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Abstract

Estimates of statistical power are widely used in applied research for purposes such as sample size calculations. This paper reviews

the benefits of power and sample size estimation and considers several problems with the use of power calculations in applied

research that result from misunderstandings or misapplications of statistical power. These problems include the use of retrospective

power calculations and standardized measures of effect size. Methods of increasing the power of proposed research that do not

involve merely increasing sample size (such as reduction in measurement error, increasing ‘dose’ of the independent variable and

optimizing the design) are noted. It is concluded that applied researchers should consider a broader range of factors (other than

sample size) that influence statistical power, and that the use of standardized measures of effect size should be avoided (except as

intermediate stages in prospective power or sample size calculations).

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper aims to promote understanding of
statistical power in the context of applied research. It
outlines the conceptual basis of statistical power
analyses, the case for statistical power and potential
problems or misunderstandings in or arising from its
application in applied research. These issues are
important because recent years have seen an increase
in the advocacy and application of statistical power, but
not necessarily in the propagation of good under-
standing or good practice.
The statistical power of a null hypothesis test is the

probability of that test reporting a statistically signifi-
cant effect for a real effect of a given magnitude. In
layman’s terms, if an effect has a certain size, how likely
are we to discover it? A more technical definition is that
it is the probability of avoiding a Type II error.1 An
understanding of statistical power supports two main
applications:
(i)
 to estimate the prospective power of a study, and
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to estimate the parameters required to achieve a
desired level of power for a proposed study.
This latter application is usually confined to
sample size calculation, but in principle can also be
used to estimate the effects of other parameters on
sample size.
To illustrate these applications consider the indepen-

dent t test. Cohen (1988, 1992) has published power and
sample size calculation methods for this and other
common situations.2 According to Cohen, statistical
power for the independent t test is a function of three
other parameters: sample size per group (N), significance
criterion (a), and standardized population effect size
(Cohen’s d). The standardized population effect size will
be discussed in more detail in Section 3.2. Increasing any
of these three parameters will increase the power of the
study. Large effects are easier to detect than small ones.
Large samples have smaller standard errors than small
ones (making the sampling distribution of the means
more tightly clustered around the population mean).
ohen’s method is widely taught and widely used in fields such as

hology, Medicine and Ergonomics. Independent t is chosen

use the calculations are relatively simple and is therefore

opriate to illustrate the key concepts. Power calculations for

complex designs are also often done by reducing the main

thesis or hypotheses to analogous tests of differences between

s (e.g., linear contrasts).
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Table 1

Statistical power as a function of two-tailed a, d and N per group for

the independent t test

Effect size (d) N per group a=0.01 a=0.05 a=0.10

0.2 10 0.0165 0.0708 0.1313

20 0.0251 0.0946 0.1647

40 0.0448 0.1431 0.2299

80 0.0928 0.2418 0.3518

0.4 10 0.0395 0.1355 0.2227

20 0.0862 0.2343 0.3456

40 0.2047 0.4235 0.5514

80 0.4711 0.7104 0.8090
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Larger a levels mean that the threshold for declaring a
difference significant is reduced (i.e., a smaller observed
difference in the means will be considered significant). A
more detailed account of how these parameters influence
power can be found in Howell (2002). A worked
example of a power calculation for independent t using
Cohen’s method is found in Appendix A. Table 1
illustrates how power of the independent t test is
influenced by these three parameters for an arbitrary
selection of values. While the details of the calculations
differ, similar relationships exist for other forms of
statistical inference.3
0.8 10 0.1717 0.3951 0.5308

20 0.4380 0.6934 0.7994

40 0.8226 0.9422 0.9714

80 0.9925 0.9989 0.9997

Note. All power calculations were made using GPower (Erdfelder et al.,

1996).
2. A case for statistical power

Many researchers now routinely use and report power
or sample size estimates in proposals and published
research. While there are good reasons to do so in many
cases, there are also reasons to be cautious about the
application of statistical power—particularly in applied
research. Before considering some of the problems with
statistical power, this article will first consider some of
the advantages.

