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We distinguish two fundamentally different ways of learning; one which can occur in the absence of metacognition but may lead to its emergence, the other which is reliant on metacognition from the outset. The first method is shared with animals and new born babies: By this method, one learns using representations whose function is to indicate how the world IS. The second method involves using representations that can indicate possibilities or counterfactuals. According to Perner (1991), the latter representational capacity arises at around 18 months in humans, when we acquire the ability to use ‘multiple models’ of the same object. This capacity makes possible some of the requirements of episodic memory (the same object simultaneously considered as it was and as it is) and of hypothetical reasoning (the same object considered in the different ways it might be). 


The first method can be illustrated by the learning in a standard connectionist network (see e.g. Shanks, 2005a). The input activation pattern functions to indicate what is there; the weights function to indicate the enduring statistical structure in the environment. When the presented stimulus changes, the input pattern changes; when the relevant statistical structure changes, the asymptotic weights change. Both activation and weight representations function to track how reality is. Perner called such representations ‘single updating models’: each update over-writes the last. The second method can be illustrated by hypothesis testing. In this case, representations are explicitly marked as possible rather than factual. We can entertain any hypothesis within the limits of our imagination (for example, more than first-order statistical properties) and consider it confirmed in as little as one trial, or never, depending on the limits of our reasoning (and data). 


The two methods are related to the distinction between conscious and unconscious knowledge i.e., between knowledge in the presence and absence of metacognition. According to Dienes and Perner (1999), knowledge being conscious requires not only making explicit the possibility/fact distinction we have been discussing, but also making explicit one’s attitude of knowing. That is, for a mental state of knowing to be conscious, one should represent that one is in that state (Rosenthal, 1987). However, the correspondence between these dualities - conscious vs. unconscious knowledge and single-updating vs. possibility-explicit learning - is not one-to-one. We will investigate their relation in this chapter. 


In assessing whether knowledge is conscious or unconscious it is important to distinguish first order and second order mental states. A first order mental state is a state about the world. The state is a conscious state when we are aware of being in it (cf. Carruthers, 2000; Rosenthal, 2005). Thus, the state is conscious when we have another mental state, a second order state, which asserts we are in the first order state. Showing a person can accurately respond to objective properties in the world shows the presence of a first order state; it shows knowledge but not awareness of knowing. Showing a person can accurately tell what mental state they are in shows the presence of a second order state; it shows knowing that one knows and hence conscious knowledge or meta-knowledge. These considerations form the basis of our methodology for determining the conscious status of knowledge states (for more discussion see Dienes, 2008).


The artificial grammar learning paradigm (Reber, 1967) provides a convenient task in which learning using a single updating model or the use of hypotheticals can be explored. Participants are asked to look at or memorise strings of letters. The order of the letters within each string obeys a complex set of rules, but the strings look more-or-less random. After a few minutes exposure participants are told about the presence of rules and asked to classify new strings as obeying the rules or not. Participants can make these well-formedness judgments reasonably well (typically with about 65% accuracy) even while complaining that they have ruined the experiment because they did not know anything relevant. Such learning has been modelled with various connectionist networks (see Cleeremans & Dienes, 2008, for a review). Reber (e.g. 1976) has also informed participants of the existence of the rules in the training phase. When deliberately trying to search for rules, participants consider possible rule structures and can acquire conscious knowledge of the structure.


 It can be shown that participants merely looking at or memorising strings in the training phase acquire knowledge they do not know they have. Participants can be asked on each classification trial to state whether they guessed or knew to some degree. When participants say they are guessing, classification accuracy is typically above baseline, showing unconscious knowledge by the guessing criterion (Dienes, Altmann, Kwan, & Goode, 1995). Dienes et al (1995) argued the guessing criterion was useful in identifying two different methods of learning. Plausibly the weights of a connectionist network can update without us knowing we are learning; and predictions can be made on the basis of those weights without us being aware of having knowledge. Conversely, most of the time when we make possibilities explicit we are prone to represent the relevant mental state explicitly as well; so gaining knowledge by reasoning with hypotheticals typically leads us to be aware we have knowledge (Dienes & Perner, 1999). These considerations suggest the guessing criterion may be useful in identifying which method of learning - single updating model vs. possibility-explicit representations – is being employed.


However, there is no logical reason why we may not recognise the answers produced by a connectionist network as being knowledge. In the connectionist networks of artificial grammar learning to date, the network produces a continuous output that reflects the degree to which the structure of the test item matches the structure of the training items. This output represents an objective property of the world and hence constitutes a first-order state; we will call this state (first-order) familiarity. Familiarity enables people to make worldly discriminations, namely, in the typical artificial grammar learning paradigm, whether a test item is grammatical or not. Familiarity might also give rise to various second order states. For example, first-order familiarity may also be used by the processes that make higher order thoughts (the HOT box) for generating confidence judgments about those discriminations. When a judgment of grammaticality is given to a string with particularly high familiarity, the judgment can be given a high confidence (and likewise for a judgment of non-grammaticality for a string with very low familiarity). In this case the participant has conscious knowledge of the grammaticality of the string; they know the grammaticality of the string and know that they know. Similarly, one may become aware of knowing the string is familiar to a certain degree, so the familiarity itself can be a conscious state. Consistently, both Cleeremans and Jimenez (2002) and Shanks (2005) have proposed ‘single process’ models (i.e. connectionist models) that lead to conscious knowledge.


The content of the conscious knowledge gained about grammaticality judgments is simply the judgment that the string is (or is not) grammatical. Dienes and Scott (2005) called this judgment knowledge. But the knowledge embedded in the weights can remain unconscious even when judgment knowledge is conscious. The knowledge embedded in the weights is knowledge of the structure of the strings as a whole. Similarly, in learning by hypothesis testing, the hypotheses contain knowledge of the structure of the strings. Dienes and Scott introduced a simple way of determining whether people were aware of their structural knowledge. On each trial participants indicated whether they made their decision without either conscious judgment or structural knowledge (guessing), based on some conscious judgment knowledge but without conscious structural knowledge (intuition), or based on both conscious judgment and structural knowledge (rules or memory). In brief, we believe one method of learning, the connectionist single-updating model, produces unconscious structural knowledge, and judgment knowledge that may or may not be conscious. Conversely, the other method of learning, involving the consideration of possibilities, typically produces both structural and judgment knowledge that are both conscious.


