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Abstract 

Researchers often conclude an effect is absent when a null-hypothesis significance test yields 

a non-significant p-value. However, it is neither logically nor statistically correct to conclude 

an effect is absent when a hypothesis test is not significant. We present two methods to 

evaluate the presence or absence of effects: Equivalence testing (based on frequentist 

statistics) and Bayes factors (based on Bayesian statistics). In four examples from the 

gerontology literature we illustrate different ways to specify alternative models that can be 

used to reject the presence of a meaningful or predicted effect in hypothesis tests. We provide 

detailed explanations of how to calculate, report, and interpret Bayes factors and equivalence 

tests. We also discuss how to design informative studies that can provide support for a null 

model or for the absence of a meaningful effect. The conceptual differences between Bayes 

factors and equivalence tests are discussed, and we also note when and why they might lead 

to similar or different inferences in practice. It is important that researchers are able to falsify 

predictions or can quantify the support for predicted null-effects. Bayes factors and 

equivalence tests provide useful statistical tools to improve inferences about null effects. 
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Researchers are often interested in the presence or the absence of a predicted effect. 

Theories often predict there will differences between groups (e.g., older versus younger 

individuals), or correlations between variables. If such predicted patterns are absent in the 

data, the study fails to support the theoretical prediction. Other times, theories might predict 

the absence of an effect. In both these cases, it is important for researchers to base their 

conclusion that the data they have collected are in line with the absence of an effect on solid 

statistical arguments. 

How can we conclude an effect is absent based on a statistical test of a hypothesis? 

All too often, non-significance (e.g., p > .05, for the conventional alpha level of 5%) is used 

as the basis for a claim that no effect has been observed. Unfortunately, it is not statistically 

or logically correct to conclude the absence of an effect when a non-significant effect has 

been observed (e.g. Dienes, 2016; Altman & Bland, 1995; Rogers, Howard, & Vessey, 1993). 

As an extreme example to illustrate the problem, imagine we ask two young individuals and 

two older individuals how trustworthy they would rate an interaction partner who did not 

reciprocate in a trust game. When we compare the trustworthiness ratings between these two 

groups in a statistical test, the difference turns out to be exactly zero, and there is no reason to 

conclude trustworthiness ratings differ between younger and older individuals. But is it really 

enough data to conclude the absence of an age difference in trustworthiness ratings? And if 

this is not enough data, what would be? 

To conclude the absence of an effect, we need to quantify what 'an effect' would look 

like. It might be tempting to state that anything that is not zero qualifies as an effect, but this 

approach is problematic. First, this definition includes tiny effects (e.g., a correlation of r = 

0.00001) which is practically impossible to distinguish from 0, because doing so would 

require billions of observations. Second, theories should ideally predict effects that fall within 

a specified range. Effects that are too small or too large should not be taken as support for a 
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theoretical prediction. For example, fluid cognitive abilities decline more rapidly in old age 

than crystallized abilities (Ritchie et al., 2016). A decline of 1 standard deviation in reaction 

time differences (which measure fluid cognitive abilities) from age 70 to age 80 in healthy 

adults could be a large, but valid prediction, while the same prediction would be implausibly 

large for verbal ability tasks. Finally, some effects are practically insignificant, or too small 

to be deemed worthwhile. For example, if a proven intervention exists to accelerate the 

rehabilitation process after a hip fracture, a new intervention that requires similar resources 

might only be worthwhile if it leads to a larger effect than the current intervention. 

If we are interested in the absence of an effect, or want to falsify our predictions 

regarding the presence of an effect, it is essential to specify not just what our data would look 

like when the null hypothesis is true, but to also specify what the data would look like when 

the alternative hypothesis is true. By comparing the data against both models, we can draw 

valid conclusions about the presence and the absence of an effect. Researchers should always 

aim to design studies that yield informative information when an effect is present, as well as 

when an effect is absent (see the section on how to justify sample sizes in the discussion). We 

present two methods for evaluating the presence or absence of effects. One approach is based 

on frequentist statistics and known as equivalence testing (Schuirman, 1987), or more 

generally as inference by confidence intervals (Westlake, 1972). Researchers specify 

equivalence bounds (a lower and an upper value that reflect the smallest effect size of interest 

in a two-sided test) and test whether they can reject effects that are deemed large enough to 

