Generating Texts with Style

Richard Power!, Donia Scott!, and Nadjet Bouayad-Agha?

! Information Technology Research Institute, University of Brighton
Lewes Road, Brighton BN2 4AT, UK
{richard.power,donia.scott}@itri.bton.ac.uk
2 Departament de Tecnologia, University Pompeu Fabra
Passeig de Circumval-laci6 8, Barcelona, Spain
Nadjet.Bouayad@tecm.upf.es

Abstract. We describe an approach for generating a wide variety of
texts expressing the same content. By treating stylistic features as con-
straints on the output of a text planner, we explore the interaction be-
tween various stylistic features (from punctuation and layout to pronom-
inal reference and discourse structure) and their impact on the form of
the resulting text.

1 Introduction

Any reasonably complex message, comprising perhaps ten propositions, can be
expressed in billions of ways in English or any other natural language. An im-
portant challenge for computational linguists is to understand the contextual
and stylistic factors that make one version preferable to another. In the final
chapter of ‘Elements of Style’ [1], E.B. White posed this problem by contrasting
a memorable quotation from Thomas Paine:

These are the times that try men’s souls.
with several alternative formulations of the same literal content, including:
Soulwise, these are trying times.

As White points out, recognising the absurdity of the second formulation
is easy; explaining exactly why it is absurd is altogether harder. We describe
in this paper an approach that addresses some aspects of stylistic variation,
particularly those that apply at the structural level. This work is carried out
within the context of natural language generation (NLG).

Most NLG systems are restricted to one style of text. Moreover, with the
notable exception of Hovy’s PAULINE, existing NLG systems cannot reason about
the style(s) they produce; such decisions are hard-wired within the system [2].
Since style impacts on all aspects of text — from syntax and lexical choice
through to discourse structure and layout — changing the style of the output
texts of such systems can have far reaching implementational consequences. The
approach we describe here achieves a wide variety of styles in a flexible and



2 R. Power, D. Scott and N. Bouayad-Agha

efficient manner, at least at the level of text planning. Where appropriate, it
also gives control over stylistic choices to the user.

In describing a text as being ‘good’, one is really addressing two distinct
classes of criteria. The first concerns correctness: does the text conform to the
rules of the language? In other words, is it grammatical, is the punctuation
correct, are the correct words chosen, and so forth. Clearly, one would rule out
any text which does not satisfy such criteria. However, for a given content there
will be a wide variety of correct texts, their number increasing exponentially
with the size of the content (i.e., number of propositions). The second class of
criteria relates to the suitability of the selected text compared with alternative
‘correct’ solutions.

The first criterion accounts for ‘stylistic’ rules that are applied to any situa-
tion of communication and whose violation hinders seriously the quality of the
text. The second criterion brings us back to E.B. White’s point: to what extent
is a particular version of a text appropriate to the given situation of communi-
cation — e.g., the genre, the register, the idiosyncratic style of the author or the
house style of the publisher?

In what follows, we provide a general description of our approach to the
implementation of style at the level of text planning, taking into account the
different types of stylistic rules. We exemplify our approach through a working
example showing the operation of stylistic settings on the production of a text.

2 Hard and soft constraints

We treat stylistic rules as constraints and distinguish between the two classes of
stylistic criteria through their classification as hard or soft constraints.

A hard constraint is a fatal defect; texts violating hard constraints should
never be generated, regardless of their other merits. Among hard constraints
we include correct structure, both as regards syntax and higher textual levels,
and correct realization of rhetorical relationships. The system currently imposes
about 20 such constraints during text planning, including the following:

— Spauns linked by a subordinating conjunction (e.g., since) must occur within
the same text-clause.

— The text-category hierarchy [3] must be respected: for instance, a text-
sentence cannot contain a paragraph (unless the paragraph is indented).

— Vertical lists cannot be used for the arguments of a nucleus-satellite relation;
the relation must be multinuclear.

Since soft constraints are non-fatal defects, there may be circumstances in
which violations are accepted as a necessary evil. Many stylistic dilemmas arise
because one soft constraint conflicts with another. For example, we may prefer
to avoid the passive voice, but we also prefer to place the current discourse topic
in subject position. How can such a conflict be resolved? Following Optimality
Theory [4], the constraints could be arranged in an order of priority, but this
leads to absurd anomalies: a single violation of one constraint might outweigh



Generating Texts with Style 3

a hundred violations of constraints with lower rank. The alternative, which we
adopt, is to compute for each solution a cost, weighting violations according
to their relative importance. Style preferences defined by the user make their
presence felt by modifying some of these weights.

