-Bit by 2-Bit Binary
Multiplier

Even 6-Bit
Parity

1 x 30 30K 6 1 Even 6-Bit Parity

N.B. Most studies on the even n-parity problem explicitly disallow
the use of XOR or XNOR primitive gates to force evolution to build
these gates out of other gates. We were interested in the ability of evolu-
tion to exploit useful existing genetic primitives, so in the experiments
reported here evolution was free to use any 2-input gate (including
XOR and XNOR) in evolving even 6-parity.

Plagiarism.tex; 13/07/2005; 18:22; p.5



6

4. Gate Selection in Binary Logic Circuits

4.1. Post Hoc Selection

We began by trying to automate the post hoc discovery of useful prim-
itives following Miller et al. [8] as described in section 2.3. It turned
out that simply counting gate frequencies in evolved solutions was not
the best guide to choosing a primitive set. For instance, consider the
evolved solutions for the 1-bit adder (table II).

Table II. Proportion of total gates accounted for by each primitive gate, found by
amalgamating the gates in 1000 functionally correct 1-bit adder circuits evolved using
uniform gate mutation.

Gate Function Proportion Gate Function Proportion

0 False 1.60% 8 A AND (NOT B) 6.03%

1 True 1.64% 9 A NOR B 6.69%

2 A 4.63% 10 A XOR B 15.11%

3 B 4.64% 11 A XNOR B 16.11%

4 NOT A 5.79% 12 A OR B 7.23%

5 NOT B 4.81% 13 A OR (NOT B) 5.83%

6 A AND B 7.13% 14 (NOT A) OR B 5.88%

7 (NOT A) AND B 5.79% 15 A NAND B 7.01%

The four most frequently-used gates in functionally correct solutions,
from most frequent to least frequent, are 11 (XNOR), 10 (XOR), 6
(AND), and 15 (NAND). Evolving the one-bit adder using only these
four gates as primitives was definitely faster (taking only 43% of the
time on average) than using all 16 possible gates. However, cutting
the primitive set down to only XNOR and XOR is disastrous, since
a functional adder cannot be constructed from only XNOR and XOR
gates! In fact, experiments indicated that the best post hoc selection of
primitives came from looking at the functionally correct circuits which
used the least diversity of primitives.

4.2. Plagiarism

Post hoc discovery of useful primitives is often of limited use. The
experimenter wants to find a useful set of primitives during evolution
if possible. One way to do this is to change the mutation operator so
that a point mutation is more likely to result in a primitive which is
already used by the better genomes in the population. A very simple
method for achieving such a result in 1+1 evolution is as follows: -

Plagiarism.tex; 13/07/2005; 18:22; p.6



7

1. Randomly choose a genetic locus to mutate.

2. Randomly choose a second locus on the same genome. Copy the
contents of this locus to the first locus (see figure 2).

We call this operator, which functions by copying material from one
genetic locus to another, the plagiarism genetic operator. It is similar
in some respects to the non-homologous crossover used in standard GP.
However, non-homologous crossover in GP is thought to be detrimental
to evolution [4] due to its propensity to cause bloat, whereas we will
show results indicating that plagiarism is beneficial for evolution in the
digital logic circuit domain.

Figure 2. The plagiarism operator. Left: conventional uniform mutation changes the
value of the locus marked X to an arbitrary value. Right: plagiarism changes the
value of the locus marked X to the value of an arbitrary other locus.

Since we were primarily interested in identifying useful gates, we
restricted the action of this operator to the parts of the genome which
encoded gate function. The genetic input indices and output connec-

tion indices loci were mutated as before. To preserve diversity in gate
function, only 50% of gate function point mutations were plagiarism
events; the remaining 50% were ordinary uniform mutations. The rea-
son for this should become clear later in the document. Obviously,
when choosing genetic material to copy for gate function plagiarism,
only gate function loci were considered. Furthermore, to take maximal
advantage of available information, only those loci which were actually
expressed in the elite phenotype were potential targets for plagiarism.

So the actual genetic modification procedure for gate function loci
was as follows: - 50% of the time, perform a uniform mutation to any
one of 16 possible primitives. Otherwise, choose a genetically active gate
at random from the elite genotype and copy its gate function primitive
into the locus being modified.

This operator was very successful. See table III for a comparison of
performance on various different binary arithmetic problems. The pla-
giarism operator reduced solution time for all of the problems1; except

1 Experiments with an adaptive mutation rate similarly reduced solution time,
with an (as yet) unexplained anomaly in the 2-bit adder.