be considered meaningful. The second method is based on Bayesian statistics and is known 

as the Bayes factor (Jeffreys, 1939). The Bayes factor measures the strength of evidence for 

one model (e.g., the null hypothesis) relative to another model (e.g., the alternative 

hypothesis); it is the amount by which one’s belief in one hypothesis versus another should 

change after having collected data .  
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Bayes factors and equivalence tests give answers to slightly different questions. An 

equivalence test answers the question 'Can I reject the presence of an effect I would consider 

interesting, without being wrong too often in the long run?' A Bayes factor answers the 

question 'given the data I have observed, how much more (or less) likely has the alternative 

model become, compared to the null model?' The choice between frequentist and Bayesian 

statistics is sometimes framed as an ideological decision. Specifically, should one be 

interested in quantifying evidence (Bayesian) or in controlling error rates in the long run 

(frequentist)? Here, we present both approaches as research questions one might want to ask. 

We will focus on how to ask and answer both questions, and discuss when both questions are 

sensible. 

 

Testing predictions using Bayes factors and equivalence tests 

Most researchers are used to specifying and testing a null model, which describes 

what the data should look like when there is no effect. Both Bayes factors and equivalence 

tests additionally require researchers to specify an alternative model which describes what the 

data should look like when there is an effect. Bayes factors provide a continuous measure of 

relative support for one model over another model. Each model represents the probability of 

effect sizes assuming the hypothesis is correct (before the data have been taken into account), 

and is known as the prior model. After collecting data, a Bayes factor of e.g. 5 suggests that 

the data are 5 times more likely given the alternative hypothesis than given the null 

hypothesis, and a Bayes factor of 0.2 (1/5) suggests the data are five times more likely given 

the null hypothesis than the alternative hypothesis. Whether or not this should lead one to 

believe the null hypothesis is now more likely to be true than the alternative hypothesis 

depends on one’s prior belief in either hypothesis. When testing whether people can predict 

the future, a Bayes factor of 5 in favor of the alternative model might increase your belief in 
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precognition somewhat, but you might still think the probability of precognition is extremely 

low (see e.g. Dienes, 2008). Typically, in psychology or gerontology, one can ignore these 

prior probabilities of the theories (which can vary between people), and simply communicate 

the Bayes factor, which represents the evidence provided by the data, and let readers apply 

the Bayes factor to update their individual prior beliefs.  

A common approach when calculating a Bayes factor is to specify the null hypothesis 

as a point (e.g., a difference of exactly zero), while the alternative model is a specification of 

the probability distribution of the effect a theory would predict. Specifying the two models is 

a scientific, not a statistical question, and requires careful thought about the research question 

one is asking (as we illustrate in the examples in this article). A Bayes factor provides a 

continuous measure of how much more likely the data are under the alternative hypothesis 

compared to the null hypothesis. A Bayes factor of 1 means the data are equally likely under 

both models, Bayes factors between 0 and 1 indicate the data are relatively more likely under 

the null hypothesis, and Bayes factors larger than 1 indicate the data are relatively more likely 

under the alternative hypothesis. For a more detailed discussion of Bayes factors, see Dienes 

(2014), Kass and Raftery (1995), or Morey, Romeijn, and Rouder (2016). 

Equivalence tests allow researchers to reject the presence of effects as large or larger 

than a specified size while controlling error rates. To perform an equivalence test, researchers 

first have to determine a 'smallest effect size of interest', the smallest effect they deem 

meaningful. We then use this effect size to set a lower equivalence bound ΔL (in a negative 

direction) and an upper equivalence bound ΔU (in a positive direction). Next, we simply 

perform two one-sided significance tests against each of these equivalence bounds to examine 

whether we can reject the presence of a meaningful effect. This approach reverses the 

question that is asked in a null-hypothesis significance test: Instead of examining whether we 

can reject an effect of zero, an equivalence test examines whether we can reject effects that 
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are as extreme or more extreme than our smallest effect size of interest (in technical terms, 

each bound serves as a null hypothesis in a one-sided test, and a region around zero becomes 

the alternative hypothesis, see Figure 1). If we can reject both equivalence bounds (i.e., the 

first one-sided test shows that the effect in our data is significantly larger than ΔL, and the 

second one-sided test shows that it is significantly smaller than ΔU), then we can conclude 

that the effect is equivalent (see Figure 1).  