2.1. Avoiding low power

Many studies lack sufficient power to have a high
probability of detecting the effects they are interested in.
Understanding the role of sample size and other factors
in contributing to statistical power allows researchers to
design studies that have a satisfactory probability of
detecting the effects of interest to the researchers.

2.2. Avoiding excessive power

In most applied research domains an over-powered
study may be just as undesirable as an under-powered
study. Increasing sample size, in particular, almost
always has financial and other costs associated with it.
Where the study involves exposing people to risk or
discomfort the researcher has an ethical dimension to
consider.4 In such situations, both excessively low power
and high power should be avoided. Participants should
3As an example, consider the relationship between independent t

and Pearson’s r. Calculating independent t is equivalent to calculating

r between the group (dummy coding group membership as a 0 or 1)

and the dependent variable (r itself is also a common measure of effect

size for power calculations).
4Researchers may also have professional and legal restrictions in

relation to studies of this type. It is increasingly common for those that

evaluate research proposals (e.g., ethics committees, government

agencies) to require sample size calculations for precisely the reasons

outlined here. A full treatment of the ethical issues facing practitioners

in relation to the power of a study is beyond the scope of this article,

but would take into account the difficulties of conducting ethical,

useful research while also satisfying the requirements of a client.
not be exposed to risk or discomfort such as extreme
temperatures, noise or vibration if the study is unlikely
to provide scientific or other benefits. Similarly,
researchers should not recruit sample sizes greater than
necessary for a reasonable level of power. As can be seen
in Table 1, the relationship between sample size and
power is not linear; larger samples provide diminishing
returns in terms of increased power. For example, with
a ¼ 0:10 and d ¼ 0:8 doubling sample size from 40 to 80
per group only increases power a couple of percentage
points.5

2.3. Planning ahead

The technical and non-technical facets of power
analysis require that researchers think carefully about
their research prior to collecting data. A good researcher
needs to define the main hypothesis or hypotheses that
they wish to test, reflect on any ethical issues raised by
the proposed experimental design and consider the costs
of both Type I and Type II errors (e.g., Wickens, 1998).
Careful consideration of these factors is an important
aspect of research. It seems reasonable to argue that
during statistical power estimation or sample size
calculation is a suitable stage in the research process
to review them. Furthermore, at least two aspects of a
study must be considered in detail before a power
calculation is possible.
The first aspect is the specific hypothesis to be tested.

Although many studies have multiple hypotheses it is
5Note that the odds of a Type II error will still decrease dramatically

in this situation from about 1 in 30 to about 1 in 300 (assuming

d ¼ 0:8), so it might still be acceptable to expose a further 40

participants to potential harm or discomfort if the consequences of a

Type II error are sufficiently undesirable.
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necessary to specify at least one principal hypothesis to
set the sample size or estimate the power of the proposed
study. The main hypotheses need to be specified in
sufficient detail to determine the type of statistical
procedure (and therefore the appropriate power calcula-
tions) to perform. For many studies a single power
calculation for the main research hypothesis will suffice.
If more than one hypothesis is essential to aims of the
research then several power calculations are necessary.
In any case, it is good practice to obtain a range of
power estimates for plausible parameter estimates
(perhaps laid out in a format similar to that of Table 1).
The second aspect is the standardized population

effect size the researcher wishes to be able to detect. One
common method for this is to run a pilot study
(something that is also useful for other reasons). A
successful pilot study (regardless of significance) should
provide reasonable estimates of the necessary popula-
tion parameters that contribute to the standardized
effect size (the larger the pilot study the more accurate
the estimates).
A pilot study is not always possible and an alternative

route to effect size estimation is available. This route
involves estimating not the actual effect size, but
estimating the magnitude of effect required to be
‘interesting’ or ‘important’ in the context of the research
(e.g., clinical importance, cost-efficiency and so forth).
Such effects are often termed to have practical

