
A Representation for Complex and Evolving Data Dependencies
in Generation

C M e l l i s h $, R E v a n s t, L C a h i l l t, C D o r a n t, D P a i v a t, M R e a p e $, D S c o t t t, N T i p p e r t

t Informat ion Technology Research Ins t i tu te , Universi ty of Brighton, Lewes Rd, Brighton, UK

SDivision of Informatics , Universi ty of Edinburgh, 80 South Bridge, Edinburgh, UK
rags@itri, brighton, ac. uk

http :/www. itri. brighton, ac. uk/proj ect s/rags

A b s t r a c t

This paper introduces an approach to represent-
ing the kinds of information that components
in a natural language generation (NLG) sys-
tem will need to communicate to one another.
This information may be partial, may involve
more than one level of analysis and may need
to include information about the history of a
derivation. We present a general representation
scheme capable of handling these cases. In ad-
dition, we make a proposal for organising inter-
module communication in an NLG system by
having a central server for this information. We
have validated the approach by a reanalysis of
an existing NLG system and through a full im-
plementation of a runnable specification.

1 I n t r o d u c t i o n

One of the distinctive properties of natural lan-
guage generation when compared with other
language engineering applications is that it has
to take seriously the full range of linguistic rep-
resentation, from concepts to morphology, or
even phonetics. Any processing system is only
as sophisticated as its input allows, so while a
natural language understanding system might
be judged primarily by its syntactic prowess,
even if its attention to semantics, pragmatics
and underlying conceptual analysis is minimal,
a generation system is only as good as its deep-
est linguistic representations. Moreover, any at-
tempt to abstract away from individual gener-
ation systems to a more generic architectural
specification faces an even greater challenge:
not only are complex linguistic representations
required, able to support the dynamic evolu-
tionary development of data during the gener-

* Now at the MITRE Corporation, Bedford, MA, USA,
cdoran@mitre, org.

ation process, but they must do so in a generic
and flexible fashion.

This paper describes a representation devel-
oped to meet these requirements. It offers a
formally well-defined declarative representation
language, which provides a framework for ex-
pressing the complex and dynamic data require-
ments of NLG systems. The approach supports
different levels of representation, mixed repre-
sentations that cut across levels, partial and
shared structures and 'canned' representations,
as well as dynamic relationships between data
at different stages in processing. We are using
the approach to develop a high level data model
for NLG systems as part of a generic generation
architecture called RAGS 1.

The framework has been implemented in the
form of a database server for modular genera-
tion systems. As proof of concept of the frame-
work, we have reimplemented an existing NLG
system. The system we chose was the Caption
Generation System (CGS) (Mittal et al., 1995;
Mittal et al., 1998). The reimplementation in-
volved defining the interfaces to the modules of
CGS in terms of the RAGS representations and
then implementing modules that had the requi-
site input and output representations.

Generation systems, especially end-to-end,
applied generation systems, have, unsurpris-
ingly, many things in common. Reiter (1994)
proposed an analysis of such systems in terms
of a simple three stage pipeline. More recently,
the RAGS project a t tempted to repeat the anal-

1This work is supported by ESPRC grants
GR/L77041 (Edinburgh) and GR/L77102 (Brighton),
RAGS: Reference Architecture for Generation Systems.
We would also like to acknowledge the contribution of
Jo Calder to the ideas and formalisation described in
this paper. In particular, parts of this paper are based
on (Calder et al., 1999).

119

ysis (Cahill et al., 1999a), but found that while
most systems did implement a pipeline, they
did not implement the s a m e pipeline - different
functionalities occurred in different places and
different orders in different systems. In order
to accommodate this result, we sought to de-
velop an architecture that is more general than
a simple pipeline, and thus supports the range
of pipelines observed, as well as other more com-
plex control regimes (see (Cahill et al., 1999a;
Cahill et al., 1999b)). In this paper, we argue
tha t supporting such an architecture requires
careful consideration of the way da ta represen-
tations interact and develop. Any formal frame-
work for expressing the architecture must take
account of this.