 

Figure 1. Visualization of null hypothesis (H0) and alternative hypothesis (H1) for a null-

hypothesis significance test (left), which tests whether the hypothesis that an effect is equal to 

0 can be rejected, and for an equivalence test (right), which tests whether the hypothesis that 

an effect as extreme as or more extreme than ∆L or ∆U can be rejected. 
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In other words, we can reject the hypothesis that the true effect is as extreme as or 

more extreme than our smallest effect size of interest. This approach is known as the 'two 

one-sided tests' approach (TOST), and can be seen as an improved version of the 'power 

approach' (Meyners, 2012) where researchers report which effect size they had high power to 

detect (see Example 4). The TOST approach is equivalent to examining whether a 90% 

confidence interval (for alpha = 0.05) around the effect falls between ΔL and ΔU, and 

concluding equivalence if the 90% confidence interval does not contain either equivalence 

bound (Westlake, 1972, for a related Bayesian procedure, see Kruschke, 2011, 2018). If we 

conclude that the true effect lies between the bounds whenever this procedure produces a 

significant result, we will not be wrong more often than 5%1 of the time. For a more 

extensive introduction to the TOST procedure, see Meyners (2012), Rogers et al. (1993), or 

Lakens (2017). 

 

Specifying alternative models 

Most researchers are used to testing hypotheses using null-hypothesis significance 

tests where the null model is typically an effect of zero, and the alternative model is 'anything 

else' (see Figure 1). Specifying an alternative hypothesis in more detail might be a challenge 

at first. Both Bayes factors and equivalence tests require researchers to think about the size of 

the effect under the alternative hypothesis. Bayes factors additionally require the specification 

of the shape of the distribution instead of simply specifying the alternative hypothesis as a 

point. Because theories typically allow a range of effect sizes, it is common to specify the 

alternative hypothesis as a distribution of effect sizes, some of which may be more plausible 

                         
1 We use an alpha level of 0.05 in all examples. The confidence interval corresponding to 

one-sided tests is 1 - 2 × α. Thus, for an alpha level of 0.05, a 90% confidence interval is 

used. 
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than others. Because the information gained from performing these tests depends on how the 

alternative hypothesis is specified, the justification for the alternative hypothesis is an 

essential part of calculating and reporting equivalence tests and Bayes factors. In other words, 

the answer we get always depends on the question we ask. It is therefore important to clearly 

specify and justify the question that is asked, whenever reporting statistical tests. 

One possible way to justify the alternative model is to base it on a question related to 

previous studies. For example, a Bayes factor can test whether the new data you have 

collected are more likely if the null hypothesis is true, or if the data are more likely under an 

alternative model specified using the effect observed in an earlier study. An equivalence test 

examines whether we can reject the effect size that was observed in the earlier study, or, as a 

more stringent test, an effect size the earlier study had a statistical power of 33% or 50% to 

detect (Lakens, Scheel, & Isager, 2018; Lenth, 2007; Simonsohn, 2015). Such a test would 

either conclude that the new data support the original claim, or that effect sizes as found in an 

earlier study can be rejected. An additional benefit of Bayes factors and equivalence tests is 

that the results can be inconclusive (e.g., the observed Bayes factor is close to 1, or the null-

hypothesis significance test and the equivalence test are both non-significant), which would 

indicate that the performed study was not sensitive enough to distinguish between the null 

and the alternative model. 

Another possible way to justify the alternative model is to determine a smallest effect 

size of interest. Sometimes a smallest effect size of interest can be specified based on 

objective criteria, such as when the minimal clinically important difference for a measure has 

been determined (Jaeschke, Singer & Guyatt, 1989). Other times, researchers might be able 

to justify the smallest effect size of interest on the basis of a cost-benefit analysis. Provided 

this cost-benefit analysis is reasonable, rejecting the presence of a meaningful effect, or 

providing strong support for the null hypothesis, would then suggest that an effect is too 
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small to be worth the resources required to reliably study it. Finally, researchers might 

suggest that the sample sizes that are used in a specific research area, or that can be 

reasonably collected, make it interesting to ask if we can reject effect sizes that could be 

studied reliably using such resources. Rejecting the presence of an effect that can be 

examined with the current resources suggests that researchers need to increase the resources 

invested in examining a specific research question. 

