Evolving fixed-weight networks for learning robots

Elio Tuci, Matt Quinn and Inman Harvey
Centre for Computational Neurosciences and Robotics,
University of Sussex, Brighton BN1 9QH, United Kingdom
eliot, matthewq, inmanh@cogs.susx.ac.uk

Abstract - Recently research in the field of Evolu-
tionary Robotics have begun to investigate the evo-
lution of learning controllers for autonomous robots.
Research in this area has achieved some promising
results, but research to date has focussed on the evo-
lution of neural networks incorporating synaptic plas-
ticity. There has been little investigation of possible
alternatives, although the importance of exploring
such alternatives is recognised [7]. This paper de-
scribes a first step towards addressing this issue. Us-
ing networks with fixed synaptic weights and ‘leaky
integrator’ neurons, we evolve robot controllers capa-
ble of learning and thus exploiting regularities occur-
ring within their environment.

I. Introduction

Over the past ten years, an increasing number of re-
searchers have applied artificial evolution approaches to
the design of controllers for autonomous robots. The
appeal of an evolutionary approach is two-fold. Firstly,
and most basically, it offers the possibility of automating
a complex design task. Secondly, since artificial evolution
needs neither to understand, nor to decompose a prob-
lem in order to find a solution, it offers the possibly of
exploring regions of the design space that conventional
design approaches are often constrained to ignore. This
type of approach, known as Evolutionary Robotics (ER),
has proven successful in designing robots capable of per-
forming a variety of non-trivial tasks [see 6, 8, 4, for a
review of the field]. One of the more recent directions
that ER research has taken, has been toward the evo-
lution of robots that are capable of autonomous learn-
ing [e.g. 9, 7, 2, 3, 1]. The goal of this research is not
the evolution of robots that can be trained by an ex-
ternally imposed teaching input or reinforcement signal.
Instead, the aim is to evolve robots that are capable of
autonomously modifying their behaviour through inter-
action with the environment in which they are situated.

Research in this area has investigated the use of neu-
ral network controllers with some form of synaptic plas-
ticity, that is, networks which incorporate mechanisms
that change connection weights. These have typically
been networks with Hebbian-type update rules, where

the properties and type of rules used were placed un-
der evolutionary control [e.g. 3, 1]. Non-Hebbian mech-
anisms have also been employed; for example, Nolfi and
Parisi [9] evolved a control architecture in which a non-
plastic network generated a reinforcement signal that
served to modify the weights of a second network. The
research on autonomous learning robot has generally fo-
cused on the evolution of controllers with the ability to
modify their behaviour in order to adapt to variation in
their operating conditions, that is, changes in the rela-
tionship between a robot’s sensors and actuators, and
its environment - such as variation in ambient light lev-
els [e.g. 9]. In addition to being a general advantage, the
ability to adapt to variations in operating conditions is
also useful when controllers must cope with the inevitable
differences between simulation and reality [as shown in
3,2, 1].

As noted above, ER has focused on synaptic plasticity
as a mechanism by which to achieve learning. However,
synaptic plasticity is not the only mechanism that can
underlie learning behaviour. For example, Yamauchi and
Beer [11] have evolved continuous time recurrent neural
networks (CTRNNs) with fixed connection weights that
proved capable of learning in response to reinforcement.
Nonetheless, alternatives to synaptic plasticity remain
largely uninvestigated within ER. A better understand-
ing of the alternatives and their potential strengths and
weakness is an important issue for ER research [7]. The
work described in this paper is intended as a first step
towards addressing this issue.

In what follows, we will demonstrates that it is possi-
ble to evolve an integrated dynamic neural network that
successfully controls the behaviour of a Khepera mini-
robot engaged in a simple learning task. This learning
task requires that the robot learn the relationship be-
tween the position of a light source and the location of
its goal (see section II for a more detailed description).
The robot must be able to perform the task in an environ-
ment in which moving toward the light source will take
it toward its goal, but also in environment in which this
relationship is inverted. Only though interacting with its
environment will the robot be able to learn and thus ex-
ploit the particular relationship between goal and light.

Rather than employing plastic synapses, we use a neu-
ral network controller with fixed connection weights and
‘leaky integrator’ neurons (i.e. neurons whose activation
decays with time), and no reinforcement signal is explic-
itly hard-wired in to the system. We show that this net-
work architecture is able to produce robots capable of
performing the task (section IV).