significance rather than statistical significance. Estimat-
ing an effect size that has practical importance in a field
holds an obvious attraction in the case of applied
research. For example, a researcher investigating the
effect of the interior noise on a drivers ability to estimate
the speed of a vehicle might decide that a difference of
6 km/h or greater will have practical importance (e.g., in
terms of road safety). A statistical procedure that
encourages researchers to plan ahead, specify clear
hypotheses, select the statistical procedures they are
likely to use and estimate the magnitude of effect that
they are able to detect should have a positive impact on
the conduct of research.
6Note that this relationship only applies to retrospective power

calculations where the other parameters that influence power (sample

size and alpha) are fixed. For more complex statistical models observed

power may no longer be a simple function of observed effect size—it

may involve additional parameters (although, as long as these are

estimated from the sample alone, even then observed power should be

interpreted with considerable caution).
3. Misunderstandings and misapplication of statistical

power

It should now be clear that there is a positive case for
power calculations to form part of the research process.
There are, however, several ways in which routine
application of statistical power is problematic (in
particular, for ergonomics and related fields). In some
cases these issues are due to straightforward (but
widespread) misapplications of statistical power and in
other cases to subtle misunderstandings of aspects of the
topic. This article will address these pitfalls under four
main headings: retrospective power, standardized effect
size, statistical power by numbers and design neglect.

3.1. Retrospective power

The most widely reported misapplication of statistical
power is in retrospective or post hoc power calculations
(Hoenig and Heisey, 2001; Lenth, 2001; Zumbo and
Hubley, 1998). A retrospective power calculation
attempts to determine the power of a study after data
has been collected and analyzed. This practice is
fundamentally flawed. The calculations are done by
estimating the population effect size using the observed
effect size among the sample data. Computer software
such as SPSS readily perform these calculations under
the guise of ‘‘observed power’’. Retrospective power and
prospective power (estimating power or sample size as
advocated in Section 2) are not the same things (Zumbo
and Hubley, 1998). In order to understand why retro-
spective power is a misapplication it is necessary to
consider how retrospective power estimates are some-
times used.
A researcher might calculate retrospective power and

arrive at a probability such as 0.85. This probability may
then be interpreted as the ability of the study to detect
significance (e.g., that the experiment would have
detected the effect 85 times out of 100). In other words,
retrospective power is frequently interpreted in much the
same way as prospective power. This is particularly
problematic when retrospective power calculations are
used to ‘enhance’ the interpretation of a significance test.
For example, low observed power may be used to argue
that a non-significant result reflects the low sample size
(rather than the absence of an important or interesting
effect). Similarly, high observed power may interpreted
as evidence that a significant effect is real or important.
The main reason why such interpretations of retro-
spective power are flawed is that the observed power is a
mere function of the observed effect size and hence of
the observed p value (Hoenig and Heisey, 2001).6 For
test statistics with approximately symmetrical distribu-
tions marginal significance (where p ¼ a) will equate to
observed power of approximately 0.5. In general,
statistical significance will result in high observed power
and non-significance will result in low observed power.
Worse still, if the observed power for non-significant
results is used as an indication of the strength of
evidence for the null hypothesis, it will erroneously
suggest that the lower a p value (and therefore the
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larger an observed effect) the stronger the evidence is in
favour of the null hypothesis (Frick, 1995; Hoenig and
Heisey, 2001; Lenth, 2001). For significant results
high observed power will act to (falsely) strengthen
the conclusions that the researcher has drawn. In
either case retrospective power calculations are highly
undesirable.
One motivation for the use of retrospective power

calculations is the desire to assess the strength of
evidence for a null hypothesis—something that standard
hypothesis tests are not designed for. Hoenig and Heisey
(2001) and Lenth (2001) both suggest test of equivalence

as alternatives to standard null hypothesis significance
testing when researchers wish to show treatments are
similar in their effects. A clear introduction to such
equivalence tests can be found in Dixon (1998), and an
inferential confidence interval approach that integrates
equivalence with traditional null hypothesis significance
tests has also been described (Tryon, 2001). The
equivalence approach shares similarities with the ap-
proach proposed by Murphy and Myors (1999) which
involves testing for a negligible effect size, rather than
for a precisely zero effect (note, however, that the
Murphy and Myors approach uses proportion of
variance explained—a standardized measure of effect).
In both cases the researcher needs to be able to provide a
sensible estimate of the size of effect that has practical
importance. Both approaches have their roots in applied
work (e.g., pharmacology and applied psychology,
respectively).