Some simple considerations allow convenient ways of specifying the alternative 

model for Bayes factors (see Dienes, 2014). An alternative model indicates the plausibility of 

different effect sizes (e.g., differences between population means) given the theory. What 

effect size is most plausible given past research? A relevant previous study or meta-analysis 

might provide an indication of the effect that can be expected, and an alternative model based 

on a normal distribution centered at the expected effect can be used (see Figure 2). However, 

when building on effect sizes from the published literature, publication bias and 'follow-up 

bias' (Albers & Lakens, 2018) often leads to inflated effect sizes. Therefore, a useful 

assumption in such cases may be that smaller effects are more plausible than larger ones. We 

can represent this assumption about the plausibility of different effect sizes by a normal 

distribution with a mean of zero and a standard deviation that sets the rough scale of the 

effect. As the mean of the distribution is zero, smaller effects are more likely than bigger 

ones. If the theory predicts effects in a positive direction, we remove effects below zero, and 

are left with a half-normal distribution (Dickey, 1973; see Figure 2). When modeled as a 

normal distribution the implied plausible maximum effect is approximately twice the 

standard deviation. Often this is a good match to scientific intuitions; and when it is not, this 

feature turns out not to greatly affect results (Dienes, 2017). Dienes (2014) suggests setting 

the standard deviation for a normal (or half-normal) distribution to the predicted effect. Bayes 

factors also depend on the model of the null hypothesis, which can be specified as flexibly as 



 

11 

the model of the alternative hypothesis. Here, the null hypothesis is always specified as a 

point-null hypothesis, so we do not further describe it in the examples.  

 

 

Figure 2. Commonly used distributions to model hypotheses for Bayes factors. Top Left. The 

point null hypothesis predicts that 0 is the only plausible value. Top Right. The uniform 

distribution models all values within an interval as equally plausible. Values outside of the 

interval are considered not considered possible. Bottom Left. The half-normal models a 

directional prediction where smaller values are more plausible than larger values. Bottom 

Right. The full normal models the expected value as the most plausible value, with effects in 

either direction considered increasingly less plausible. 

 

In four detailed examples we illustrate different ways to specify alternative models. 

These examples are also used to explain how to calculate, report, and interpret Bayes factors 

and equivalence tests. The specific examples were chosen to demonstrate different ways of 

specifying the alternative model for Bayes factors (e.g., based on past research, the measures 
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used in the study, effect sizes considered interesting by the authors elsewhere in their study) 

and equivalence tests (e.g., based on the smallest effect that a previous study could have 

detected, the smallest clinically relevant effect size, the smallest effect sizes considered 

interesting by the authors elsewhere in their study). The four examples also demonstrate a 

range of conclusions that can be drawn, both for Bayes factors (e.g., evidence for H0, 

evidence for H1, inconclusive evidence) and equivalence tests (e.g., reject meaningful effect 

sizes, fail to reject meaningful effect sizes). Note that our re-analyses are based on the 

statistics reported in each paper and are rounded to one or two digits after the decimal, 

meaning that the values we report may sometimes differ slightly from those that would result 

from analyzing the raw data. We provide reproducible R scripts for all of the examples as 

well as instructions for how to calculate Bayes factors and equivalence tests from summary 

statistics or raw data in online calculators (Dienes, 2008; Rouder, Speckman, Sun, Morey, & 

Iverson, 2009), simple spreadsheets (Lakens, 2017), the new statistical point-and-click 

software packages JASP (JASP team, 2018) and jamovi (jamovi project, 2018), and in R (R 

core team, 2017) at https://osf.io/67znq/ (all of these software solutions are free, and most are 

open source).  

Following these examples, we also show how to design informative studies that can 

provide support for the absence of a meaningful effect. The conceptual differences between 

Bayes factors and equivalence tests are discussed, but we also note how they often (but not 

always) lead to comparable inferences in practice. 

 

Example 1: Emotion regulation preference in older vs. younger adults. 