II. Description of the task

A

4/\

Landmark-near Landmark-far
B D
AN
C E
j E

Fig. 1. Depiction of the task. The small empty circle
represents the robot. The white oval represents the land-
mark (i.e. alight source) and the black stripe in the arena
is the goal. Picture A at the top represents the arena at
the beginning of each single trial without landmark and
goal. The black points represent two possible starting
points. The dotted lines represent two possible routes to
the central part of the arena (delimited by dashed lines).
Pictures B and C represent the two possible arrange-
ment of the landmark and goal within the landmark-near
environment. The pictures D and E represent the two
possible arrangement of the landmark and goal within
the landmark-far environment. The arrows, in pictures
B,C,D,E represent the directions towards which a suc-
cessful robot should moves.

o

Ny,

The task facing the robot is inspired by the 1-d nav-
igational task implemented by Yamauchi and Beer also
using CTRNNs. It should be noted that they were unable
to evolve a solution [10]. In our 2-d version of this task, il-
lustrated in figure 1, a robot is placed in a walled arena in
which it must locate a target, a black strip located at one
end of the arena, which the robot can only perceive with
its floor-sensor. As a potential navigational aid (or land-
mark), a light is also placed at one end of the arena. How-
ever, the light may either be at the same end of the arena

as the target (‘landmark-near-environment’), or at the
opposite end (‘landmark-far-environment’). The robot
undergoes a series of 14 consecutive tests (or ‘trials’) in
one type of environment—we will refer to this series of 14
trials as a ‘season’—followed by a season under the other
type of environment. This process is then repeated, so
that the experiences a total of 4 seasons, 2 under each en-
vironmental condition. Between each season the robot’s
network is reset, but it is not reset between trials, thus
no internal state or ‘memory’ is retained from one sea-
son/environment to the next.

In each trial, the robot is initially placed at one end of
the arena, and it is not until the robot has crossed the
centre-line of the arena that the light is switched on and
the target strip is placed on the floor. The robot is given
a (simulated) 18 seconds to reach the centreline, and 18
seconds thereafter to find the target and stop on top of it
(trials will be terminated early if the robot crashes into
a wall). Upon reaching the centre-line the robot is effec-
tively faced with a ‘decision’, the target may lie in the
same direction as the light, or in the opposite direction.
If the robot ignores the light it has an equal probability
of finding the target, as of going in the opposite direc-
tion. If the robot behaves reactively toward the light (e.g.
through photo-taxis, or photo-avoidance), it will always
go the right way under one environmental condition and
always go the wrong way under the other. To consistently
achieve a higher success-rate than this, however, requires
that the robot should learn, over a series of successive
trials, which of the two landmark relationships currently
holds true. Note that, the robot is at no time given any
explicit teaching input, reinforcement or reward signal.
Whilst its performance is evaluated, as described below,
this information is only used by the evolutionary algo-
rithm in determining the number of copies which will be
made of the genotype encoding the robot’s network.

front

The robot 18
equipped with 6
infra red sensors (0
to 5) and 3 ambient
light sensors (1, 4,
6). It also has a
floor sensor indi-
cated by the central
gray circle.

Fig. 2. Plan of a Khepera mini-robot showing sensors and
wheels.

ITII. Implementation

A. Evaluation function

Fy = (abed) (3.0 %)) 4 -2

Pmaz
test section s = [1,...,4]; trial t = [2, ..., 14]