3.2. Standardized effect sizes

Standardized effect size estimates are central to power
and sample size calculations (though they are also
widely used in other areas). An unstandardized effect
size is simply the effect of interest expressed in terms of
units chosen by the researcher. For example, a mean
difference in the time to complete a task might be
expressed in seconds. Unstandardized effect sizes have
two obvious drawbacks:
(i)
 that changing the units (e.g., from seconds to
minutes) changes the value of the effect size, and
(ii)
 that comparing different types of effects is not easy
(e.g., how does a reduction of 23 s in task time
compare to a reduction of 6.7% in error rate?).
7 It can lead to overestimates in analyses incorporating several

measurements with different reliabilities. For example, an unreliably

measured covariate may lead to an overestimate of the effect of other

variables in analysis of covariance.
The common solution to this problem in statistics is
to re-express the effect size using ‘standard’ units
(derived from an estimate of the variability of the
population sampled). In the case of d and r the effect size
is expressed in terms of an estimate of the population
standard deviation. Cohen’s d is the mean difference
divided by the standard deviation, so a d of 0.5
represents a difference of one-half a population stan-
dard deviation between two means. A value of 0.2 for
Pearson’s r represents an increase in the dependent
variable of one-fifth of a standard deviation for every
s.d. increase in the predictor variable.
One well-known drawback of standardized effect sizes

is that they are not particularly meaningful to non-
statisticians. Ergonomists and other applied scientists
typically prefer to use units which are meaningful to
practitioners (Abelson, 1995). There is also a more
technical objection to the use of standardized effect
sizes. The standardized effect size is expressed in terms
of population variability (which statisticians tend to call
error in their models). This error can be thought of as
having two components: the population variability itself
and measurement error. Most of the time statistics can
ignore the difference between these two components and
treat them as a single source of ‘‘noise’’ in data. For
standardized effect sizes measurement error is a bigger
problem. Many applications of standardized effect size
implicitly assume that studies with similar standardized
effect sizes have effects of similar magnitudes. This need
not be the case—even if exactly the same things are
being measured (Lenth, 2001).
Consider two studies investigating ease of under-

standing of two versions of a computer manual. Assume
the studies are identical in every respect except that one
uses a manual stop watch to time people on sub-
activities in the study, while the other uses the time
stamp on a video recording. In both cases the mean
difference in time to look up information in the two
manuals is 23.4 s. Using the manual stop watch happens
to introduce more measurement error than using the
video time stamp (possibly because the video can be
replayed to obtain more reliable times). The standard
deviation of the difference is 51.2 s for the former study
and 59.7 s for the latter study. The standardized effect
size estimates (d) from the two studies are 0.39 and 0.46,
respectively. In this case the difference in effect size is
relatively modest (one effect is almost 20% larger than
the other), but in principle comparing effects from
studies with low and high degrees of measurement error
could produce extreme changes in standardized effect
sizes. Schmidt and Hunter (1996) suggested that for
many psychological measures error is ‘‘often in the
neighbourhood of 50%’’ (p. 200).
This is important, because the effectiveness of the