For efficiency, it is obviously desirable that solutions violating hard con-
straints are eliminated before any candidates are generated. We have shown
elsewhere [5] that this can be done by formulating text planning as a Constraint
Satisfaction Problem, which can be solved by Constraint Logic Programming
[6]. Briefly, the idea is that the features over which hard constraints are defined
are represented by finite-domain variables, and that unacceptable combinations
of values are ruled out before any specific solutions are generated.

To evaluate violations of soft constraints, we can find no sufficiently flexible
alternative to a generate-and-test method. Several hundred candidate text plans
are generated; each is assigned a cost by summing weighted scores for each
violation; the solution with lowest cost is selected, and passed forward for tactical
generation and formatting.

The obvious drawback to generate-and-test is that the number of candidates
increases exponentially with complexity (roughly, with the number of elementary
propositions in the semantic input). From informal experiments, we find that the
number of candidate solutions is around 5V~! for N elementary propositions,
which means that even for a short passage containing a dozen propositions the
text planner would find about 50 million solutions satisfying the hard constraints.
One might try to address this problem by a statistical optimization method such
as a genetic algorithm [7], but we think a more natural and informative method
is to break up the problem into parts, so that at each stage only a manageable
part of the total solution is constructed. For instance, when planning a text,
the semantic material could first be distributed among sections, then perhaps
among paragraphs, thus spawning many small-scale text-planning problems for
which the search spaces would be measured in hundreds rather than billions.

We have followed this approach also in combining text planning with tacti-
cal generation. Once the best text plan has been selected, it remains fixed, no
matter what further costs accrue during syntactic realization. Moreover, the re-
alization of each proposition in the linear sequence is fixed before passing to the
next proposition. The tactical generator thus explores various ways of realizing
the first proposition, evalutes them according to soft constraint violations, and
chooses the best; the resulting linguistic context is then taken into account when
searching for the best realization of the second proposition.

3 A working example

3.1 The ICONOCLAST system

We have developed a system, ICONOCLAST, which generates texts for the do-
main of Patient Information Leaflets (PiLs) — the package inserts which explain
ingredients, side-effects, instructions for using the medicine, and so forth.



4 R. Power, D. Scott and N. Bouayad-Agha

The user of the system can define the content of a leaflet by using the wysi-
wyM method [8], and can also vary the style of the generated text by sliding
pointers along nine scales representing the following parameters:

Paragraph Length

Sentence Length

Frequency of Connectives

Frequency of Passive Voice

Frequency of Pronouns

Frequency of Semicolons

Frequency of Commas

Technical Level (use of technical terms)
Graphical Impact (use of vertical lists)

As examples of style profiles we have saved two configurations named ‘Broad-
sheet’ and ‘Tabloid’®. The broadsheet style has long paragraphs and sentences,
frequent use of passives, semicolons, and commas, relatively few pronouns, high
technical level, and low graphical impact; the tabloid style is the reverse. With
the broadsheet profile loaded, the output text for a short section of a PIL on
‘Taking your medicine’ might read as follows:

To take a tablet, remove the tablet from the foil, and swallow it with water.
If you take an overdose, tell your doctor immediately, or go to your hospital’s
Casualty Department.

The user might induce small changes in this text by using the sliders, for
example by reducing the comma frequency or raising the pronoun frequency.
Every time this is done, the system generates a new text from the current model
and current style profile. Alternatively, the user might decide to change the style
completely by loading the tabloid profile, with perhaps the following result:

To take a tablet:
1 Remove it from the foil
2 Swallow it with water
If you take an overdose
o tell your doctor immediately, or
e go to your hospital’s Casualty Department.

3.2 Satisfying hard constraints

Figure 1 shows a simple model comprising two propositions linked by a ‘cause’
relation*. With standard settings for hard constraints, and two potential dis-
course connectives (since, consequently), our text planner generates eight candi-
date solutions for this input, including plans A and B in figure 2. After syntactic
realization, the texts resulting from these plans were as follows:

3 These labels should not be taken too seriously.
* Details of the semantic representation are presented in [9].



Generating Texts with Style 5

NUCLEUS SAYELLITE

(o] [om
7o R
(o] (o] e

Fig. 1. Semantic Input

(A) Since Elixir contains gestodene, it is banned by the FDA.
(B) The FDA bans Elixir. It contains gestodene.