We propose two methods of learning but not that they operate in isolation (cf. Sun, 2002). For the remainder of the chapter we will spell out their interactions. First we give a flow diagram of the processes involved in learning and judging test strings when participants learn about their common structure either incidentally (by simply looking at or memorising the strings) or deliberately (by actively seeking to discern their common structure). We then consider the processes by which unconscious knowledge can become conscious and hence the process by which metaknowledge emerges. Finally, we discuss in detail recent evidence for the proposed model.

1 A Dual Process Model of Artificial Grammar Learning


Figure 1 provides a simplified illustration of the proposed dual process model of artificial grammar learning. It is not intended to capture all relationships but rather to outline the key processes. The model identifies separate processes proposed to be active during either training or test phases and according to whether learning is either incidental or deliberate. It demonstrates how deliberate (possibility-explicit) and incidental (single-updating model) learning processes might interact and how knowledge may make the transition from unconscious to conscious. The different routes to acquiring knowledge and the processes involved are first described before the evidence for each is presented. 

1.1 Incidental Learning

1.1.1 Training Phase. 


Incidental learning proceeds by a passive familiarisation with the training strings (i.e. without consciously intending to determine their common structure). Though participants are sometimes encouraged to memorise the strings during training, there can be considerable learning even where participants are directed to simply look at each string for a few seconds. This passive exposure is anticipated to result in familiarity with various common features of the training strings (e.g. Higham, Vokey, & Pritchard, 2000; Kinder, Shanks, Cock, & Tunney, 2003; Servan Schreiber & Anderson, 1990). These features will include localised characteristics such as bigrams and trigrams, as well as global characteristics such as the repetition structure. The focus of attention determines the input to the learning network and hence what features are learnt and abstracted. The familiarity of any such feature will roughly reflect the frequency with which it occurs.
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Figure 1. A dual process model of artificial grammar learning

1.1.2 Test Phase. 


Participants are set the task of distinguishing grammatical from non-grammatical test strings. They are informed that the training strings obeyed a complex set of rules and that, while all the test strings are new, exactly half will obey the same rules. At this stage participants are familiar with the common features of the training strings but have no means to know how similar those training strings will be to either valid or invalid test strings. All the strings are compiled from the same letter set and many features may be common to both. In the tests we have conducted, after each classification of a string as grammatical or non-grammatical, participants gave their confidence in the classification. This can be used to assess the conscious status of judgment knowledge, as we have indicated. Participants also stated whether the basis of the classification was use of random responding, intuition, familiarity, rules or recollection. This attribution assesses the conscious status of the structural knowledge 

While some judgments may be made based on specific features that participants either recall seeing or not seeing during training and hence be attributed to rules or recollection, the primary basis for decisions after incidental learning is familiarity. Familiarity reflects the unconscious structural knowledge embedded in the weights of the network: A stimulus or part of a stimulus being familiar does not entail consciously knowing why it is familiar (Norman, Price, & Duff, 2006). Consider the common experience of feeling someone has changed in appearance in some way; they are strangely unfamiliar, without knowing why. The familiarity itself also need not be conscious. However, participants are often (though not always) aware of familiarity and that it is a basis for their decisions. 


When familiarity is a basis of decisions, a logical strategy would be to endorse strings with familiarity greater than the mean as grammatical and those less as non-grammatical; the mean being the best estimate for the intersection between the familiarity distributions of grammatical and non-grammatical strings. This is illustrated in figure 2. Further, as long as the network was adapted to the structures it was learning, if confidence in grammatical decisions increased with increasing familiarity and confidence in non-grammatical decisions increased with decreasing familiarity, confidence would appropriately track accuracy. The process by which ‘guess’ vs. ‘sure’ confidence judgments become more tightly linked to familiarity we call calibration. Calibration requires obtaining ever more reliable estimates of mean familiarity, and also an assessment of the reliability of that estimate. If the mean familiarity estimated is uncertain, confidence in the grammaticality decision should also reflect this uncertainty. Thus, initially confidence in grammaticality decisions may be low when the mean familiarity is not taken to be estimated reliably. Lau (2008), also adopting a higher order thought theory, describes a similar calibration process (of estimating signal and noise distributions in visual perception) as being the basis of conscious perception.
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Figure 2. Familiarity based grammaticality judgments and their relation to confidence

As the test phase proceeds, exposure to the test strings will permit the updating estimate of the mean familiarity to be taken as ever more reliable. This is represented in figure 1 by the familiarity calibration process. The resulting calibrated familiarity gives rise to conscious judgment knowledge (with unconscious structural knowledge). The assessed reliability of mean familiarity permits participants to have confidence when classifying some of the strings. Initially confidence will arise only when classifying strings furthest from the mean. As the assessed reliability improves, however, the minimum familiarity difference associated with confidence (the confidence threshold) will gradually shrink (see figure 2 inset). In instances where the mean estimate is poorly bounded and a string’s familiarity is not highly distinctive, participants may experience confidence in their judgment without being aware of employing familiarity to make it. Judgments of this sort would logically be attributed to intuition. As the mean estimate improves, however, it will become increasingly apparent to participants that their judgments and confidence reflect differences in familiarity.


Once participants are able to distinguish the likely grammaticality of the test strings based on their familiarity, they can employ that knowledge to derive conscious structural knowledge. This is illustrated in figure 1 by the test phase rule development and validation process. As test strings are encountered participants may identify features which are common to those they classify as grammatical or non-grammatical. That is, they can use the test strings to discern the possible objective bases for their familiarity differences and in doing so derive conscious structural knowledge. Familiarity is initially a unidimensional continuous output returned from the current focus of attention. Thus, whole strings can be divided into classes when the whole string is attended (grammatical and non-grammatical for high and low familiarity strings) and this classification can be used to test rules about the difference between grammatical and non-grammatical strings.  For example, if I notice that none of the strings I have classified as grammatical contain ‘XXX’, I can subsequently use this explicit fragment knowledge to make judgments that are independent of familiarity. Knowledge of this sort is most likely to be attributed to the use of rules i.e. I have a rule that strings containing this trigram are non-grammatical. However, the same knowledge may also feasibly be attributed to recollection e.g. I don’t recall seeing this trigram in any of the training strings. Indeed if a simple rule is repeatedly found to be applicable then that may itself increase a participant’s conviction that the fragment did or did not appear during training. This, in turn, would increase the likelihood of subsequent judgments being attributed to the use of recollection (evidence for a trend from rule to recollection attributions will be presented subsequently). 