Plagiarism.tex; 13/07/2005; 18:22; p.7



8

for the 6-bit parity problem, the difference was statistically significant
at the p < 0.05 level or better. When the 6-bit parity problem was re-
run with a sample size of 200, the difference was statistically significant
(p < 10−6).

Table III. Evolutionary performance using 50% plagiarism and 50% uniform
mutation vs. 100% uniform mutation for 5 different problems. Figures given
are median number of fitness evaluations (N = 100) to functionally correct
solutions or run termination. Wilcoxon rank sum test p values are shown.

Table Plagiarism Uniform p

1-Bit Adder 2,154 2,968 2.05%

2-Bit Adder 44,060 55,379 2.40%

2-Bit Multiplier 11,271 14,683 2.25%

2.5-Bit Multiplier 151,842 200,001 0.92%

Even 6-Bit Parity 2,651 3,242 18.18%

5. Analysis: Difference Between Operators

The plagiarism operator has an interesting statistical property. Con-
sider the distribution of primitives in a genome. Suppose a genome
G of length n primitives is composed of primitives a1, a2, a3, . . . in an
alphabet A. Then we count the number of occurrences of each primitive
ar in G giving us an absolute count fr and a relative frequency qr = fr

n

for each primitive ar. Clearly
∑

r

fr = n
∑

r

qr = 1

Now, perform a plagiarism operation on G to produce a new genome
G′ (still of length n). What is the expectation of f ′

r for each r? The
plagiarism operator chooses a locus on G with uniform probability and
replaces it with the primitive at another uniformly chosen locus. So,
with probability

α = qr(1 − qr)

a primitive ar will be chosen and replaced with a different primitive,
resulting in f ′

r = fr − 1. Similarly, with probability

qr(1 − qr) = α

Plagiarism.tex; 13/07/2005; 18:22; p.8



9

a primitive which is not ar will be chosen and replaced with a copy
of ar. The remainder of the time, the number of ar in G will not be
changed. So the expected value of f ′

r is

E(f ′

r) = α(fr − 1) + α(fr + 1) + (1 − 2α)(fr) = fr

In other words, the effect of the plagiarism operator on a genome is neu-
tral with respect to that genome’s distribution of primitives. On binary
genomes, plagiarism performs a random walk (sticking at boundaries)
in distribution-of-primitives space. Applying the plagiarism operator
repeatedly in the absence of selection, eventually the genome will con-
sist of n copies of the same primitive. If the operator is “tweaked” to
allow it to leave the boundaries in its random walk (e.g. by maintaining
an explicit count of primitive frequency and making the boundaries
special cases), it will drift uniformly through the entire distribution
space.

This is not true of conventional uniform mutation. Applying uniform
mutation repeatedly in the absence of selection, the distribution of
primitives rapidly converges to a uniform distribution, where there is an
equal number of each type of primitive, and stays there. The expected
effect of applying it just once is to push the distribution in the direction
of a uniform distribution.

Seen from this point of view, uniform mutation is a biased operator,
which has an opinion about the correct distribution of primitives in
an optimal genome. How can that be the case? The reason is that
genomes with a near-uniform distribution of primitives vastly outnum-
ber genomes with a non-uniform distribution of primitives. Uniform
mutation performs an unbiased random walk in genome space, with the
consequence that its walk in distribution-of-primitives space is highly
biased.

When a genome has more than two possible primitives, plagia-
rism does not perform a true random walk in distribution-of-primitives
space. However, it still explores that space more evenly than uniform
mutation. Figure 3 clearly illustrates this. Simulated plagiarism and
mutation operators are applied to a random genome of 1000 loci, each
of which can be one of 4 possible genetic primitives.

5.1. Plagiarising Too Enthusiastically

We tested evolutionary performance under softmax plagiarism. This
operator counts the frequency of each genetic primitive, and then chooses
a primitive with probability based on the softmax (multiple logistic)
function

p(an) =
eqn

∑

ar∈A eqr

Plagiarism.tex; 13/07/2005; 18:22; p.9



10

0 5 10

x 10
5

0

0.2

0.4

0.6

0.8

1

Plagiarism Variations

P
ri
m

iti
ve

 F
re

q
u

e
n

cy

0 5 10

x 10
5

0

0.2

0.4

0.6

0.8

1

Mutation Variations

P
ri
m

iti
ve

 F
re

q
u

e
n

cy

Figure 3. The frequency of each of 4 possible genetic primitives in a 1000-locus
genome over time under plagiarism or mutation in the absence of selection. The
x-axis counts variations, i.e. operations which actually alter the genome.

where p(an) is the probability of picking primitive an from the primitive
alphabet A and qn is the frequency of the primitive an in the genome.