We will show later that under most settings of the style parameters, A is
preferred to B; first, however, we say a little more about how these candidate
solutions are obtained.

cause
LEVEL = text-sentence
MARKER = "since"

(A)
contain(elixir, gestodene) ban(fda, elixir)
LEVEL = text-phrase LEVEL = text-phrase
Cb = none Ch = elixir
Cp = dlixir Cp = dlixir
cause
LEVEL = paragraph
MARKER = none
(8)
ban(fda, elixir) contain(elixir, gestodene)
LEVEL = text-sentence LEVEL = text-sentence
Cb = none Cb = elixir
Cp=fda Cp =éelixir

Fig. 2. Text Plans



6 R. Power, D. Scott and N. Bouayad-Agha

The algorithm for producing plans like A and B, implemented in the Con-
straint Logic Programming language Eclipse [10], can be summarized as follows®:

1. A schematic plan is constructed by assigning one node to each rhetorical
relation and to each elementary proposition. Since the semantic input in
figure 1 has one rhetorical relation linking two propositions, we obtain a
schematic plan with three nodes (figure 2).

2. Each node is assigned text-category variables [3]. A text-category comprises
a LEVEL (e.g., section, paragraph, text-sentence) and an INDENTATION (rel-
evant for texts with vertical lists). To simplify, we assume here that there
are no indented constituents.

3. Each node (except the root) is assigned a POSITION variable representing its
order in relation to its sisters. This variable is omitted from figure 2, where
position is shown instead by left-to-right order on the page.

4. Nodes representing relations are assigned a MARKER variable whose value
ranges over the relevant discourse markers (e.g., since and consequenily for
‘cause’), including an empty value (none) if the relation can be left implicit.

5. Nodes representing propositions are assigned Cb and Cp variables ranging
over the potential backward and forward centers [11].

6. Constraints are defined over the solution variables so that ill-formed text
plans cannot be generated.

7. All combinations of variables satisfying the hard constraints are enumerated;
every such combination defines a candidate text plan to be submitted to
further evaluation using soft constraints.

Note, incidentally, that the plans in figure 2 are still schematic: for instance,
plan A needs to be elaborated so that the discourse connective since is coordi-
nated with the first proposition.

3.3 Satisfying soft constraints

Having generated a set of candidate plans, including A and B, the program ap-
plies soft constraints in order to assign a cost to each plan. The cost is computed
by checking for a series of violations at each node, penalizing each violation by
a score that might depend on the current settings of the style parameters, and
then summing over the whole plan. We list below some soft constraints that are
currently implemented; note, however, that these constraints are provisional, and
that so far we have no empirical basis either for choosing these particular con-
straints or for fixing their relative weights. The purpose of the list is to indicate
some plausible stylistic constraints, and to show how they can be applied at the
text-planning stage.

The first five constraints represent general principles of good style, unrelated
to the style parameters controlled by the user.

® Details are available in [5].



Generating Texts with Style 7

Nucleus-satellite order
In most cases (including ‘cause’) the nucleus can be best emphasized by
placing it in final position. A penalty is therefore imposed when the nucleus
is placed first. Plan B wviolates this constraint.
Structure branching
Right-branching structures are preferred to left-branching ones.
Rhetorical grouping
Text plans that express rhetorical groupings explicitly are preferred to ones
that leave them implicit. For instance, a plan which expressed three propo-
sitions by a paragraph of three sentences would be penalized if two of these
propositions were grouped together in rhetorical structure.
Marker Repetition
If two rhetorical relations that are neighbours in the semantic input are
expressed by the same discourse connective, a penalty is applied. This con-
straint would for example penalize a sentence in which since occurred twice.
Continuity of Reference
Three soft constraints based on centering theory are employed to score con-
tinuity of reference: they are salience (Cpy = Cby), coherence (Cby =
Cbn41) and cheapness (Cpy = Cbyy1) [12,13]. Plan B wviolates this con-
straint, since the Cp of the first proposition fails to predict the Cb of the
second.

On the basis of these five constraints, plan A (no violations) will be preferred
to plan B (two violations). However, this difference in favour of plan A might
be over-ridden by costs resulting from the remaining constraints, which depend
upon the style parameters controlled by the user.

Paragraph Length
Although no words have been generated yet, paragraph length can be mea-
sured from the number of propositions expressed in each paragraph. The cost
is calculated as a deviation from an ideal length determined by the user.

Sentence Length
The length of each text-sentence is also measured by the number of propo-
sitions it contains, and scored by deviation from the user-controlled ideal
length.

Connective Frequency
If the user requests frequent connectives, failure to use a discourse marker is
penalized; conversely, if the user requests few connectives, the presence of a
marker is penalized.

Passive Voice
Inclusions of passives in the output text are penalised if the user requests a
low frequency of occurence, and vice versa for actives when a high frequency
of passives are requested.