d; represents the furthest distance that the robot
reaches from the goal after the light is on. At the time
when the light goes on, dy is fixed as the distance be-
tween the centre of the robot body and the nearest point
of the goal. After this, d; is updated every time step
if the new dy is bigger than the previous one. d,, rep-
resents the nearest distance that the robot reaches from
the goal after the light is on. At the time when the light
goes on, d,, is fixed as equal to dy, and it is subsequently
updated every time step both when the robot gets closer
and when it goes away from the goal. dy is also updated
every time dy is updated. In this case d,, is set up equal
to the new dy. p represents the number of steps that the
robot makes into the goal during its longest period of per-
manence. Ppmez = 25 is the maximum number of steps
that the robot is allowed to make into the goal before the
trial is ended; a is a bias term for the type of environ-
ment; it is set to 3 in landmark-near environment, and to
1 in landmark-far environment. b, ¢, d are the penalties. b
is set to Q if the robot fails to reach the central part of the
arena, either because time limit is exceeded, or because
it crashes into the arena wall; ¢ is set to é if the robot
leaves the central area towards the opposite side of the
arena, respect to the goal (i.e unsuccessful behaviour); d
is set to % if the robot crashes into the arena wall; If the
robot doesn’t fall in any of these penalties, a, b, ¢ are set
to 1. The total fitness of each robot is given by averaging
the robot performance assessed in each single trail of each
test session. Note, no score is given for the first trial of
each test section, because the robot cannot initially know
what kind of environment it is situated in.

B. Simulation

A simple 2-dimensional model of a Khepera’s robot-
environment interactions within an arena was responsible
for generating the base set aspects of the simulation. The
implementation of our simulator, both for the function
that updates the position of the robot within the envi-
ronment and for the function that calculates the values
returned by the infra-red sensors and ambient light sen-
sors, closely matches the way in which Jakobi designed
his minimal simulation for a Khepera mini-robot within
an infinite corridor [see 5, for a detailed description of

the simulator]. During the simulation, robot sensor val-
ues are extrapolated from a look-up table. Noise is ap-
plied to each sensor reading. Our robot sensor ability is
limited to its 6 front sensors, three ambient light sensors,
positioned 45 degrees left and right and 180 degrees with
respect to its face direction (see figure 2). The light is
modelled as a bar that illuminates the whole arena with
the same luminosity. Each ambient light sensor faces out
from a point on the exterior of the robot and detects any
light within plus or minus +30 degrees from the normal
to the boundary. The values returned by the ambient
light sensors when impinged by the light, are set up to 1
if they exceed a fixed threshold otherwise they return 0.
Our robot has an extra floor sensor, that can be function-
ally simulated as an ambient light sensor, that returns 0
when the robot is positioned over a white floor and 1 for a
black floor. The simulation was updated the equivalent
of 5 times a second. Simulation noise is also extended
to the environment dimensions. Following a successful
trial, the robot normally keeps the position and orienta-
tion with which it ended the previous trial, but there is
a small probability that it is replaced elsewhere within
the arena—all unsuccessful trials result in replacement.
Every time the robot is replaced, the width and length
of the arena, and the width of the central area that trig-
gers the appearance of the landmark and the goal, are
redefined randomly within certain limits.

C. Neural Network

Robots were controlled by recurrent artificial neural net-
works, potentially of arbitrary size and connectivity. The
thresholds, weights and decay parameters, and the size
and connectivity of the network were all genetically de-
termined. The neural network consisted of 10 input
nodes, 4 output nodes (motors), and some (potentially
variable) number of hidden nodes or “inter neurons”, con-
nected together by directional, excitatory and inhibitory
weighted links. At any time-step, the output, Oy, a neu-

ron is given by:
1
o={,

where T is the neuron’s threshold. m; is a function of a
neuron’s weighted, summed input (s), and the value of
my_1 scaled by a temporal decay constant, such that:

o

where the decay constants v4 and yp are positive real
numbers smaller than 1.0. w, designates the weight of

ifm; <T

if 0;_1=0
if Opq =1

(ya)me—1 + Zg:() Wnin
('YB)mt—l + ano Wrln

the connection from the n*" input (i,) that scales that in-
put. Each sensor node outputs a real value (in the range
[0.0:1.0]), which is simple linear scaling of the reading
taken from its associated sensor. Motor outputs consist
of a ‘forward’ and a ‘reverse’ node for each motor. The
output, M, of each motor nodes is a simple threshold
function of its summed weighted inputs:

Moutz{ é

The final output of the each of the two motors is attained
by subtracting its reverse node output from its forward
node output. This gives three possible values for each
motor output: {-1,0,1}.