In contrast to original plagiarism, the softmax function causes the
most common primitives to be selected disproportionately, resulting in
a tendency to rapidly fill the genome up quickly with copies of the same
primitive.

Using 50% softmax plagiarism instead of 50% plagiarism resulted
in very slow evolution (mean evaluations to solution or termination
increased 186%, Wilcoxon rank sum p < 10−10). This suggests that the
finely balanced nature of the plagiarism operator is an advantage in
exploring genetic space.

Interestingly, evolution with softmax plagiarism sometimes produced
solutions consisting of only one type of gate (e.g. all NAND gates, or
all NOR gates), which balanced plagiarism or uniform mutation never
did.

6. Analysis: Toy Problems

6.1. Counting-Ones

The simplest of toy problems in the artificial evolution world is the
counting-ones problem. In this problem, the genotype is represented as
a binary string and its fitness is directly proportional to the number
of ones in it. Intuitively, this is a problem on which the plagiarism
operator should be provably superior to uniform mutation, since the
value of a genetic primitive (a one or zero) is completely independent
of its position in the genome.

Plagiarism.tex; 13/07/2005; 18:22; p.10



11

In fact, the plagiarism operator cannot be used alone because of its
inability to introduce primitives which are not already present in the
genome. In other words, it cannot escape from the genome consisting
of all zeroes. Therefore, a certain proportion of the time it is necessary
to use conventional mutation. We will analyse the situation in which
the evolutionary algorithm uses a random mixture of plagiarism and
conventional mutation in proportions λ and 1 − λ respectively.

For this toy case, consider a 1+1 hill-climber which performs exactly
one genetic operation at each generation. A mutation which turns a 0
into a 1 will be preserved, and any other mutation will be discarded.
The plagiarism operator picks a single locus at random and replaces its
contents with the contents of a second randomly chosen locus, while the
uniform mutation operator picks a single locus at random and replaces
its contents with 1 or 0 with uniform probability. So both operators
have a chance of leaving the genome unchanged. It is assumed that
the genome is initialised by setting each bit to 1 or 0 with uniform
probability.

Suppose the genome is of length n, and f1 bits in the genome are
already 1s. Then the probability of turning a 0 into a 1 is: -

p(f1 → f1 + 1) =
n − f1

n

(

λ
f1

n
+ (1 − λ)

1

2

)

and the expected number of generations g(f1, f1+1) to go from f1 ones
to f1 + 1 (assuming f1 < n) is the reciprocal of p(f1 → f1 + 1)

g(f1, f1 + 1) =
2n2

(n − f1)(2λf1 + n − λn)

so the expected number of generations t(f1) to go from f1 ones to the
solution containing n ones is

g(f1, n) =
n−1
∑

r=f1

g(r, r + 1) = 2n2

n−1
∑

r=f1

1

(n − r)(2rλ + n − λn)

and, factoring in the relative likelihood of the initial genome having
f1 ones in it, the overall expected number of generations to solution
G(n, λ) is

G(n, λ) = 2n−1n2

f1−1
∑

f1=0

(

n

r

)

n−1
∑

r=f1

1

(n − r)(2rλ + n − λn)

where
(n
r

)

is the binomial coefficient, i.e. the number of ways of choosing
r unordered objects from n. In the range 0 ≤ λ < 1 and n > 2, this

Plagiarism.tex; 13/07/2005; 18:22; p.11



12

is a curve which rises without bound as λ → 1 (because of the risk
of starting without any 1s in the genome) and has a single minimum
value between 0 and 1. For instance, in the simple case where n = 3,
G turns out to be

G(3, λ) =
63 − 72λ + 11λ2

(λ − 1)(3 − λ)(3 + λ)

Using the computer algebra package Maple, an exact optimum value
for λ can be calculated by setting the derivative of G(n, λ) to zero and
solving numerically. Some example values are given in table IV.

Table IV. Optimal proportion of plagiarism vs. uniform mutation
in counting-ones problems of different lengths.