Semicolon Frequency
Following Nunberg’s punctuation rules [3], every text-clause will end in a
semicolon unless it is the final constituent of a text-sentence. If the user
requests frequent semicolons, text-sentences with only one text-clause are



8 R. Power, D. Scott and N. Bouayad-Agha

penalized; if the user requests infrequent semicolons, text-sentences with
more than one text-clause are penalized.
Graphical Impact

Under standard settings, the hard constraints allow vertical lists only for
multinuclear relations (e.g. alternative, sequence). Failure to use an indented
structure in such cases is penalized if the user has requested high graphical
impact; the presence of an indented structure is penalized if the user has
requested low graphical impact.

4 Conclusions

Although we have concentrated here on stylistic constraints at the level of text
planning, the approach we take to optimization means that possibilities at other
levels are also considered at no extra cost. For example, text planning constraints
on the setting for the preferred center (i.e., C'p, the most salient referent) will rule
out certain syntactic choices since even at the text-planning stage, the eventual
use of the passive can be foreseen if the ACTEE of an action is the C'p. Similarly,
constraints on text category will have a direct bearing on the appearance of
semicolons.

The system we have developed has proved a useful research tool for inves-
tigating the interaction between stylistic goals. Through the generate-and-test
method, one can quickly evaluate the consequences of a given stylistic choice
and discover new constraints that should be added.

The system can also be viewed as an authoring tool that allows users to
specify not only the content of a document to be generated — as in other systems,
e.g., [14-17,8] — but also fairly fine-grained decisions over the style of the output
text.

Finally, the system has the added capability of being self-critiquing: the user
can, if he or she wishes, see the extent to which any or all of the generated
versions deviates from what would in theory be ideal. This too is achieved at no
extra cost.

References

1. Strunk, W., White, E.: The elements of style. MacMillan (1979)

2. Hovy, E.: Generating Natural Language under Pragmatic Constraints. Lawrence
Erlbaum Associates, Hillsdale, NJ (1988)

3. Nunberg, G.: The Linguistics of Punctuation. CSLI, Stanford, USA (1990)

4. Kager, R.: Optimality Theory. Cambridge Textbooks in Linguistics. Cambridge
University Press (1999)

5. Power, R.: Planning texts by constraint satisfaction. In: Proceedings of COLING-
2000. (2000)

6. Hentenryck, P.V.: Constraint Satisfaction in Logic Programming. MIT Press,
Cambridge, Mass. (1989)



10.

11.

12.

13.

14.

15.

16.

17.

Generating Texts with Style 9

Mellish, C., Knott, A., Oberlander, J., O’Donnell, M.: Experiments using stochastic
searcg for text planning. In: Proceedings of the Ninth International Workshop on
Natural Language Generation, Niagara-on-the-Lake, Ontario, Canada (1998) 98—
107

Power, R., Scott, D.: Multilingual authoring using feedback texts. In: Proceedings
of the 17th International Conference on Computational Linguistics and 36th An-
nual Meeting of the Association for Computational Linguistics, Montreal, Canada
(1998) 1053-1059

Power, R.: Controlling logical scope in text generation. In: Proceedings of the
European Workshop on Natural Language Generation, Toulouse, France (1999)
1-9

ECRC: Eclipse user manual. Technical report, European Computer Research
Centre, Munich, Germany (1992)

Grosz, B., Joshi, A., Weinstein, S.: Centering: a framework for modelling the local
coherence of discourse. Computational Linguistics 21 (1995) 203-225

Kibble, R., Power, R.: Using centering theory to plan coherent texts. In: Pro-
ceedings of the 12th Amsterdam Colloquium, Institute for Logic, Language and
Computation, University of Amsterdam (1999)

Strube, M., Hahn, U.: Functional centering: Grounding referential coherence in
information structure. Computational Linguistics (1999)

Caldwell, D., Korelsky, T.: Bilingual generation of job descriptions from quasi-
conceptual forms. In: Proceedings of the Fourth Conference on Applied Natural
Language Generation. (1994)

Paris, C., Vander Linden, K., Fischer, M., Hartley, A., Pemberton, L., Power,
R., Scott, D.: A support tool for writing multilingual instructions. In: Proceed-
ings of the 14th International Joint Conference on Artificial Intelligence, Montreal,
Canada (1995) 1398-1404

Power, R., Cavallotto, N.: Multilingual generation of administrative forms. In:
Proceedings of the 8th International Workshop on Natural Language Generation,
Herstmonceux Castle, UK (1996) 17-19

Sheremetyeva, S., Nirenburg, S., Nirenburg, I.: Generating patent claims from
interactive input. In: Proceedings of the 8th International Workshop on Natural
Language Generation, Herstmonceux Castle, UK (1996)