Just as one can determine the familiarity of whole strings by attending to them, attention to different parts of strings can determine the relative familiarity of those parts. Further, after sufficient exposure to training materials, attention may be drawn to parts of strings with high differential familiarity. The notion that participants may ultimately be capable of distinguishing more or less familiar string fragments is consistent with their noted ability to underline grammatical elements (Dulany, Carlson, & Dewey, 1984). Crucially, the differential familiarity of individual features, while not essential to hypothesising about rules, would logically provide a considerable advantage (Evans & Over, 1999; Perruchet & Vinter, 2002). For example, if the fragment ABB in the string XABBCCD feels more familiar than other elements, then it would be logical to use it to derive a rule or to attempt to memorise it. Attention being drawn to features will naturally suggest rules to the participant. Attention being drawn to a part of a string does not in itself constitute conscious knowledge of that structure (it does not per se entail knowing that one knows anything); but when the rule development mechanism makes use of the attentional focus, conscious knowledge readily follows. When the structure is not about chunks but more global properties of a string it should be harder to explicate the structural knowledge (e.g. Kuhn & Dienes, 2005, who demonstrated implicit learning of musical inversions).

1.2 Deliberate Learning

1.2.1 Training Phase. 


In deliberate learning participants are aware that training strings embody a complex set of rules and are actively seeking to discern them. This is illustrated in figure 1 by the training phase rule development process which utilises the ability of participants to consider the possible as well as the actual. Participants hypothesise potential rules and memorise what they believe to be pertinent fragments. The development of rules and the memorising of fragments cannot be wholly separated as rules will most often require that fragments be committed to memory. For example, common rules might include which letters can start or end a string, or which combinations of letters can or can’t be repeated. The process is directly dependent on attentional resources, with participants focusing on what they take to be the most relevant features of the strings. However, the process is not entirely separable from familiarity. Firstly, those aspects of a string receiving attention in order to derive rules will doubtless become the most familiar. In addition, to the extent that attention is imperfect during learning, some degree of incidental learning through passive familiarisation will also occur. This is indicated in figure 1 by the dashed line connecting deliberate learning with the familiarisation process and will be shown to be predictably related to personality differences.

1.2.2 Test Phase. 


Participants will start the test phase with hypothesised rules and memorised string fragments from the training phase rule development process, and with some uncalibrated familiarity arising through incidental learning. The majority of conscious structural knowledge expressed after deliberate learning is the result of rule development during training. However, existing knowledge will be refined and new knowledge developed during the test phase. This is envisioned as occurring via two mechanisms. Firstly, to the extent that incidental learning takes place during training the subsequent familiarity calibration and rule development associated with that process will again be active. Secondly, as participants seek to classify the test strings they will validate or invalidate the rules acquired during training. 


The test phase rule development and validation processes are interrelated and hence depicted as a single process in figure 1. Rule validation takes place by at least two methods. In its simplest form rules derived during training but subsequently found to apply to either too many or too few test strings will be dropped. For example, participants may memorise the limited set of starting letters used in training strings only to subsequently discover that all the test strings conform to this constraint. The second means of validation results from the interaction of deliberate and incidental learning processes. The calibrated familiarity differences driving test-phase rule-development under incidental learning may also be used to validate rules derived during deliberate learning. If a codified rule indicates that a string is valid and yet the familiarity of strings conforming to that rule indicates otherwise then participants may re-examine the rule in question. 

2. Mapping the Transition from Unconscious to Conscious as a Metacognitive Process

The proposed model postulates a process whereby, under incidental learning, there is a transition from unconscious to conscious knowledge. Early grammaticality judgments reflect unconscious judgement knowledge drawing on unconscious structural knowledge; accurate judgments made without confidence. Over time conscious judgement knowledge emerges through a process of familiarity calibration; judgments subsequently being attributed to intuition and familiarity. Finally, conscious structural knowledge emerges as participants discern the objective bases for the familiarity differences; resulting in judgments attributed to rules and recollection.

 
We combined data from two separate experiments (N = 60) (a pilot study and experiment 1 of Scott & Dienes, submitted) to examine the transition in participants’ self reported basis for their grammaticality judgements. Participants memorised 48 training strings (16 strings repeated three times) for five seconds each and subsequently classified each of 32 test strings twice in consecutive blocks. None of the test strings appeared in training but exactly half conformed to the training grammar. Participants were asked to classify the strings as grammatical or non-grammatical and to indicate the basis for their judgments according to the following decision strategies: random selection, familiarity, intuition, rules, or recollection. 


We examined how the decision strategies used to classify each of the test strings changed between the two time points. The phi correlation coefficient was computed for the relationship between each decision strategy at time one and each alternative strategy at time two. Figure 3 shows all the significant positive associations resulting from those analyses. The decision strategies are arranged in order of increasing meta-knowledge from left to right. Attributing a response to random selection is taken to indicate the absence of both conscious judgment knowledge and conscious structural knowledge. Attribution of responses to either intuition or familiarity indicates conscious judgment knowledge in the absence of conscious structural knowledge i.e. the absence of knowledge of the specific features which make the strings grammatical or non-grammatical. These attributions differ in that intuition responses indicate that participants are unaware of any basis for their confidence, whereas familiarity attributions indicate that they are aware of using the overall familiarity of the strings to distinguish them. Finally, responses attributed to either rules or recollection indicate both the presence of conscious judgment knowledge and conscious structural knowledge. The mean accuracy for judgments attributed to random selection was 60%, significantly greater than chance indicating unconscious judgment knowledge as measured by the guessing criterion.
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Figure 3. Change in reported basis for grammaticality judgments made for the same test strings classified at two consecutive time points. All positive associations are shown with phi correlation coefficients and associated probabilities. N = 60. Degrees of freedom for individual associations range between 20 and 56.


The change in reported basis for participants’ grammaticality judgments is consistent with the proposed model. The changes in decision strategies show a clear pattern of increasing metacognition. There is a transition in reported decision strategy from random selection to intuition, from intuition to familiarity, and from familiarity to both rules and recollection. Strings classified on the basis of rules are also subsequently likely to be classified based on recollection. The association between rules and intuition suggests that when rules are found to be unreliable participants may subsequently rely on intuition. Similarly, recollection flows back to familiarity, familiarity to intuition, and intuition to random selection. 

3. Familiarity as the Basis of Incidental Learning


The proposed model holds that subjective familiarity is the primary source of knowledge under incidental learning conditions. Research has long suggested that familiarity plays an important role in AGL. However, its role has generally only been evaluated indirectly. The contribution of familiarity has variously been inferred from: the relationship between grammaticality judgment and fragment frequency (Knowlton & Squire, 1996; Meulemans & Van der Linden, 1997; Servan Schreiber & Anderson, 1990); the conformance of signal detection analyses to familiarity based models (Kinder & Assmann, 2000; Lotz & Kinder, 2006); and the effects on performance resulting from fluency manipulations (Kinder, Shanks, Cock, & Tunney, 2003). 