Martins, Sheppes, Gross, and Mather (2016) explored the relationship between age 

and emotion regulation by testing participants’ preference for distraction vs. reappraisal while 

viewing images of varying affective intensity. Contrary to their prediction, they did not find a 

https://osf.io/67znq/
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difference in the proportion of trials in which younger (n = 32) rather than older men (n = 32) 

preferred the distraction strategy for negative affective images (Myoung = 0.34, SEyoung = 0.03; 

Molder = 0.32, SEolder = 0.03), t(62) = 0.35, p = .73, d = 0.09. They conclude their discussion 

by stating that they “...found no age differences in regulation preferences in negative 

contexts...”. However, a non-significant t-test is not sufficient to support the conclusion that 

there are no age differences. We can calculate a Bayes factor and perform an equivalence test 

to formally examine whether we can conclude the absence of a difference. 

 

Bayes Factors. To calculate a Bayes factor we must first specify a model of the data 

assuming there is a true effect. We will give two examples, one based on no prior knowledge 

other than the scale that is used, and one model based on results from a previous study by 

Scheibe, Sheppes, and Staudinger (2015). This example will illustrate that using vague 

alternative models, based on the limits of the scale, will allow quite large effect sizes, and 

how an alternative model based on more specific scientific information is typically a more 

interesting question to ask. 

One relatively objective way to specify a model for the data if there is a true effect 

would be to consider the range of possible results based on the scale used in the research. The 

maximum possible effect when calculating proportions is a difference of 1 (i.e., if all of the 

older adults prefer distraction in 100% of the trials, and all younger adults prefer reappraisal 

in 100% of the trials). Of course, this extreme outcome is very unlikely, and if there is a true 

effect, smaller differences should be more plausible. We can model this prior belief about 

smaller differences being more likely than larger differences by using a half-normal 

distribution, with a standard deviation of 0.5. In such a model, the plausibility of differences 

is distributed across a wide range of possible outcomes, but smaller effects are considered 

more plausible than larger effects. 
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Calculating a Bayes factor, based on the observed data that expresses the relative 

support for an alternative model (specified as a half-normal distribution with a standard 

deviation of 0.5) over a point-null hypothesis, yields BH(0, 0.5) = 0.13. Note that subscripts for 

alternative models with half-normal distribution are reported as BH(0, S), where ‘H’ indicates a 

half-normal, centered at 0, with standard deviation of S, while BN(M, S) indicates a normal 

distribution with mean M and standard deviation S, following Dienes, 2014. This means that 

the data are 1/0.13 = 7.69 times more probable under the null model than under the 

alternative model. We conclude that that there is strong evidence for the null hypothesis 

relative to the (rather vague) alternative model of a difference between groups. 

We recommend reporting robustness regions for each Bayes factor that is reported. A 

robustness region specifies the range of expected effect sizes used when specifying the 

alternative model that support the same conclusion (e.g. evidence for H1, evidence for H0, or 

inconclusive outcomes). Robustness regions are reported as Rob. Reg. [L, U], and give the 

lower and upper effect size for the alternative model that leads to the same conclusion, given 

a certain Bayes factor threshold. In this article, we consider Bayes factors larger than 3 as 

support for the alternative, and Bayes factors smaller than ⅓ as support for the null model (cf. 

Jeffreys, 1939). For this Bayes factor, the robustness region is [0.147, ∞]. The fact that the 

upper bound of the robustness region goes to infinity indicates that all effects larger than the 

rough scale of effect used to specify the alternative hypothesis generate the same conclusion.  

We can also specify an alternative model that is based on existing information about 

the effect we are examining - and thus is more relevant to actual inference in the scientific 

context. Martins and colleagues build on a previous study by Scheibe, Sheppes, and 

Staudinger (2015) where the same paradigm was used to examine the difference between 

distraction or reappraisal choices in older and younger participants. Based on this study by 

Scheibe and colleagues, who reported that 40.5% of young adults chose distraction compared 
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to 48.5% of older adults, we have some reason to expect a mean difference of 0.405 – 0.485 = 

-0.08. Note this difference is in the opposite direction to the result obtained by Martins and 

colleagues, who found a mean difference of 0.338 - 0.321 = 0.017. Thus, the mean difference 

is entered as a negative value to reflect the fact the mean difference went in the opposite 

direction to that predicted. We can thus choose an alternative hypothesis with a half-normal 

distribution centered on 0 and a standard deviation of 0.08 (see Figure 3). Now, with this 

more informed hypothesis, we find that the data provided by Martins and colleagues offers 

only weak, inconclusive evidence for the null hypothesis, BH(0, 0.08) = 0.42, Rob. Reg. [0, 

0.189]. If Martins and colleagues wish to obtain strong evidence for either hypothesis, they 

need to collect more data. 