Genome length 3 4 5 9 15

Optimum λ 0.4006 0.6714 0.8084 0.9743 0.9980

It can be seen that the optimum value for λ rapidly goes to 1 as the
genome length increases; in other words, the uniform mutation operator
contributes very little when the genome is large enough to guarantee a
reasonable initial mixture of 0s and 1s.

6.2. Counting Ones, General Case

What if we consider a more general version of the counting-ones prob-
lem in which there is an optimal proportion µ of ones? Define the fitness
of an individual to be

1 −

(

f1

n
− µ

)

2

where, as before, f1 is the number of ones in the individual’s genome
and n is the length of the genome. The standard counting-ones problem
is then the special case where µ = 1.

Then analysis and numerical solution similar to that in the previous
section provides performance comparisons for 99% plagiarism and 100%
uniform mutation across a range of target proportions.

We can see from figure 4 that plagiarism outperforms uniform mu-
tation when the optimal distribution of primitives is far from uniform.
Close to the uniform distribution (0.5), uniform mutation outperforms
plagiarism. The window in which uniform mutation outperforms pla-
giarism narrows as the genome length increases. For a genome of length

Plagiarism.tex; 13/07/2005; 18:22; p.12



13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

Target Ratio of Ones to Zeros

R
at

io
 o

f P
la

gi
ar

is
m

 P
er

fo
rm

an
ce

 to
 U

ni
fo

rm
 M

ut
at

io
n 

P
er

fo
rm

an
ce

Benefits of Plagiarism on the Counting−Ones Problem with Varying Target Ratios

Length = 50
Length = 100
Length = 200
Length = 1000
Uniform Mutation

Figure 4. Analytically derived expected plagiarism speedup compared with uniform
mutation (ratio of expected evaluations until solution) for different target ratios and
genome lengths in the generalised counting-ones problem.

1000 bits, uniform mutation outperforms plagiarism only when the
target ratio is within 1.6 percentage points of 50%.

7. Random Fitness Landscapes

It has been known for some time [22] that no optimisation or search al-
gorithm can outperform any other algorithm, including random search,
on average over all possible target functions. Consequently, when com-
paring the merits of any two genetic algorithms, one must characterise
the particular types of fitness landscape they perform well on. We
decided to perform the relevant analysis comparing the plagiarism op-
erator to conventional uniform mutation. In order to better determine
the effects of the two operators, we considered both hill-climbing search
and simple random walk search. Our hypothesis was that the relative
performance of plagiarism and random mutation would be independent
of whether very simple evolution (i.e. hill-climbing) was used.

The formal definition [22] of a search algorithm for the No Free
Lunch theorems is quite strict and in some ways does not correspond
to evolutionary algorithms. In particular, unlike standard evolutionary
search (or for that matter naive random search), a theoretical search
algorithm is guaranteed to never revisit a point which has already been

Plagiarism.tex; 13/07/2005; 18:22; p.13



14

searched. The search algorithms we investigated are described in figures
5 and 6.

1. Begin by testing a particular point, and set the “best-so-far” point to
this point.
2. Conduct a random walk using the chosen genetic operator, beginning at

the best-so-far point, until a point is reached which has not previously been
tested.
3. Test the new point. If it is better than the best-so-far, it becomes the
new best-so-far. If it is the global optimum, terminate. Otherwise, go to 2.

Figure 5. Hill-climbing search algorithm.

1. Begin by testing a particular point.
2. Conduct a random walk using the chosen genetic operator, beginning

at the most recently tested point, until a point is reached which has not
previously been tested.
3. Test the new point. If it is the global optimum, terminate. Otherwise,
go to 2.

Figure 6. Random walk search algorithm.

The performance of both operators under hill-climbing and random
walk search was tested on random permutation binary fitness land-
scapes of various sizes. The random fitness landscapes had the following
properties: -

1. Every point in the landscape was given a value between 0 and
2n − 1, where n is the number of bits in a genome. No two points
were assigned the same value.

2. The values were randomly permuted, i.e. shuffled using a fair shuf-
fling algorithm.

Each landscape was tested with all 4 search algorithms. A single
test of an algorithm consisted of running the algorithm 2n times on
a given fitness landscape, once for each possible starting position, and
averaging the number of fitness evaluations needed to find the optimum.
Each algorithm was tested this way 500 times on every landscape. In
all, 5000 random landscapes were generated and tested for n ∈ {3, 4, 5}.