2 T h e r e p r e s e n t a t i o n a l r e q u i r e m e n t s
o f g e n e r a t i o n s y s t e m s

We noted in the introduction tha t generation
systems have to deal with a range of linguis-
tic information. It is natural, especially in the
context of a generic architecture proposal, to
model this breadth in terms of discrete layers
of representation: (1999a) introduce layers such
as conceptual, semantic, rhetorical, syntactic
and document structure, but the precise demar-
cation is not as important here as the princi-
ple. The different kinds of information are typi-
cally represented differently, and built up sepa-
rately. However the layers are far from indepen-
dent: objects at one layer are directly related to
those at others, forming chains of dependency
from conceptual through rhetorical and seman-
tic s t ructure to final syntactic and document re-
alisation. This means that da ta resources, such
as grammars and lexicons, and processing mod-
ules in the system, are often defined in terms of
m i x e d data: structures that include informa-
tion in more than one representation layer. So
the ability to represent such mixed structures
in a single formal framework is an important
property of a generic da ta proposal.

In addition, it is largely s tandard in gener-
ation as elsewhere in language applications, to
make extensive use of p a r t i a l representations,
often using a type system to capture grades of
underspecification. An immediate corollary of
providing support for partial s tructures is the
notion that they may become further specified
over time, that data structures evolve . If the

framework seeks to avoid over-commitment to
particular processing strategies it needs to pro-
vide a way of representing such evolution ex-
plicitly if required, rather than relying on de-
structive modification of a structure. Related
to this, it should provide explicit support for
representing a l t e r n a t i v e specifications at any
point. Finally, to fully support efficient pro-
cessing across the range of applications, from
the simple to the most complex, the represen-
tation must allow for compact sharing of infor-
mation in t a n g l e d structures (two structures
which share components).

In addition to these direct requirements of the
generation task itself, additional requirements
arise from more general methodological consid-
erations: we desire a representation that is for-
mally wel l d e f i n e d , allows for theoretical r ea -
s o n i n g about the da ta and performance of sys-
tems, and supports control regimes from simple
deterministic pipelines to complex parallel ar-
chitectures.

3 T h e R e p r e s e n t a t i o n S c h e m e

In this section, we present our proposal for a
general representation scheme capable of cover-
ing the above requirements. Our formulation is
layered: the foundation is a simple, flexible, rig-
orously defined graph representation formalism,
on top of which we introduce notions of com-
plex types and larger da ta structures and rela-
tionships between them. This much is sufficient
to capture the requirements just discussed. We
suppose a yet higher level of specification could
capture a more constraining da ta model but
make no specific proposals about this here, how-
ever the following sections use examples that do
conform to such a higher level da ta model.

The lowest level of the representation scheme
is:

• r e l a t i o n a l : the basic da ta enti ty is x -~ y,
an a r r o w representing a relation from ob-
ject x to object y;

• t y p e d : objects and arrows have an asso-
ciated type system, so it is possible to de-
fine classes and subclasses of objects and
arrows.

At the most fundamental level, this is more or
less the whole definition. There is no commit-
ment to what object or arrow types there are or

120

how they relate to each other. So a representa-
tion allowed by the scheme consists of:

• a set of objects, organised into types;

• a set of binary relations, organised into
types;

• a set of arrows, each indicating tha t a rela-
tion holds between one object and another
object.

Se ts , s e q u e n c e s a n d f u n c t i o n s
For the next level, we introduce more struc-
ture in the type system to support sets, se-
quences and functions. Objects are always
atomic (though they can be of type set, se-
quence or function) - it is not possible to make
an object which actually is a set of two other
objects (as you might with da ta structures in a
computer program). To create a set, we intro-
duce a set type for the object, and a set mem-
bership arrow type (el), that links the set's el-
ements to the set. Similarly, for a sequence, we
introduce a sequence type and sequence mem-
ber arrow types (1-el, 2-el, 3-el, . . .), and for a
function, we have a complex type which spec-
ifies the types of the arrows tha t make up the
domain and the range of the function.

SemRep

~ fun(Role.SemRep)

7 V show SemRep SemRep

Figure 1: The partial semantic representation
of "The second chart shows the number of days
on the market"

As an example, consider Figure 1, which
shows a semantic representation (SemRep) from
the CGS reimplementation. Here, the tree
nodes correspond to objects, each labelled with
its type. The root node is of type SemRep, and
although it is not an explicit sequence type, we
can see tha t it is a triple, as it has three sequence
member arrows (with types 1-el, 2-el and 3-el).
Its first arrow's target is an object of type DR
(Discourse Referent). Its second represents a set
of SemPred (Semantic Predicate) objects, and in
this case there's just one, of type show. Its third

element is a (partial) function, from Role arrow
types (agent and affected are both subtypes of
Role) to SemReps. (In this case, the SemReps
have not yet been fully specified.)