if SN i >0
i N wnin <0

D. Encoding Scheme

The network is encoded by a topological encoding scheme
developed by one of the authors (Quinn); this is designed
to allow the size and connectivity of the network to be
placed under evolutionary control. The procedure for en-
coding and decoding is as follows: Each neural network
controller is encoded in a ‘genotype’, this consists of a list
of ‘genes’. Each gene encodes the parameters for an indi-
vidual neuron and its associated connections. The form
of each gene was { X, T, v4, 7B, Lin, Lout }, where
T, v4 and vp are the (real-valued) threshold and decay
parameters, and L;, and L,,; are lists of input and of
output connections respectively. X is an integer which
serves an ‘identity tag’. This is assigned to a gene upon
its creation (genes are created either in the first GA gen-
eration when a population is created, or when a new gene
is added to a genotype as a result of a macro-mutation).
The identity tag (i.d.) assigned to a new gene is initially
unique — no other gene will have the same i.d. at the time
it is first assigned. The i.d. is not subject to mutation,
but it is inherited. Sensor and motor nodes also have
unique identity tags. The identity tags of the neurons,
and the sensor and motor nodes, are used to determine
network connectivity; the encoded connections specify a
source or destination by reference to these tags. Each
element in the connection lists, L;, and L,,;, takes the
form, {Z,w}, where w is the connection weight, and Z
specifies an identity tag of the node (sensor, motor, or
neuron) to which it should connect. In decoding the net-
work, the source (or destination) of each connection in
the list is determined by matching the tag it specifies
with the i.d. of a neuron in the network, or that of a
sensor or motor node. A connection may specify the tag
of the neuron from which it originates, resulting in a re-
current connection being made. Note that Z is inherited
and is subject to mutation (see below).

Genotypes are created to form an initial evolutionary
population in the following manner. Each genotype was
of length 3 genes and each gene was assigned a unique
identity tag. Next, each gene was given between 0 and 7
input connections, and between 1 and 7 output connec-
tions. The number of connections was chosen at uniform
random for each of the connection lists belonging to each
gene. Each connection element in each gene was then
randomly assigned a tag, such that it was equally likely
to connect to any neuron specified by the genotype or to
any sensor node, or any motor node. Finally the real-
valued parameters, i.e., all thresholds, decay parameters
and connection weights were initialised to random val-
ues: weights and thresholds in the range [-5:5] and decay
parameters in the range [0:1].

E. Evolutionary Algorithm and Genetic Operators

We used a simple generational genetic algorithm (GA),
with a population size of 200. At each new generation,
the highest scoring individuals (‘the elite’) were retained
unchanged. The remainder of the new population was
generated by fitness-proportional selection from the 150
best individuals of the old population. 60% of new geno-
types were produced by recombination, and mutation op-
erators were applied to all genotypes except the elite.

Mutation consisted of both macro-mutation (i.e. struc-
tural changes) and micro-mutation (i.e. perturbation of
real-valued parameters). Micro-mutation entailed that a
random Gaussian offset was applied to each real-valued
parameter encoded in the genotype with a small proba-
bility, such that the expected number of micro-mutations
per genotype is 0.75. The mean of the Gaussian is 0, and
its s.d is 0.5 of that parameter’s initialisation range (spec-
ified above). The threshold and weight parameters were
unbounded, but the decay constants were restricted to
their initialisation range of [0:1]. In cases where the mu-
tated value of a bounded parameter fell outside a bound,
its value was set at uniform random to a value between
the bound and its pre-mutated value.

Three types of macro-mutation are employed. Firstly,
gene could be added or deleted from the genotype. In
addition mutation, a new gene is created and added to
the genotype. Gene creation follows the same procedure
as described above, except that the maximum number
of connections per connection list is restricted to two in
order to minimize the disruptiveness of the addition oper-
ation. With a deletion operation, one gene is selected at
uniform random and removed from the genotype (dele-
tion is not carried out if it would result in an empty
genotype). Gene addition occurs with a probability of
0.005 and gene deletion with a probability of 0.02 per

Run n.5

[N

\
I
I
|
I

[

0.5 0.5

0 0
5 10 15 0 5 10 15 O
Trials Trials
Run n.6 Run n.7

o

5

Normalized freq
successful behaviour
o
ul
o
(6]

o
(4)]