Bootstrap resampling tests[3] (resampling size 1000) were used to
estimate 95% confidence intervals for the various means. Within land-
scapes of a given genome length, the mean number of evaluations to

Plagiarism.tex; 13/07/2005; 18:22; p.14



15

1 or 2 0 or 3
32

34

36

38
3−Bit Landscapes

Ones in Landscape Optimum

M
ea

n 
E

va
lu

at
io

ns
 T

o 
S

ol
ut

io
n

2 1 or 3 0 or 4
100

120

140

160

Ones in Landscape Optimum

4−Bit Landscapes

2 or 3 1 or 4 0 or 5
300

400

500

600

Ones in Landscape Optimum

5−Bit Landscapes

Uniform
Hill−Climbing

Plagiarism
Hill−Climbing

Uniform
Random Walk

Plagiarism
Random Walk

Figure 7. Mean evaluations to solution on 5000 random permutation binary fitness
landscapes by mutation operator, search algorithm type and number of ones in the
optimal solution. 95% confidence intervals, not shown, are comparable in size to
data markers. X-axis values are staggered slightly to reveal overlapping markers.

solution over all the sampled landscapes was, as predicted by NFL,
statistically indistinguishable for each of the 4 search algorithms. When
landscapes were classified according to the proportion of ones in the op-
timal genome, the plagiarism searches performed for optimal genomes
containing a non-uniform mixture of ones and zeros (see figure 7). This
effect was somewhat greater in the random walk search as compared to
the hill-climbing search condition. By contrast, the mean performance
of searches using uniform mutation was unaffected by the number of
ones in the landscape optimum.

8. Future Work

It is unclear to what extent the plagiarism operator is applicable out-
side of the Boolean circuit domain. Experiments on widely differing
problems are clearly called for, although the genetic primitives must
be similar in meaning across different loci. The basic plagiarism oper-
ator suggests a variety of extensions, such as an operator which copies
several neighbouring loci at once.

We believe the idea of evenly exploring distribution-of-primitives
space, and other relevant spaces of a priori interest, is worth pursu-
ing. This line of research could be further developed by constructing
mutation operators which perform an explicit random walk in a given
space.

Plagiarism.tex; 13/07/2005; 18:22; p.15



16

9. Conclusion

This paper describes a new genetic operator for evolutionary search
and optimisation, the plagiarism operator, which involves the copying
of genetic primitives between different loci. We have presented exper-
imental results in which this operator facilitates digital logic circuit
evolution. Analytically, it outperforms uniform mutation on far-from-
uniform counting-ones tasks. On random fitness landscapes with far-
from-uniform optima, it outperforms uniform mutation regardless of
whether hill-climbing or random search is used.

This is yet another example of how prior knowledge is invaluable in
constructing evolutionary operators. Our analysis provides theoretical
validation for the practice of using copy operators in domains where
fitter individuals should be expected to have a non-uniform distribution
of genetic primitives. The plagiarism operator may well be valuable in
practical optimisation or design problems, and is rather easy to imple-
ment. The analysis in terms of plagiarism’s effectiveness in exploring
the distribution-of-primitives space can, we hope, inspire the design of
further ad-hoc operators based on prior domain knowledge.

References

1. Angeline, P. J. and J. B. Pollack: 1993, ‘Evolutionary Module Acquisition’. In:
D. Fogel and W. Atmar (eds.): Proceedings of the Second Annual Conference
on Evolutionary Programming. La Jolla, CA, USA, pp. 154–163.

2. Bailey, J. A., G. Liu, and E. E. Eichler: 2003, ‘An Alu Transposition Model
for the Origin and Expansion of Human Segmental Duplications’. American
Journal of Human Genetics 73, 823–34.

3. Efron, B. and G. Gong: 1983, ‘A leisurely look at the bootstrap, the jackknife,
and cross-validation’. The American Statistician 37, 36–48.

4. Hansen, J. V.: 2003, ‘Genetic Programming Experiments with Standard
and Homologous Crossover Methods’. Genetic Programming and Evolvable
Machines 4(1), 53–66.

5. Koza, J. R.: 1994, Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press.

6. Miller, J.: 2001, ‘What bloat? Cartesian Genetic Programming on Boolean
problems’. In: Late Breaking Papers, Proceedings of the 3rd Genetic and
Evolutionary Computation Conference (GECCO’01). pp. 295 –302.

7. Miller, J. F., D. Job, and V. K. Vassilev: 2000, ‘Principles in the Evolutionary
Design of Digital Circuits – Part I’. Journal of Genetic Programming and
Evolvable Machines 1(1), 8–35.