L o c a l a n d n o n - l o c a l a r r o w s
The second extension to the basic representa-
tion scheme is to distinguish two different ab-
stract kinds of arrows - local and non-local.
Fundamental ly we are representing just a homo-
geneous network of objects and relationships. In
the example above we saw a network of arrows
tha t we might want to view as a single da ta
structure, and other major da ta types might
similarly appear as networks. Additionally, we
want to be able to express relationships between
these larger 's tructures ' - between structures
of the same type (alternative solutions, or re-
vised versions) or of different types (semantic
and syntactic for example). To capture these
distinctions among arrows, we classify our ar-
row types as local or non-local (we could do
this in the type system itself, or leave it as an
informal distinction). Local arrows are used to
build up networks tha t we think of as single
da ta structures. Non-local arrows express rela-
tionships between such da ta structures.

All the arrow types we saw above were local.
Examples of non-local arrows might include:

rea l i ses These arro~vs link something more ab-
stract to something less abstract that re-
alises it. Chains of realises arrows might
lead from the original conceptual input to
the generator through rhetorical, seman-
tic and syntactic structures to the actual
words tha t express the input.

r ev i ses These arrows link a structure to an-
other one of the same type, which is con-
sidered to be a 'better ' solution - perhaps
because it is more instantiated. It is impor-
tant to note tha t parts of larger structures
can be revised without revising the entire
structure.

c o r e f e r e n c e These arrows link structures
which are somehow "parallel" and which
perhaps share some substructure, i.e., tan-
gled structures. For instance, document
representations may be linked to rhetorical
representations, either as whole isomorphic
structures or at the level of individual con-
stituents.

121

Notice that the representation scheme does
not enforce any kind of well-formedness with
respect to local and non-local arrows. In fact,
although it is natural to think of a 's tructure ' as
being a maximal network of local arrows with
a single root object, there's no reason why this
should be so - networks with multiple roots rep-
resent tangled structures (structures that share
content), networks that include non-local links
might be mixed representations, containing in-
formation of more than one sort. Such tech-
niques might be useful for improving generator
efficiency, or representing canned text or tem-
plates, cf. (Calder et al., 1999).

P a r t i a l a n d O p a q u e s t r u c t u r e s
Partial s tructures are essential when a module
needs to produce a skeleton of a representa-
tion that it does not have the competence to
completely fill out. For instance, lexical choice
brings with it certain syntactic commitments,
bu t in most NLG systems lexical choice occurs
some time before a grammar is consulted to
flesh out syntactic s t ructure in detail.

Figure 2: A partial s t ructure

By simply leaving out local arrows, we can
represent a range of partial structures. Con-
sider Fig. 2, where the triangles represent local
structure, representing a sentence object and its
component verb phrase. There is a link to a sub-
ject noun phrase object, but none of the local
arrows of the actual noun phrase are present. In
subsequent processing this local s tructure might
be filled in. This is possible as long as the noun
phrase object has been declared to be of the
right type.

An opaque structure is one which has an in-
complete derivational history - for example par t
of a syntactic s tructure without any correspond-
ing semantic structure. Three possible reasons
for having such structures are (a) to allow struc-
ture to be introduced that the generator is not
capable of producing directly, (b) to prevent the
generator from interfering with the s t ructure
thus built (for example, by trying to modify an

idiom in an inappropriate way), or (c) to im-
prove generator efficiency by hiding detail that
may lead to wasteful processing. An opaque
s t ructure is represented simply by the failure
to include a r e a l i s e s arrow to that structure.
Such structures provide the basis for a gener-
alised approach to "canning".

4 I m p l e m e n t a t i o n

There are many ways that modules in an
NLG system could communicate information
using the representation scheme just outlined.
Here we describe a part icularly general model
of inter-module communication, based around
modules communicating with a single cen-
tralised reposi tory of da ta called the whiteboard
(Calder et al., 1999). A whi teboard is a cumu-
lative typed relational blackboard:

• t y p e d a n d r e l a t i o n a l : because it is based
on using the above representation scheme;

• a b l a c k b o a r d : a control architec-
ture and da ta store shared between
processing modules; typically, modules
add/change/ remove objects in the da ta
store, examine its contents, and /o r ask to
be notified of changes;

• c u m u l a t i v e : unlike s tandard blackboards,
once da ta is added, it can ' t be changed or
removed. So a s t ructure is built incremen-
tally by making successive copies of it (or of
consti tuents of it) linked by r e v i s e s links
(although actually, there 's no constraint on
the order in which they are built).