We sought to adopt a more direct means of evaluating both the basis of subjective familiarity in AGL and its role in making grammaticality judgments (Scott & Dienes, 2008). In a series of three AGL experiments we had participants provide subjective ratings of familiarity for each test string in addition to providing grammaticality judgments, confidence ratings, and reports of the subjective basis for their decisions. The results were replicated across all three experiments and provide strong support for the proposed model.


Consistent with the suggested primary use of familiarity for grammaticality decisions both grammaticality judgments and confidence ratings were reliably predicted by familiarity ratings. More familiar strings were substantially more likely to be endorsed as grammatical (r = .73), and their associated confidence was predicted by the extent to which their rated familiarity differed from the mean (r = .48). Signal detection models assume overlapping probability distributions of some continuous variable; our approach permits those distributions to be examined directly. Figure 4 shows the probability distribution of z-transformed familiarity for grammatical and non-grammatical strings. These distributions are consistent with the observed decision processes using an estimate of the mean z-familiarity as their criterion.
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Figure 4. The probability distribution of z-transformed familiarity scores for grammatical and non-grammatical strings.


The subjective familiarity ratings were themselves reliably predicted by objective measures of similarity between training and test strings. In combination the similarity measures accounted for 20% of the variation in familiarity. Similarity measures included statistics evaluating the frequency with which fragments of test strings appeared during training, as well as global similarities such as their repetition structure. Importantly, measures of both fragment frequency and repetition structure were significant predictors of familiarity. Lotz and Kinder (2006) demonstrated that ROCs remain consistent with a familiarity based process for AGL under transfer conditions – where the letters used to construct the grammar strings are changed between training and test. The contribution of repetition structure to subjective familiarity is consistent with that finding as repetition structure is preserved when surface features are changed. Thus subjective familiarity can account for accurate grammaticality judgments made under transfer conditions.


It is standard to associate familiarity with fluency in the memory literature. Jacoby and Dallas (1981) proposed that when processing an item with relative ease, or fluently, people may attribute this to the item having been seen before and experience it as being more familiar. Similarly, in AGL, test strings containing features in common with the training strings may be processed more fluently resulting in greater familiarity. Perceptual processing fluency as a potential basis for grammaticality judgments in AGL was experimentally explored by Buchner (1994) and Kinder Shanks, Cock and Tunney (2003). However, neither study incorporated a measure of subjective familiarity which would be necessary to assess their relative contributions.


In a sequence of four experiments we evaluated the relationship between perceptual processing fluency and subjective familiarity ratings in AGL, and the capacity of each to predict grammaticality judgments (Scott & Dienes, submitted). Perceptual fluency was found to have a small influence on ratings of subjective familiarity (r = .07). However, when the complexity of grammatical and non-grammatical strings was counterbalanced, perceptual fluency was found to be unrelated to grammaticality. As such, perceptual fluency could not account for the accuracy of grammaticality judgments. In contrast, the relationship between familiarity ratings and grammaticality was substantial (r = .40), and the relationship between familiarity and grammaticality judgements replicated that found in the previous sequence of experiments (r = .73). The observed relationships between grammaticality and processing fluency (as measured by reaction times in a perceptual clarification task), and between grammaticality and familiarity are illustrated in figure 5. In sum, while we believe familiarity plays a major role in the expression of implicit knowledge, we do not believe that it is derived from perceptual processing fluency. 
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Figure 5. Mean familiarity ratings and reaction times (from a perceptual clarification task) for grammatical and non-grammatical test strings.
4. Different Sources of Conscious Structural Knowledge


The dual process model proposes that both the nature of conscious structural knowledge and the time at which it is derived, differs according to the learning condition. Under deliberate learning conditions conscious structural knowledge is predicted to arise primarily from hypothesising about rules during training. In contrast, conscious structural knowledge under incidental learning conditions is thought to develop during the test phase and to be fairly directly derived from familiarity differences. Once input has been attended, learning and application of knowledge by a standard connectionist network does not on the face of it require executive resources. Conversely, the often metacognitive process of considering multiple models plausibly requires working memory. Conscious structural knowledge acquired during deliberate learning should be both more reliant on executive resources available during training and result in knowledge less directly related to familiarity. 


Dienes and Scott (2005) examined the effect of divided attention during the deliberate and incidental learning of artificial grammars. During training, participants were either instructed to memorise the strings or made aware of the presence of rules and asked to try to identify them. In addition, half of the participants were required to divide their attention between the learning task and the generation of random numbers in time with a metronome. At test, participants were required to make grammaticality judgements and to report the subjective basis of those judgements by attributing them to one of four decision strategies – guess, intuition, rules, or memory. Analysis revealed a significant three-way interaction between learning condition, attentional demands, and type of decision strategy on the accuracy of participants’ grammaticality judgments (figure 6). Divided attention significantly reduced the accuracy of only those judgments attributed to sources indicating conscious structural knowledge (rules and memory), and did so only under deliberate learning conditions. The results are consistent with the development of conscious structural knowledge being reliant on attentional resources during training for deliberate but not for incidental learning. 
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Figure 6. The effect of attentional demands, learning condition, and the reported basis for grammaticality judgements on the percentage of grammaticality judgments correct.

The same pattern of results was observed where the time available to process training strings was restricted. A separate analysis of experiments 1 and 3 from Scott and Dienes (2008), revealed that when a blank delay between training strings was removed the development of conscious structural knowledge was impeded under deliberate but not incidental learning conditions. At test, both the number and accuracy of attributions attributed to the rule and memory categories were significantly reduced in the absence of a delay between training strings. The accuracy of other attributions was not significantly affected (figure 7).


In common with the effect of divided attention, the absence of a delay appears also to reduce participants’ ability to derive accurate rules and consolidate recollective memories, thus impeding the development of conscious structural knowledge under deliberate learning conditions. This effect has a direct parallel in the serial reaction-time task (SRT). Destrebecqz and Cleeremans (2001) employed a SRT while manipulating the time interval between providing a response to one stimulus and the appearance of the next stimulus - the response stimulus interval (RSI). The assumption behind the manipulation is that a shorter RSI gives less time for stimulus processing, which selectively impairs the development of explicit representations. Participants were asked to generate a sequence that was not the training sequence. Destrebecqz and Cleeremans found that, with an RSI of zero (RSI-0), participants were not able to comply with these instructions, whereas with an RSI of 250ms (RSI-250) they were able to refrain from generating the training sequence at above baseline levels. They interpreted these findings as indicating that learning is implicit at RSI-0, but explicit at RSI-250. Although Wilkinson & Shanks (2004) failed to replicate this finding, Fu, Fu, and Dienes (2008) both replicated the original finding and provided an account for Wilkinson & Shanks’ failure to do so.
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†Implicit attributions are those not considered to indicate the presence of conscious structural knowledge: guess and intuition in experiment 1, and random selection, intuition, and familiarity in experiment 3. 
Figure 7. The effect of a delay between training strings, learning condition, and the reported basis for grammaticality judgements on the percentage of grammaticality judgments correct.