Trials
Run n.8

0

0 5 10 15
Trials
Run n.10

0
10 15 0 5 10
Trials
Run n.9

15

0.5 0.5(1

0 0 o4
0 5 10 15 0 5 10 15 0O

Trials Trials

Normalized freq
successful behaviour

5

Trials

0
0 5 10 15
Trials

0
10 15 0 5 10
Trials

15

Fig. 3. Performance of the best control system of the final generation of each of the 10 runs, evaluated over 500 test sessions
in each of two environment types. Normalized frequencies of successful behaviour per trial are shown for for each type
of environment on the same axis. Dashed lines indicate the performance recorded in the landmark-near environment.
Continuous lines indicate the performance recorded in the landmark-far environment.

genotype. The second type of macro-mutation involves
the addition and deletion of connections. With addi-
tion, a new connection is created (as set out above), it
has an equal probability of being an input or an output,
and is added to the appropriate connection list of a ran-
domly chosen gene. In the case of deletion, a gene is
selected at uniform random from the genotype, and one
of its two connection lists is chosen with equal probabil-
ity, a connection element is selected (again at uniform
random) and deleted. Connection addition and deletion
both occur with an independent probability of 0.05 per
genotype. Finally, with a probability of 0.05, the geno-
type is subject to a reconnection mutation: one gene is
selected at uniform random, and one of its connection list
is then randomly selected and a connection element cho-
sen (again at uniform random). This connection is then
reconnected, by randomly assigning it a tag such that it
is equally likely to connect to any neuron specified by the
genotype, any sensor node or any motor node.

The recombination operator utilises gene’s i.d. tags in
order to maintain the structural integrity of the resulting
genotypes. The i.d. tag is used by the recombination op-
erator to pair genes with a common ancestor, and thereby
help to ensure that genes with similar phenotypic func-
tionality crossed. Recombination takes two parent geno-
types and produces two offspring, as follows. All genes
that can be, are paired by identity number. Each pairing
is then crossed with a probability of 0.5. The remaining
un-paired genes are not crossed.

IV. Results

Ten evolutionary simulations, each using a different
random seed, were run for 5000 generations. We ex-
amined the best individual of the final generation from
each of these runs in order to establish whether they had
evolved an appropriate learning strategy. Recall that to
perform its task successfully the robot make use of the
light source in order to navigate towards its goal. Thus,
over the course of a test session, the robot must learn—
and come to exploit—the relationship between the light
source and the goal that exists in the particular environ-
ment in which it is placed. In order to test their ability
to do this, each of these final generation controllers was
subjected to 500 test sessions in each of the two types of
environment (i.e. landmark-near and landmark-far). As
before each session comprised 14 consecutive trials, and
controllers were reset before starting a new session. Dur-
ing these evaluations we recorded the number of times the
controller successfully navigated to the target (i.e. found
the target directly, without first going to the wrong end
of the arena).

The results for the best controller of each of the ten
runs can be seen in figure 3, which shows the normalized
frequency of successful behaviour for each consecutive
trial during a session under each environmental condi-
tion. It is clear that in five of the runs (ie. 4,5, 7, 8
and 9) robots quickly come to successfully use the light
to navigate toward the goal, irrespective of whether they
are in an environment which requires moving towards
or away from the light source. Four of these controllers
oruns 4, 5, 7 and 9, employ a default strategy of mov-

ing toward the light, and hence are always successful in
the landmark-near environment. Consequently they also
initially very unsuccessful in the landmark-far environ-
ment. Nevertheless, as can be seen from figure 3, when
these controllers are placed in the landmark-far environ-
ment they are capable of adapting their behaviour over
the course of very few trials and subsequently come to
behave very differently with respect to the light. Each
of these controllers, when placed in the landmark-far en-
vironment, initially navigates toward the light, fails to
encounter the target and subsequently reaches the wrong
end of the arena. At this point it turns around and pro-
ceeds to back toward the correct end of the arena where
it ultimately encounters the target stripe. The fact that
in subsequent trials the robot moves away from the light
rather than towards it, demonstrates that the robot has
learn from some aspect, or aspects, of its earlier experi-
ence of the current environment. More prosaically, these
controllers learn from their mistakes. The same can be
said of the controller from run 8, which differs only in the
respect that it adopts the opposite initial strategy (i.e.
navigating away from the light) which it subsequently
modifies when placed in landmark-far environment.