A whi teboard allows modules to add ar-
rows (typically forming networks through ar-
rows sharing source or target objects), to in-
spect the set of arrows looking for particular
configurations of types, or to be informed when
a particular type of arrow (or group of arrows)
is added.

The whi teboard is an active database server.
This means that it runs as an independent pro-
cess that other modules connect to by appropri-
ate means. There are essentially three kinds of
interaction that a module might have with the
whi teboard server:

• p u b l i s h - add an arrow or arrows to the
whiteboard;

122

• q u e r y - look for an arrow or arrows in the
whiteboard;

• w a i t - register interest in an arrow or ar-
rows appearing in the whiteboard.

In both que ry and wai t , arrows are specified
by type, and with a hierarchical type system on
objects and relations, this amounts to a pat tern
that matches arrows of subtypes as well. The
wa i t function allows the whi teboard to take the
initiative in processing - if a module w a i t s on a
query then the whi teboard waits until the query
is satisfied, and then tells the module about it.
So the module does not have to continuously
scan the whi teboard for work to do, but can
let the whi teboard tell it as soon as anything
interesting happens.

Typically a module will s tar t up and regis-
ter interest in the kind of arrow that represents
the module 's input data. It will then wait for
the whi teboard to notify it of instances of that
da ta (produced by other modules), and when-
ever anything turns up, it processes it, adding
its own results to the whiteboard. All the mod-
ules do this asynchronously, and processing con-
tinues until no module has any more work to
do. This may sound like a recipe for confusion,
but more s tandard pipelined behaviour is not
much different. In fact, pipelining is exactly a
data-based constraint - the second module in a
pipeline does not start until the first one pro-
duces its output .

However, to be a strict pipeline, the first mod-
ule must produce all of its ou tpu t before the sec-
ond one starts. This can be achieved simply by
making the first module produce all its ou tpu t
at once, but sometimes that is not ideal - for ex-
ample if the module is recursive and wishes to
react to its own output . Alternative strategies
include the use of markers in the whiteboard,
so that modules can tell each other that they 've
finished processing (by adding a marker), or
extending the whi teboard architecture itself so
that modules can tell the whi teboard that they
have finished processing, and other modules can
wait for that to occur.

5 R e c o n s t r u c t i o n o f t h e C a p t i o n
G e n e r a t i o n S y s t e m

In order to prove this representation scheme
in practice, we have implemented the white-

board in Sicstus Prolog and used it to suppor t
da ta communications between modules in a re-
construction of the Caption Generation System
(Mittal et al., 1995). CGS is a system developed
at the University of Pi t tsburgh, which takes in-
put from the SAGE graphics presentation sys-
tem (Roth et al., 1994) and generates captions
for the graphics SAGE produces. We selected it
for this effort because it appeared to be a fairly
simple pipelined system, with modules perform-
ing clearly defined linguistic tasks. As such, we
thought it would be a good test case for our
whi teboard specification.

Although the CGS is organised as a pipeline,
shown in Figure 3, the representations commu-
nicated between the modules do not correspond
to complete, separate instances of RAGS data-
type representations. Instead, the representa-
tions at the various levels accumulate along the
pipeline or are revised in a way that does not
correspond exactly to module boundaries. Fig-
ure 3 gives a simple picture of how the different
levels of representation build up. The labels for
the RAGS representations refer to the following:

• I = conceptual;

• II -- semantic;

• I I I = rhetorical;

• IV = document;

• V = syntactic.

For instance, some semantic (II) information is
produced by the Text Planning module, and
more work is done on this by Aggregation, but
the semantic level of representation is not com-
plete and final until the Referring Expression
module has run. Also, for instance, at the
point where the Ordering module has run, there
are partially finished versions of three different
types of representation. It is clear from this that
the interfaces between the modules are more
complex than could be accounted for by just re-
ferring to the individual levels of representation
of RAGS. The ability to express combinations of
structures and partial s tructures was fundamen-
tal to the reimplementation of CGS. We high-
light below a few of the interesting places where
these features were used.

123

AbsSemRep

I-el ~ ~ SemRep

--(~------~_set{KBPredl ~ fun(Role,set(KBId)) I-el ~ 3 - e l
. . . . / X

el agent affected DR fun(Role,set(SemRep)) ~i / ~ ~ el?set(SemPredi~t A ~ . •
nresent set(KSld) 0 v • ~--"- / a g e n , / \a]Jec ,ea

el / \ el " ~ ¢J
/ "k~ present S~mRep SemRep

chart1 chart2

Figure 4: Combined Abstract Semantic Representation and Concrete Semantic Representation for
the output: "These two charts present information about house sales from data-set ts-1740"

C G $ a r o h i t a , ~ l u ' e R A G S representat/on$

II I l l IV ~' SAGE

- -

tuning II

-

I1 I11 iV

--'

I[I11 IV

. I ; 1 1 @

11 III I v v

.