Evidence for a qualitative difference in the nature of conscious structural knowledge derived under deliberate and incidental conditions is provided by Scott & Dienes (2008). Each of three experiments used familiarity ratings, grammaticality judgments, and the reported basis for those judgments as indicated by their attribution to guess, intuition, rules, or recollection (or random selection, intuition, familiarity, rules and recollection in experiment 3). Multiple regression was used to examine the relative contribution made to grammaticality judgements of familiarity (as captured by familiarity ratings) and grammaticality (whether or not the strings were grammatical). These analyses were conducted separately for responses attributed to each of the decision strategies. Familiarity was found to make a significant contribution irrespective of learning condition or the reported basis of grammaticality judgments. In contrast, the contribution of grammaticality, controlling for familiarity, revealed a significant interaction between learning condition and type of decision strategy (figure 8). A reliable additional contribution of grammaticality over and above that of familiarity was only observed in the deliberate learning condition, and then only for judgments attributed to rule and memory attributions. Consistent with the proposed model, conscious structural knowledge derived under incidental conditions appears to be fairly directly derived from familiarity differences. In contrast, conscious structural knowledge derived under deliberate learning conditions reflects knowledge of the grammar that is additional to that derived from familiarity.
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†Implicit attributions are those not considered to indicate the presence of conscious structural knowledge: guess and intuition in experiments 1 and 2, and random selection, intuition, and familiarity in experiment 3. 
Figure 8. The effect of learning condition and reported basis of grammaticality judgments on the contribution that grammaticality (controlling for familiarity) makes to grammaticality judgments.


The existence of two alternative routes to the development of conscious structural knowledge may explain how, where rules are complex, explicit attempts to learn can actually impede performance (Reber & Lewis, 1977). Conscious attempts to hypothesise about rules prior to extended exposure would not be guided by differential familiarity and may consequently result in more inaccurate inferences. In contrast, rules devised during the test phase after incidental learning will benefit from the knowledge inherent in familiarity differences. 

5. Familiarity Calibration and the Emergence of Metacognition

It has been established that the familiarity of strings relative to the mean familiarity reliably predicts both participants’ judgments and their confidence in those judgments. Their confidence, and hence their conscious judgment knowledge, is thought to develop during the test phase by the process of familiarity calibration (cf. Redington, Friend, & Chater, 1996). As calibration proceeds, the amount by which familiarity has to differ from its mean before participants feel they are not guessing should shrink. That is, their confidence thresholds should decrease over trials. 


Scott and Dienes (2008; experiment 2) examined the proposed calibration process and whether it could be accelerated by positive feedback. 160 participants trained under either incidental or deliberate learning conditions provided grammaticality judgments, confidence ratings, and reported the basis for their judgments in the usual way; attributing them to guess, intuition, rules, or memory. In addition, half of the participants rated the familiarity of each test string. The experimental manipulation took place throughout the test phase with half of the participants given positive feedback intended to encourage them to be more confident. Feedback took the form of on-screen warnings that they had thus far been under-confident in their grammaticality judgments; this was given irrespective of actual performance.


An estimate of the confidence threshold, as illustrated in the figure 2, was obtained from the standard deviation of familiarity ratings for judgments where participants indicated having no confidence (guesses).
 Consistent with the model, the width of participants’ confidence thresholds was found to relate to the presence of conscious judgment knowledge. Specifically, the width estimated from the entire test-phase was significantly positively related to both the number and accuracy of judgments attributed to guessing (r = .20 and r = .21 respectively), and negatively related to the number of judgments attributed to intuition (r = -.34). To examine changes over time the confidence threshold was estimated at three time-points; for the first, second, and final twenty grammaticality judgments. Here again, the results were consistent with predictions. The mean confidence threshold reduced over time and was also substantially lower for participants given positive feedback (Figure 9). Furthermore, consistent with the adoption of a narrower confidence threshold, both the number and accuracy of judgments attributed to guessing were significantly lower for participants encouraged to be more confident.
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Figure 9. The reduction in confidence threshold over time for participants encouraged to be more confident (warned they are being under confident) or not given encouragement.


These results strongly support the notion that conscious judgment knowledge emerges as familiarity differences are calibrated during the test phase (cf. Lau, 2008, who discusses a similar process for perception). The full model further proposes that knowledge gained in this way is then exploited to derive conscious structural knowledge in the form of rules. This process would predict that as the calibration process proceeds more grammaticality judgements will be attributed to rules. The same experiment reported above revealed exactly this pattern. After incidental exposure to the training strings, the number of grammaticality judgments attributed to rules increased significantly over precisely the same time-frame that the confidence threshold was observed to decrease.


We contend that the familiarity calibration process in AGL is just one example of a more general process whereby metacognition emerges as our assessed predictive ability breaches some threshold. It is proposed that we continually, and unconsciously, attempt to predict our environment, with feedback permitting those predictions to be evaluated and refined (c.f. Gray, 1995). At some threshold of assessed predictive ability the higher order representation of that ability is established and meta-cognition results. Prior to that threshold, predictions will influence behaviour without conscious awareness; this is an adaptive process as many predictions can only be evaluated if acted upon (albeit acted upon unconsciously). By this account unconscious knowledge will be apparent when our predictions are above chance but below our predictive threshold, or where they are above that threshold but where there has been insufficient feedback for predictive ability to be assessed. In the context of AGL the automatic predictions relate to the frequency with which test strings with differing degrees of familiarity will be encountered, and feedback is gained as more test strings are seen. However, this same framework – the higher order representation of predictive ability - can be applied to any conscious experience, with the variety of phenomenology mirroring the multitude of predictive contexts (c.f. Chrisley and Parthemore, 2007). For example, conscious vision can be seen as the assessed ability to predict how sensory input to the visual system changes over time or with our movements (O’Regan & Noe, 2001).
6. The Conscious and Unconscious use of Familiarity


The findings presented thus far provide compelling evidence that familiarity plays a central role in guiding participants’ grammaticality judgments. However, participants’ awareness of familiarity and of employing it has not been addressed. Familiarity is an ambiguous word. On the one hand, it can refer to a first-order state, namely knowing that an object or its features are old to some extent (the output of the learning network). In this sense, a participant indicating the familiarity of a stimulus may be guessing its objective properties and in that sense, the guesses may reflect unconscious knowledge of stimulus properties in the same way that the guesses of a blindsight patient do. On the other hand, familiarity also refers to a feeling we can have about a mental state. In this sense it implies a second-order state: An awareness of familiarity as a first-order state. We asked participants to rate the feeling of familiarity elicited by each test string. Prima facie then the familiarity ratings we obtained measure conscious familiarity. However, we have not tested this claim thoroughly. Just as a blindsight patient asked to indicate the direction in which they felt an object move may sometimes (in cases where they had no feeling) guess the direction instead of reporting it, it is also possible our participants did the same. This will be a matter for future testing.