computer manuals (or whatever is being compared) isn’t
influenced by the error in our measurements. In general
the presence of measurement error leads us to under-
estimate the magnitude of effects if we use standardized
effect sizes.7 In the presence of measurement error,
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measures of explained variance such as r2 are under-
estimates of the true proportion of variance accounted
for by a variable. All other things being equal, r2 can at
best be thought of as a lower bound on the true
proportion of variance explained by an effect (O’Grady,
1982). Unstandardized effect size is not influenced by
measurement error in this way. This means, for example,
that if the mean number of accidents on a shift
decreased from 5 to 4 after the introduction of new
lighting, our best estimate of the reduction in accident
rate would be 20% regardless of measurement error. As
measurements become more accurate the influence of
measurement error on standardized effect sizes becomes
proportionately less important. Even so, it would be
na.ıve to think that similar standardized effects based on
measurements of different kinds represent magnitudes
of a similar size. In extreme cases, identical standardized
effect sizes could have real effects that differ by orders of
magnitude.8

3.3. Statistical power by numbers

Sample size and power calculations have begun
to become routine aspects of research. As a consequence
the focus of the calculations has increasingly fallen
on the numbers themselves rather than the aims
and context of the study. Cohen (1988) proposed
values of standardized effect sizes for small, medium
and large effects (d ¼ 0:2; 0.5 and 0.8) which are
widely used for statistical power calculations. The
adoption of these ‘‘canned’’ effect sizes (Lenth, 2001)
for calculations is far from good practice and, at best,
condoned as a last resort. The use of canned effect sizes
is particularly dangerous in applied research where there
is no reason to believe that they correspond to the
practical importance of an effect. In addition to the
problems with measurement error outlined in the
preceding section, the practical importance of an effect
depends on factors other than the effect size. A very
small effect can be very important if the effect in
question is highly prevalent or easy to influence
(Rosenthal and Rubin, 1979). In an industrial setting,
a small reduction in the time to perform a frequent
action (e.g., moving components from one location to
another) can have a dramatic effect on productivity and
profitability.
8 It is worth noting that advocates of meta-analysis (which uses

standardized effect sizes) recognize the importance of correcting

standardized effect sizes for measurement error (Schmidt and Hunter,

1996). In practice, many researchers do not have appropriate estimates

of the reliability of their measures available and therefore such

corrections are unlikely to be performed. Work on meta-analysis also

suggests that thinking of a single stable population effect size is also

misleading. It is probably more realistic to think of effects being

sampled from populations that have effects of differing magnitudes

(Field, 2003).
Many sample size calculations also aim for similar
levels of power: usually about 0.80. This is undesirable
because it is unlikely that this balances the risks of Type
I and Type II errors appropriately for all types of
research. As Type I and Type II errors have an
important ethical dimension (as well as cost implica-
tions) the level of power should be considered individu-
ally for each study.9 Power calculations are readily
manipulated to meet external targets (e.g., by increasing
the expected effect size until 0.80 power is achieved).
This may be a consequence of the setting of na.ıve targets
by journals or ethical advisory boards (Hoenig and
Heisey, 2001), but it is also a by-product of the perceived
difficulty of estimating effect sizes prior to collecting
data.

3.4. Design neglect

While the use of power and sample size calculations is,
in principle, an advance, there is a danger that routine
use of statistical power leads to neglect of other
important factors in the design of a study. The default
assumption in statistical power appears to be that
increased power is most easily achieved by manipulating
sample size (Cohen, 1992).10 Looking at Table 1 it
should be immediately obvious that changes in a and
standardized effect size are just as important in
increasing or decreasing power. Increasing a is generally
discouraged because it also increases the Type I error
rate, yet (as previously noted) if the cost of Type I errors
is low relative to Type II errors there is a strong case to
increase a in return for increased power.
The effect size of a study is often assumed to be

beyond the control of the researcher. A moment of
reflection should convince one otherwise. First, the size
of effect is often a function of the ‘dose’ of the
independent variable. This is most obvious when drugs
such as caffeine or alcohol are administered, but can
also apply to other research situations. Consider the
case of a researcher looking at the effects of heat stress
on performance. In this case the ‘dose’ could be
manipulated by the temperature of the thermal chamber
in which a participant is working. Second, as noted
above, the standardized effect size is also influenced by
measurement error. Decreasing measurement error will
increase the standardized effect size (though not the
9 It is possible to build the desired ratio of Type I and Type II errors

into a power calculation. GPower (free-to-download power calculation

software) terms this ‘‘compromise power’’ (Erdfelder et al., 1996).
10This assumption has an element of truth for academic research in

psychology and related disciplines where most studies rely on samples

of undergraduate students, but this is rarely the case in Ergonomics.