It should be noted that the controllers from the other
five runs (i.e. 1, 2, 3, 6 and 10), whilst performing the
task with varying degrees of success, all modify their be-
haviour over the course of the initial trails; in each case
this results in improved performance. For example, the
controller from run 6 initially has a 50% success rate in
both types of environment. In the landmark-far envi-
ronment its success rate remains constant. However, if
placed in the landmark-near environment its success rate
will climb from 50% to 100% within the course a few tri-
als. Similarly, with the controller from run 1, success
in a landmark-near environment increases rapidly from
around 25% up to 100% whilst success in the landmark-
far remains consistently around 75%.

V. Discussion and Conclusion

The evolution of controllers capable of autonomous
learning is a relatively recent research direction for the
field of evolutionary robotics. Nonetheless, research
in this area has achieved some promising results [e.g.
9, 7, 2, 3, 1]. However, research to date has focussed
on the evolution of neural networks incorporating synap-
tic plasticity. There has been little investigation of pos-
sible alternatives, although the importance of exploring
such alternatives is recognised [7]. The work described
in this paper has been a first step towards addressing
this issue. It is intended as a sort of existence proof, a
demonstration that that neural networks with fixed con-
nection weights and temporal dynamics can be evolved to

produce learning behaviour. Using networks with fixed
synaptic weights and ‘leaky integrator’ neurons, we have
evolved robot controllers capable of adapting their be-
haviour in order to exploit regularities occurring within
their environment. Whilst similar networks have been
evolved to perform learning with external reinforcement
[11, 10], we believe this is the first example of such a net-
work being evolved to learn in the absence of teaching
input.

Demonstrating the existence of a viable alternative to
synaptic plasticity is a useful first step toward a bet-
ter general understanding of how evolution may be used
to construct learning controllers. However, in isolation,
the experiments described give us little indication of the
relative merits of the approach when compared to ap-
proaches incorporating synaptic plasticity. Our next step
is to investigate the evolution of controllers with synap-
tic plasticity on the task described in this paper, in order
to begin to investigate the relative merits of the two ap-
proaches.

References

[1] Eggenberger, P., Ishiguro, A., Tokura, S., Kondo, T., and
Uchikawa, Y. (1999). Toward seamless transfer from simulated
to real worlds: A dynamically-rearranging neural network ap-
proach. In Watt, J. and Demiris, J., editors, Proc. 8" European
Workshop on Learning Robots, Lausanne, Switzerland. Springer.

[2] Floreano, D. and Urzelai, J. (2000). Evolutionary Robots: The
Next Generation. In Proc. 7" Intl. Symposium on Evolutionary
Robotics.

[3] Floreano, D. and Urzelai, J. (2001). Evolution of plastic control
networks. Autonomous Robots. in press.

[4] Harvey, I., Husband, P., Thompson, A., and Jakobi, N. (1997).
Evolutionary Robotics: the Sussex approach. Robotics and Au-
tonomous Systems, 20:205-224.

[5] Jakobi, N. (1997). Evolutionary robotics and the radical enve-
lope of noise hypothesis. Adaptive Behavior, 6:325-368.

[6] Meyer, J.-A., Husbands, P., and Harvey, I. (1998). Evolution-
ary Robotics: A survey of Applications and Problems. In Hus-
bands, P. and Meyer, J.-A., editors, Proc. 1%t European Work-
shop on Evolutionary Robotics. Springer.

[7] Nolfi, S. and Floreano, D. (1999). Learning and evolution. Au-
tunomous Robots, 7(1):89-113.

[8] Nolfi, S. and Floreano, D. (2000). Ewvolutionary Robotics. MA:
MIT Press/Bradford Books.

[9] Nolfi, S. and Parisi, D. (1997). Learning to adapt to changing
environments in evolving neural networks. Adaeptive Behavior,
5(1):75-98.

[10] Yamauchi, B. and Beer, R. (1994a). Integrating Reactive, Se-
quential, and Learning Behavior Using Dynamical Neural Net-
work. In Cliff, D., Husbands, P., Meyer, J.-A., and Wilson,
S. W., editors, Proc. 3"% Intl. Conf. on Simulation of Adaptive
Behavior.

[11] Yamauchi, B. M. and Beer, R. D. (1994b). Sequential Behavior
and Learning in Evolved Dynamical Neural Networks. Adaptive
Behavior, 2(3):219-246.