Given familiarity itself is conscious, an additional question is whether participants are aware that familiarity played a role in their grammaticality decisions. As Chomsky (1957) indicated, grammaticality and first-order familiarity are quite separate properties (in the famous example, ‘colourless dreams sleep furiously’ may be very unfamiliar to a person yet judged as completely grammatical). Participants need not consciously assume that grammaticality decisions were or should be based on familiarity. Scott & Dienes (2008 experiment 3) explored participants’ awareness of using familiarity to make grammaticality judgments. After training under incidental or deliberate conditions, participants made grammaticality judgments and reported confidence ratings in the usual way. When reporting the subjective basis for their grammaticality judgments, they were asked to choose from random selection, intuition, familiarity, rules, and recollection. Participants were required to report their confidence and the basis for each grammaticality judgment separately. Thus participants were able to report using systematic strategies, such as familiarity, to make grammaticality judgments while simultaneously indicating that they had no confidence in those decisions. The proportion of grammaticality judgments attributed to familiarity increased significantly over time, consistent with awareness of its use increasing as familiarity calibration proceeded. Familiarity was also the most commonly reported decision strategy, on average reported as the basis for 33% of grammaticality judgments, including 20% of judgments made without confidence. That is, participants were often aware of exploiting familiarity to make grammaticality judgments and did so even when they lacked confidence in those decisions. However, the same experiment also provided evidence that familiarity may at times influence participants’ judgements without their awareness. Controlling for the contribution of grammaticality (whether or not a string was grammatical) familiarity ratings were found to reliably predict participants’ grammaticality judgments even for those judgments reportedly based on selecting responses at random (β = .29). This surprising result has since been replicated in each of four additional experiments with a mean familiarity β of .43 (Scott & Dienes, submitted). In sum, participants often are aware of using familiarity to make grammaticality decisions, but sometimes are not.


The use of familiarity in AGL is also consistent with findings in the serial reaction-time task. Norman , Price, Duff, and Mentzoni (2007) employed a SRT where participants completed learning, recognition, and generation tasks and were subsequently required to indicate the feelings they had experienced. The most frequently selected response was a “feeling of familiarity”, with a 56% probability of this feeling being reported after any given task. The use of subjective familiarity in both AGL and SRT studies suggests that feelings of familiarity may be central to implicit learning in general rather than specific to a particular experimental framework.

7. Metacognition and Individual Differences in Learning Style

The concepts of implicit and explicit learning in cognitive psychology are paralleled by numerous concepts in the personality and social psychology literatures. Among others, these include the experiential and rational learning styles proposed by Epstein (1983). A number of self-report measures have developed around these concepts and have demonstrated behavioural implications in contexts ranging from impression formation (Cacioppo & Petty, 1982) to non-optimal responses in games of chance (Pacini & Epstein, 1999). If the parallel between these concepts and those of implicit and explicit learning is the result of more than superficial similarity then these, or similar measures, might be expected to predict behavioural differences in AGL. The interaction between implicit and explicit processes in the model we propose prevents simple performance predictions. However, it was anticipated that the different routes by which participants acquire metaknowledge may reflect their preferred learning styles.


Though not reported in that paper, experiment 1 of Scott & Dienes (2008) used the rational-experiential inventory devised by Epstein et al (1996) to measure participants’ experiential and rational learning styles and assess how their scores related to responding in an AGL task. The inventory contains two sub-measures; a modified form of the need for cognition (NFC) scale evaluating analytical-rational thinking, and the faith in intuition (FI) scale evaluating intuitive-experiential thinking. Persons high versus low in NFC report greater inclination towards, and ability in, rational-analytical tasks. In contrast those high versus low in FI report greater inclination towards, and ability in intuitive-experiential responding. The two measures are uncorrelated, so it is feasible for individuals to be high or low on either or both measures. In theory the two learning styles should facilitate different processes in the proposed AGL model. The strong analytical ability associated with higher NFC should aid the development of conscious structural knowledge by assisting the rule development processes. The strong intuitive processing associated with higher FI should aid the development of conscious judgment knowledge based on feelings (intuition attributions). Consistent with these simple predictions, significant positive correlations were found between both NFC and the number of judgments attributed to rules (r = .25), and between FI and the number of judgments attributed to intuition (r = .23).


Norman et al (2006) explored similar concepts using the personality measure openness to feelings which was chosen to reflect the ability to introspect on what they term fringe feelings of consciousness. These fringe feelings include feelings of rightness or wrongness as well as feelings of familiarity. They found that the familiarity ratings of participants higher in openness to feelings more accurately differentiated old from new sequence fragments in an SRT task (though contrast Norman et al 2007). Importantly, this difference was observed with RSI-0 but not with RSI-250. That is, the benefit was apparent only under the condition intended to impede the development of explicit representations (RSI-0), which is broadly equivalent to an incidental learning condition in AGL.

 
We were intrigued to examine whether participants’ inclination towards an experiential learning style, as measured by FI, was similarly related to a greater sensitivity to feelings of familiarity. Consistent with Norman et al (2006), a relationship was only observed under incidental learning conditions where FI was significantly related to participants average familiarity ratings (r = .49). The higher a participant’s FI the more familiar they found the test strings. Furthermore, again under incidental learning conditions, FI was significantly related to how well participants’ familiarity ratings reflected the objective similarity of training and test strings (r = .46).
 Our model would predict that an increased sensitivity to familiarity, like that observed with higher FI, should permit the adoption of a narrower confidence threshold. This in turn would increase conscious judgment knowledge and thus account for the greater proportion of judgments attributed to intuition. Indeed higher FI was associated with narrower confidence thresholds but this relationship was only marginal (r = -.25, p = .08). 