Even when a large potential pool of participants exists sample size may

be hard to manipulate because participation is time-consuming, costly

or because participants with appropriate characteristics (e.g., handed-

ness or stature) are hard to find.
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unstandardized effect) and therefore the power of
the study. In some cases measurement error is out of
the researcher’s control (e.g., determined by the preci-
sion of equipment). In other situations the precision of
the measurement is frequently over-looked, but rela-
tively easy to influence.
Consider a researcher who is looking at how the self-

reported rate of minor household accidents varies with
age. A common strategy would be to ask participants
which age band they fall in to (e.g., ‘‘35–44’’, ‘‘45–54’’
and so forth). If the reported rate of accidents changes
gradually with age (rather than being a step function
that rises with age band) then testing the relationship in
this way will have a higher measurement error (and
therefore lower power) than using the numerical age of
the participant.11 Researchers often take continuous
data and categorize it prior to analysis (e.g., using a
median split). This artificially inflates measurement error,
decreases standardized effect sizes and (amongst other
things) reduces power (Irwin and McClelland, 2001;
MacCallum et al., 2002). It is important to collect and
analyze data in a way that minimizes measurement error.
Design neglect applies not only to the parameters of

the power equations, but also to other aspects of study.
For example, researchers often use omnibus tests in
research (such as ANOVA or Chi-squared) rather than
specific tests of the hypotheses they are interested in—
such as focused contrasts (Judd et al., 1995; McClelland,
1997). In analysis of variance (ANOVA) conservative
post hoc tests such as Tukey’s HSD are often chosen by
default, even when the costs of Type I errors might be
negligible and when alternative procedures are readily
available (Howell, 2002). Power can also be increased
with repeated measures designs in situations where large
individual differences are expected (Allison et al., 1997).
Repeated measures analyses can also be used where
participants have been matched (e.g., where each
participant in one condition is paired with a participant
in another condition on the basis of potentially
influential confounding variables such as age, body
mass index or social class). A repeated measures analysis
controls for the correlation between pairs of observa-
tions (whether these correlations arise from measuring
the same participant several times or by measuring
participants who have been carefully matched). The
higher this correlation the more powerful the test
(Howell, 2002). A similar outcome can be achieved by
using analysis of covariance (ANCOVA) to control for
11There may be other reasons for using age bands such as this, such

as to facilitate confidentiality or to boost questionnaire return rates.

Note also that measurement error won’t be decreased by introducing

spurious precision: a 7 point response scale might have more precision

than a 2 or 3 point one, but there are probably few judgements that

people make that can be precisely differentiated on a 30 or 40 point

scale.
confounding variables (Allison et al., 1997). These latter
approaches are particularly useful for applied research.
Finally, the sampling strategy of a study can be

designed to maximize power. For example, a researcher
investigating a linear relationship between a predictor
and a response variable should sample more cases from
extreme levels of the predictor than from the mid-range.
The extreme values have greater leverage in the analysis
and provide more information about the slope of the
regression line. Sampling such cases therefore produces
more accurate parameter estimates and more powerful
tests (McClelland, 1997). Similar ‘‘optimal’’ designs are
available to detect non-linear effects (such as cubic or
quartic trends) or for a compromise between two
patterns (e.g., to maximize power to detect either a
linear or cubic trend). McClelland (1997) notes that
many studies reduce their chances of detecting the
effects they are interested in by distributing participants
equally between values of the independent variable or by
dispersing participants between more values of an
independent variable than necessary. It might appear
that these design principles are difficult to implement
outside laboratory research. This is not the case. Staged
screening can also be used to sample optimal or near-
optimal proportions of participants (Allison et al., 1997;
McClelland, 1997).
4. Conclusions