II I11 IV V

. III1

II 111 IV V

l - - I I I I I
FUF

Figure 3: A RAGS view of the CGS system

5.1 R e f e r r i n g Expre s s ion G e n e r a t i o n

In many NLG systems, (nominal) referring ex-
pression generation is an operation that is in-
voked at a relatively late stage, after the struc-
ture of individual sentences is fairly well speci-
fied (at least semantically). However, referring
expression generation needs to go right back to
the original world model/knowledge base to se-
lect appropriate semantic content to realise a
particular conceptual item as an NP (whereas

all other content has been determined much ear-
lier). In fact, there seems to be no place to
put referring expression generation in a pipeline
without there being some resulting awkward-
ness.

In RAGS, pointers to conceptual items can
be included inside the first, "abstract", level of
semantic representation (AbsSemRep), which is
intended to correspond to an initial bundling of
conceptual material under semantic predicates.
On the other hand, the final, "concrete", level
of semantic representation (SemRep) is more
like a fully-fledged logical form and it is no
longer appropriate for conceptual material to
be included there. In the CGS reimplementa-
tion, it is necessary for the Aggregation mod-
ule to reason about the final high-level semantic
representation of sentences, which means that
this module must have access to "concrete" se-
mantic representations. The Referring Expres-
sion generation module does not run until later,
which means that these representations cannot
be complete.

Our way around this was to ensure that the
initial computation of concrete semantics from
abstract semantics (done as part of Aggrega-
tion here) left a record of the relationship by
including real ises arrows between correspond-
ing structures. That computation could not be
completed whenever it reached conceptual ma-
terial - at that point it left a "hole" (an ob-
ject with no further specification) in the con-
crete semantic representation linked back to the
conceptual material. When referring expression
was later invoked, by following the arrows in the

124

resulting mixed structure, it could tell exactly
which conceptual entity needed to be referred
to and where in the semantic structure the re-
sulting semantic expression should be placed.
Figure 4 shows the resulting arrangement for
one example CGS sentence. The dashed lines
indicate realises, i.e. non-local, arrows.

5.2 Handling Centering Information

The CGS Centering module reasons about the
entities that will be referred to in each sentence
and produces a representation which records the
forward and backward-looking centers (Grosz et
al., 1995). This representation is later used by
the Referring Expression generation module in
making pronominalisation decisions. This in-
formation could potentially also be used in the
Realisation module.

Since Centering is not directly producing re-
ferring expressions, its results have to sit around
until they can actually be used. This posed
a possible problem for us, because the RAGS
framework does not provide a specific level of
representation for Centering information and
therefore seems on first sight unable to account
for this information being communicated be-
tween modules. The solution to the problem
came when we realised that Centering informa-
tion is in fact a kind of abstract syntactic in-
formation. Although one might not expect ab-
stract syntactic structure to be determined until
the Realisation module (or perhaps slightly ear-
lier), the CGS system starts this computation in
the Centering module.

Thus in the reimplementation, the Centering
module computes (very partial) abstract syn-
tactic representations for the entities that will
eventually be realised as NPs. These represen-
tations basically just indicate the relevant Cen-
tering statuses using syntactic features. Figure
5 shows an example of the semantics for a typi-
cal output sentence and the two partial abstract
syntactic representations computed by the Cen-
tering module for what will be the two NPs in
that sentence 2. As before, dashed lines indicate
realises arrows. Of course, given the discussion
of the last section, the semantic representation
objects that are the source of these arrows are in
fact themselves linked back to conceptual enti-
ties by being the destination of realises arrows

2 FVM = Fea tu re Value Matr ix .

from them.
When the Referring Expression generation

module runs, it can recover the Centering infor-
mation by inspecting the partial syntactic rep-
resentations for the phrases it is supposed to
generate. These partial representations are then
further instantiated by, e.g., Lexical Choice at
later stages of the pipeline.