The results presented are from a single study and need to be replicated before strong conclusions can be drawn. However, their consistency with related research suggests a potentially fruitful reconciliation between dual process accounts of learning and similarly dichotomised theories of personality.
 

8. Discussion


In this chapter we have presented an account of learning artificial grammars based on two processes or methods: learning by a single updating model that has the function to reflect how reality is, and learning by the use of considering possibilities. The first method results in unconscious structural knowledge and is what we take the term implicit learning to refer to: The process of acquiring implicit structural knowledge. The process does produce unconscious knowledge, but not exclusively so: It can produce conscious judgment knowledge and ultimately conscious structural knowledge too, because the outputs of the process are available to the mechanisms that produce conscious knowledge. We suggest that the output of the process is familiarity, which is often experienced consciously and can more or less directly guide the development of conscious structural knowledge.


Our account is consistent with that of Reber (e.g. 1989), who regarded the results of implicit learning to be largely but not exclusively conscious; and yet our account is also largely consistent with Dulany (e.g. 1997) and Shanks (e.g. 2005b), barring a terminological difference. Both Dulany and Shanks regarded implicit learning as an associative process which gives rise to conscious feelings. According to Dulany’s account, the associative processes themselves are not conscious (being processes rather than states), and so structural knowledge implicit in their operation can evoke certain feelings, such as familiarity. Similarly, Shanks conceives implicit learning as being based on connectionist processes. For Dulany, and also Perruchet and Vinter (2002), mental states are conscious even if we are not conscious of them; for these authors, first-order familiarity and the accurate guesses of blind sight patients constitute conscious knowledge (even in the absence of any relevant higher order thoughts). If one wishes to view the possession of relevant higher order thoughts as indicating introspective or reflective consciousness rather than conscious awareness per se, then various claims of ours concerning making knowledge conscious can be read as claims concerning making knowledge reflectively conscious rather than conscious per se. For the purposes of this chapter that would be fine; our point is not to quibble over mere words. (Nonetheless, we believe higher order thought theories provide a more natural use of words.)  The aim is not to classify states as conscious or not for the sake of it; but to identify meaningful psychological processes. We hope the review of research here shows that considering the conscious status of judgment and structural knowledge may allow us to identify two different learning processes and their interaction. Indeed, it is possible that contradictory results in the implicit learning literature, for example concerning the effects that secondary tasks demanding executive resources have on implicit learning (cf Jiménez, 2003), may be rendered consistent when measures of the conscious status of structural knowledge are taken to dissociate underlying processes more cleanly (see also Dienes, 2008, for further examples and discussion). 

Our use of the term familiarity is not the same as some other authors, such as Jacoby. Jacoby (e.g. 1991) defined familiarity as the memory process that occurs regardless of intentions. We define it as the continuous indication of oldness that emerges from a learning network and can be reflected in ratings of familiarity given by a person. Whether or not such familiarity is sensitive to intentions is then a contingent rather than definitional issue. In fact, there is evidence that familiarity is sensitive to the intentions of the person. Wan, Dienes and Fu (2008) had subjects train on two grammars and then asked them to endorse strings from only one of them. Subjects also rated how familiar each string felt and reported whether or not they used familiarity to make their grammatically judgment. Subjects proved able to endorse the strings of one grammar and ignore the strings from the other. Importantly, when subjects said they were using familiarity, the rated familiarity for test strings consistent with their chosen grammar was greater than that for strings from the other grammar. Familiarity, subjectively defined, was sensitive to intention. Hence, counter-intuitively, familiarity can be used as a basis for metacognitive control in deciding whether one body of knowledge applies or another. Similarly, it may be that people can focus on a certain level of structure (e.g. global or local: Tanaka  et al, 2008) and have familiarity reflect the level attended to. This is a matter for future testing.

Many authors in the implicit learning literature who favour single system models (e.g.  Shanks, 2005b; Jiménez & Cleeremans, 2002) focus on the fact that the learning network that produces unconscious structural knowledge can produce conscious judgment knowledge (and ultimately conscious structural knowledge). However, we do not believe they would object that the considering of possibilities is rather different from the way a first-order connectionist network attempts to represent just how reality is (compare Shanks & St John’s, 1994, distinction between exemplar-based and rule-based learning). Nor in turn do we object that ultimately the brain is a neural network that as one system accomplishes both types of learning. The challenge is not to count systems but to specify in detail the components and their interactions. In this vein, we have argued for the fruitfulness of distinguishing learning by a connectionist network that just represents reality from learning by the consideration of hypotheticals. 
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� Familiarity ratings were standardised (z-transformed).


� For each participant, familiarity was regressed on seven measures of the structural similarity between training and test strings. The adjusted r2 from those regressions was used as the measure of how well familiarity was predicted by structural similarity. FI was significantly related to the adjusted r2 values.





� FI was also found to correlate with reported experience of déjà vu (ρ(80) = .25, p = .024) consistent with the theory that déjà vu experiences may result from misattributed familiarity (Jacoby & Whitehouse, 1989).
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Basic Tables

		Experiment 8

		Ave Fam

				M		SE

		Grammatical		63		1.9

		Ungrammatical		44		2.3

		Ave RT

				M		SE

		Grammatical		8223		256

		Ungrammatical		8278		265

		Ave ER

				M		SE

		Grammatical		0.74		0.02

		Ungrammatical		0.36		0.02

		N = 40

		Experiment 9

		ANOVA on Fam by Gramt and Rate

				Slow				Fast

				M		SE		M		SE

		Grammatical		62		1.6		63		1.6

		Ungrammatical		36		2.0		38		2.1

		ANOVA on ER by Gramt and Rate

				Slow				Fast

				M		SE		M		SE

		Grammatical		0.72		0.02		0.72		0.02

		Ungrammatical		0.30		0.02		0.29		0.03

		ANOVA % Res by rate and attribution

				Slow				Fast

				M		SE		M		SE

		Random		8		1.8		8		1.7

		Intuition		26		2.7		25		2.9

		Familiarity		34		3.4		35		3.5

		Rules		14		2.4		15		2.7

		Memory		18		2.7		18		2.1

		Experiment 10

		ANOVA on Fam by Gramt and Rate

				Slow				Fast

				M		SE		M		SE

		Grammatical		55		1.7		57		1.2

		Ungrammatical		39		1.8		40		1.9

		ANOVA on ER by Gramt and Rate

				Slow				Fast

				M		SE		M		SE

		Grammatical		0.64		0.02		0.68		0.02

		Ungrammatical		0.31		0.02		0.32		0.02

		ANOVA % Res by rate and attribution

				Slow				Fast

				M		SE		M		SE

		Random		11		2.2		12		2.1

		Intuition		31		2.3		31		2.4

		Familiarity		35		2.7		36		2.4

		Rules		11		2.0		10		1.8

		Memory		11		1.8		11		1.9





Exp 8 (1)