Estimating statistical power or required sample size
prior to data collection is good practice in research. It
ceases to be good practice, though, when power is
calculated retrospectively (either in place of a prospec-
tive power calculation or in attempt to add to the
interpretation of a significant or non-significant result).
Researchers need to consider a number of issues
carefully when making use of power or sample size
calculations:
(1)
 It is important to derive meaningful estimates of
effect sizes of practical significance or importance.
Applied researchers are often in a position to use
their knowledge of their field or their relationship
with practitioners to arrive at these estimates (e.g.,
international standards dealing with safety, or
differences in efficiency that would impact on the
profitability of a process).
(2)
 Standardised effect sizes should normally be re-
served for the intermediate stages in calculations
and unstandardized effect sizes preferred where
meaningful units can be communicated.
(3)
 Applied researchers should use prospective power
calculations where possible to make their findings
more useful and their research more efficient. Such
calculations need careful planning and should be
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based on a clear understanding of the range of
design factors that influence power. Particular
emphasis should be placed on reducing measure-
ment error, the ‘dose’ of the independent variable
and the proportions in which participants are
sampled from or allocated to conditions (Allison
et al., 1997; McClelland, 1997).
If power calculations are not thought through care-
fully the estimates obtained from them will be unreliable
and the decisions they make may be flawed, unethical or
both.
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Appendix A

Sample size for independent t: a worked example

There are three main steps to the sample size
calculation using Cohen’s method (Cohen, 1988; Ho-
well, 2002).

Step 1: Select values for a and power. These are
required to look up the value of the non-centrality
parameter d. (Cohen’s method simplifies calculation by
using tables of non-centrality parameters common to a
range of different statistical procedures.)
Consider a study to compare the effects of a low dose

of alcohol on passenger judgements of vehicle speed. As
it is an exploratory study where the intervention is not
deemed harmful and the cost of Type I error is
considered relatively low, a is set leniently at 0.10 and
the desired power is set high at 0.90. A two-tailed value
of a is appropriate (as neither increases nor decreases in
estimates can be discounted a priori). These values are
used to look up tabulated values of d (e.g., Howell, 2002,
p. 743). Selecting the column corresponding to two-
tailed a ¼ 0:10 it is possible to scan down until the value
0.90 for power (in the body of the table) is reached. This
value lies on the row corresponding to d ¼ 2:90:
Step 2: Determine the to-be-detected effect size: d.
Assume that a difference between the group means of

6.0 km/h would have practical importance. It would
therefore be desirable to detect an effect of this size.
Using pilot data the population standard deviation is
estimated as 16.0 km/h. This produces a target value of
d ¼ 6=16 ¼ 0:375: (Note that the use of the pilot study
to estimate the mean difference is avoided).

Step 3: Calculate N per group using the formula for
independent t.

N ¼ 2ðd=dÞ2:

Substituting the values of d and d from earlier steps
produces the following calculation:

N per group ¼ 2ð2:90=0:375Þ2 ¼ 2ð7:433Þ2

¼ 2� 59:80 ¼ 119:61:

Rounding up (to help avoid underestimating the
required sample size) it is estimated that 120 participants
per group (240 in total) are required to have a 90%
chance of detecting a difference of 6 km/h in the speed
judgements.
This example illustrates the value of conducting

sample size calculations early in the research planning
stage. In this case the total sample size is substantial.
The researcher might consider changes to the study that
will reduce the required sample size such as an
alternative design (e.g., repeated measures) or increasing
d (e.g., by obtaining more reliable measurements).
Using software for power calculations (such as

GPower) eliminates the need for tables and provides
slightly more accurate sample size estimates. For
example, GPower calculates d as 2.9408 and total
sample size as 246.
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