6 C o n c l u s i o n

The representation scheme we have proposed
here is designed specifically to support the re-
quirements of the current state-of-the-art NLG
systems, and our pilot implementation demon-
strates the practical applicability of the pro-
posal. Tangled, partial and mixed structures
are of obvious utility to any system with a flex-
ible control strategy and we have shown here
how the proposed representation scheme sup-
ports them. By recording the derivational his-
tory of computations, it also supports decisions
which partly depend on earlier stages of the
generation process (e.g., possibly, lexical choice)
and revision-based architectures which typically
make use of such information. We have shown
how the representation scheme might be the ba-
sis for an inter-module communication model,
the whiteboard, which supports a wide range of
processing strategies that require the represen-
tation of complex and evolving data dependem
cies. The fact that the whiteboard is cumula-
tive, or monotonic in a logical sense, means that
the whiteboard also supports reasoning about
the behaviour of NLG systems implemented in
terms of it. This is something that we would
like to exploit directly in the future.

The reimplementation of the CGS system
in the RAGS framework was a challenge to
the framework because it was a system that
had already been developed completely inde-
pendently. Even though we did not always un-
derstand the detailed motivation for the struc-
ture of CGS being as it was, within a short time
we reconstructed a working system with mod-
ules that corresponded closely to the original
CGS modules. The representation scheme we
have proposed here was a key ingredient in giv-
ing us the flexibility to achieve the particular
processing scheme used by CGS whilst remain-
ing faithful to the (relatively simple) RAGS
data model.

125

SemRep

fun(Role,setlSemRep))

sl S " ' .

t t ~ .

2 AbsSynRep "~ AbsSynRep _(:5 ~ ,

, , / \ \
ckward-looking-cemer ckward.looking-cenler

+ +

Figure 5: Arrangement of centering information for the ou tpu t sentence above

The representation scheme is useful in situa-
tions where modules need to be defined and im-
plemented to work with other modules, possibly
developed by different people. In such cases, the
representation scheme we propose permits pre-
cise definition of the interfaces of the modules,
even where they are not restricted to a single
'level' of representation. Even though the con-
trol s tructure of CGS is quite simple, we found
that the use of a centralised whiteboard was use-
ful in helping us to agree on interfaces and on
the exact contribution that each module should
be making. Ultimately, it is hoped that the use
of a scheme of this type will permit much more
widespread 'plug-and-play' among members of
the NLG community.

R e f e r e n c e s

Lynne Cahill, Christy Doran, Roger Evans, Chris
Mellish, Daniel Paiva, Mike Reape, Donia Scott,
and Neil Tipper. 1999a. In Search of a Reference
Architecture for NLG Systems. In Proceedings of
the 7th European Workshop on Natural Language
Generation, pages 77-85, Toulouse.

Lynne Cahill, Christy Doran, Roger Evans, Chris
Mellish, Daniel Paiva, Mike Reape, Donia Scott,
and Neil Tipper. 1999b. Towards a Reference
Architecture for Natural Language Genera-
tion Systems. Technical Report ITRI-99-14,
Information Technology Research Institute

(ITRI), University of Brighton. Available at
ht tp: / /www, i t r i .br ighton. ac. uk/proj ec t s / r ags .

Jo Calder, Roger Evans, Chris Mellish, and Mike
Reape. 1999. "Free choice" and templates: how
to get both at the same time. In "May I speak
freely?" Between templates and free choice in nat-
ural language generation, number D-99-01, pages
19-24. Saarbriicken.

B.J. Grosz, A.K. Joshi, and S. Weinstein. 1995.
Centering: a framework for modelling the local co-
herence of discourse. Computational Linguistics,
21 (2):203-226.

V. O. Mittal, S. Roth, J. D. Moore, J. Mattis, and
G. Carenini. 1995. Generating explanatory cap-
tions for information graphics. In Proceedings of
the 15th International Joint Conference on Ar-
tificial Intelligence (IJCAI'95), pages 1276-1283,
Montreal, Canada, August.

V. O. Mittal, J. D. Moore, G. Carenini, and S. Roth.
1998. Describing complex charts in natural lan-
guage: A caption generation system. Computa-
tional Linguistics, 24(3):431-468.

Ehud Reiter. 1994. Has a consensus NL generation
architecture appeared and is it psycholinguisti-
cally plausible? In Proceedings of the Seventh In-
ternational Workshop on Natural Language Gen-
eration, pages 163-170, Kennebunkport, Maine.

Steven F. Roth, John Kolojejchick, Joe Mattis, and
Jade Goldstein. 1994. Interactive graphic design
using automatic presentation knowledge. In Pro-
ceedings of CHI'9~: Human Factors in Computing
Systems, Boston, MA.

1 2 6