		Ave Fam

				M		SE (of Diff)

		Grammatical		63		1.6

		Ungrammatical		44		1.6

		Ave RT

				M		SE (of Diff)

		Grammatical		8223		44

		Ungrammatical		8278		44

		Ave ER

				M		SE (of Diff)

		Grammatical		0.74		0.03

		Ungrammatical		0.36		0.03

		N = 40





Exp 9 (3)

		ANOVA on Fam by Gramt and Rate										** SE are of Diff between fast and slow										ANOVA on ER by Gramt and Rate

				Slow				Fast																Slow				Fast

				M		SE		M		SE														M		SE		M		SE

		Grammatical		62		1.1		63		1.1												Grammatical		0.72		0.02		0.72		0.02

		Ungrammatical		36		1.0		38		1.0												Ungrammatical		0.30		0.02		0.29		0.02

		ANOVA % Res by rate and attribution

				Slow				Fast

				M		SE		M		SE

		Random		8		1.8		8		1.7

		Intuition		26		2.7		25		2.9

		Familiarity		34		3.4		35		3.5

		Rules		14		2.4		15		2.7

		Memory		18		2.7		18		2.1





Exp 10 (4)

		ANOVA on Fam by Gramt and Rate								** SE are of Diff between fast and slow								ANOVA on ER by Gramt and Rate

				Slow				Fast												Slow				Fast

				M		SE		M		SE										M		SE		M		SE

		Grammatical		55		1.1		57		1.1								Grammatical		0.64		0.02		0.68		0.02

		Ungrammatical		39		1.1		40		1.1								Ungrammatical		0.31		0.02		0.32		0.02

				Excludes aware participants

		ANOVA % Res by rate and attribution

				Slow				Fast

				M		SE		M		SE

		Random		11		2.2		12		2.1

		Intuition		31		2.3		31		2.4

		Familiarity		35		2.7		36		2.4

		Rules		11		2.0		10		1.8

		Memory		11		1.8		11		1.9





Graphs

		Experiment 1: Not manipulated

		Experiment 3: Manipulated with strings present for judgments

		Experiment 4: Manipulated with strings seen only for clarification task.
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Basic Tables

		Experiment 8

		Ave Fam

				M		SE

		Grammatical		63		1.9

		Ungrammatical		44		2.3

		Ave RT

				M		SE

		Grammatical		8223		256

		Ungrammatical		8278		265

		Ave ER

				M		SE

		Grammatical		0.74		0.02

		Ungrammatical		0.36		0.02

		N = 40

		Experiment 9

		ANOVA on Fam by Gramt and Rate

				Slow				Fast

				M		SE		M		SE

		Grammatical		62		1.6		63		1.6

		Ungrammatical		36		2.0		38		2.1

		ANOVA on ER by Gramt and Rate

				Slow				Fast

				M		SE		M		SE

		Grammatical		0.72		0.02		0.72		0.02

		Ungrammatical		0.30		0.02		0.29		0.03

		ANOVA % Res by rate and attribution

				Slow				Fast

				M		SE		M		SE

		Random		8		1.8		8		1.7

		Intuition		26		2.7		25		2.9

		Familiarity		34		3.4		35		3.5

		Rules		14		2.4		15		2.7

		Memory		18		2.7		18		2.1

		Experiment 10

		ANOVA on Fam by Gramt and Rate

				Slow				Fast

				M		SE		M		SE

		Grammatical		55		1.7		57		1.2

		Ungrammatical		39		1.8		40		1.9

		ANOVA on ER by Gramt and Rate

				Slow				Fast

				M		SE		M		SE

		Grammatical		0.64		0.02		0.68		0.02

		Ungrammatical		0.31		0.02		0.32		0.02

		ANOVA % Res by rate and attribution

				Slow				Fast

				M		SE		M		SE

		Random		11		2.2		12		2.1

		Intuition		31		2.3		31		2.4

		Familiarity		35		2.7		36		2.4

		Rules		11		2.0		10		1.8

		Memory		11		1.8		11		1.9





Exp 8 (1)

		Ave Fam

				M		SE (of Diff)

		Grammatical		63		1.6

		Ungrammatical		44		1.6

		Ave RT

				M		SE (of Diff)

		Grammatical		8223		44

		Ungrammatical		8278		44

		Ave ER

				M		SE (of Diff)

		Grammatical		0.74		0.03

		Ungrammatical		0.36		0.03

		N = 40





Exp 9 (3)

		ANOVA on Fam by Gramt and Rate										** SE are of Diff between fast and slow										ANOVA on ER by Gramt and Rate

				Slow				Fast																Slow				Fast

				M		SE		M		SE														M		SE		M		SE

		Grammatical		62		1.1		63		1.1												Grammatical		0.72		0.02		0.72		0.02

		Ungrammatical		36		1.0		38		1.0												Ungrammatical		0.30		0.02		0.29		0.02

		ANOVA % Res by rate and attribution

				Slow				Fast

				M		SE		M		SE

		Random		8		1.8		8		1.7

		Intuition		26		2.7		25		2.9

		Familiarity		34		3.4		35		3.5

		Rules		14		2.4		15		2.7

		Memory		18		2.7		18		2.1





Exp 10 (4)

		ANOVA on Fam by Gramt and Rate								** SE are of Diff between fast and slow								ANOVA on ER by Gramt and Rate

				Slow				Fast												Slow				Fast

				M		SE		M		SE										M		SE		M		SE

		Grammatical		55		1.1		57		1.1								Grammatical		0.64		0.02		0.68		0.02

		Ungrammatical		39		1.1		40		1.1								Ungrammatical		0.31		0.02		0.32		0.02

				Excludes aware participants

		ANOVA % Res by rate and attribution

				Slow				Fast

				M		SE		M		SE

		Random		11		2.2		12		2.1

		Intuition		31		2.3		31		2.4

		Familiarity		35		2.7		36		2.4

		Rules		11		2.0		10		1.8

		Memory		11		1.8		11		1.9





Graphs

		Experiment 1: Not manipulated

		Experiment 3: Manipulated with strings present for judgments

		Experiment 4: Manipulated with strings seen only for clarification task.
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