8. Miller, J. F., T. Kalganova, N. Lipnitskaya, and D. Job: 1999, ‘The Ge-
netic Algorithm as a Discovery Engine: Strange Circuits and New Principles’.
In: Proceedings of the AISB Symposium on Creative Evolutionary Systems
(CES’99). pp. 65–74.

Plagiarism.tex; 13/07/2005; 18:22; p.16



17

9. Naemura, T., T. Hashiyama, and S. Okuma: 1998, ‘Module Generation for
Genetic Programming and Its Incremental Evolution’. In: C. Newton (ed.): Sec-
ond Asia-Pacific Conference on Simulated Evolution and Learning. Australian
Defence Force Academy, Canberra, Australia.

10. Ohno, S.: 1970, Evolution by Gene Duplication. Springer Verlag.
11. Rosca, J. P.: 1997, ‘Hierarchical Learning with Procedural Abstraction Mech-

anisms’. Ph.D. thesis, Department of Computer Science, The College of Arts
and Sciences, University of Rochester, Rochester, NY 14627, USA.

12. Simoes, A. and E. Costa: 1999a, ‘Enhancing Transposition Performance’. In:
Proceedings of the 1999 Congress on Evolutionary Computation (CEC 99).
Washington, USA, pp. 1434–1441.

13. Simoes, A. and E. Costa: 2000, ‘Using Genetic Algorithms with Asexual Trans-
position’. In: D. Whitley, D. Goldberg, L. S. E. Cant-Paz, I. Parmee, and
H. Beyer (eds.): Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’ 2000). Las Vegas, USA, pp. 323–330.

14. Simoes, A. B. and E. Costa: 1999b, ‘Transposition versus Crossover: An Empir-
ical Study’. In: W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith (eds.): Proceedings of the Genetic and Evolutionary
Computation Conference, Vol. 1. Orlando, Florida, USA, pp. 612–619.

15. Spector, L.: 1995, ‘Evolving Control Structures with Automatically Defined
Macros’. In: E. V. Siegel and J. R. Koza (eds.): Working Notes for the AAAI
Symposium on Genetic Programming. MIT, Cambridge, MA, USA, pp. 99–105.

16. Thompson, A.: 1997, ‘An evolved circuit, intrinsic in silicon, entwined with
physics’. In: T. Higuchi, M. Iwata, and L. Weixin (eds.): Proc. 1st Int. Conf.
on Evolvable Systems (ICES’96), Vol. 1259 of LNCS. pp. 390–405.

17. Thompson, A., P. Layzell, and R. S. Zebulum: 1999, ‘Explorations in Design
Space: Unconventional electronics design through artificial evolution’. IEEE
Trans. Evol. Comp. 3(3), 167–196.

18. Urbanek, G.: 2003, ‘Factors having an effect on quality and cost of solution in
identification of inverse models with the application of genetic algorithms’. In:
Presented at AI-METH 2003: Methods of Artificial Intelligence.

19. Vassilev, V. K., T. C. Fogarty, and J. F. Miller: 2000, ‘Smoothness, Rugged-
ness and Neutrality of Fitness Landscapes: from Theory to Application’. In:
A. Ghosh and S. Tsutsui (eds.): Theory and Application of Evolutionary
Computation: Recent Trends. Springer-Verlag.

20. Voss, M. S. and C. M. Foley: 1999, ‘Evolutionary Algorithm For Structural
Optimization’. In: W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V.
Honavar, M. Jakiela, and R. E. Smith (eds.): Proceedings of the Genetic and
Evolutionary Computation Conference, Vol. 1. Orlando, Florida, USA, pp. 678–
685.

21. Walker, J. A. and J. F. Miller: 2004, ‘Evolution and Acquisition of Modules in
Cartesian Genetic Programming’. In: M. Keijzer, U.-M. O’Reilly, S. M. Lucas,
E. Costa, and T. Soule (eds.): Genetic Programming 7th European Conference,
EuroGP 2004, Proceedings, Vol. 3003 of LNCS. Coimbra, Portugal, pp. 187–
197.

22. Wolpert, D. H. and W. G. Macready: 1995, ‘No Free Lunch Theorems for
Search’. Technical Report SFI-TR-95-02-010, Santa Fe, NM.

Plagiarism.tex; 13/07/2005; 18:22; p.17



Plagiarism.tex; 13/07/2005; 18:22; p.18