Equivalence test. To perform the equivalence test we must start by specifying the 

smallest effect size of interest. In their previous study, Scheibe and colleagues (2015) did not 

explicitly state which effect size they were interested in. In this case, one way to decide upon 

a smallest effect size of interest is to assume that the authors were only interested in effects 

that could have yielded a significant result, and then look at the effect sizes that could have 

been statistically significant given the sample size they collected. For any specific sample 

size and alpha level, a critical test value can be calculated, and test statistics larger than this 

value will yield significant p-values. Because Scheibe et al. (2015) collected 77 participants 

in total, and used an alpha level of .05, the critical t-value is 1.99. This critical t-value can be 

transformed into a 'critical standardized effect size' of Cohen's d = 0.45. Only effects larger 

than 0.45 (or smaller than -0.45) would have been statistically significant in this study. If we 

assume that sample size in this study was chosen, at least implicitly, based on effect sizes 

deemed interesting by the researchers who designed this study, we can set the smallest effect 

size of interest to an absolute effect size of d = 0.45. It might of course be that the authors did 
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not think about their sample size at all, and would be interested in smaller effect sizes than d 

= 0.45.  

 

Figure 3. The results of Martins et al. (2016), Example 1. The black square indicates the 

observed mean difference of 0.02 (on a raw scale). The data is represented by the likelihood 

distribution (dotted grey line) which is always centered on the observed mean (black square). 

The dark-grey dashed line indicates the half-normal model of the alternative, and the solid 

black line visualizes how that model would be updated in light of the data (the posterior 

distribution). The vertical dashed lines at -0.088 and 0.088 are the equivalence bounds (on a 

raw scale). The 90% confidence interval (the thick black horizontal line) indicates that the 

smallest effect size of interest cannot be rejected (it overlaps with the equivalence bound of -

0.088). The 95% confidence interval (thin horizontal black line) overlaps with zero, which 

indicates the null-hypothesis test can not reject an effect of zero. 
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In other words, our assumption might be wrong, which highlights the important 

responsibility of authors to specify their smallest effect size of interest. As De Groot (1969) 

noted: "Anyone publishing a hypothesis should therefore indicate in particular how crucial 

experiments can be instituted that may lead to the refutation or abandonment of the 

hypothesis."  

Now that the smallest effect size of interest has been determined (based on the study 

by Scheibe et al., 2015), we can proceed by reanalyzing the results from Martins et al, (2016) 

with an equivalence test against equivalence bounds of d = -0.45 and d = 0.45 using the two 

one-sided tests procedure. The first one-sided test indicates that we can reject effects as small 

as or smaller than d = -0.45 (or, in raw scores, a difference of -0.088), t(62) = 2.17, p = 0.017. 

However, the second test shows we cannot reject effects as large or larger than d = 0.45 (in 

raw scores, 0.088), t(62) = -1.47, p = 0.074. Both one-sided tests need to be significant to 

conclude equivalence, so given the observed data and the alpha level we decided on, we 

cannot conclude that the effect is statistically equivalent. It is common to report an 

equivalence test by only providing the one-sided test with the higher p-value (if this test is 

significant, so is the other). So, we would conclude: Based on equivalence bounds of d = -.45 

and d = 0.45, we cannot reject effect sizes that we still consider meaningful, t(62) = -1.47, p = 

0.074. Because the effect was also not statistically different from 0 in a traditional null-

hypothesis test (as reported by Martin and colleagues), the result is inconclusive. We can 

neither conclude that the effect is different from zero, nor that the effect is too small to 

matter. We need to collect more data to draw conclusions about the presence of an effect, or 

the absence of a meaningful effect (or both). 

 

Discussion. Martins and colleagues did not observe a statistically significant 

difference between younger and older men in their choice of distraction as a method for 
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emotion regulation. What can we conclude based on the Bayes factor and equivalence test? 

The equivalence test shows that based on the current data, we cannot reject the presence of 

effects as extreme as d = ±0.45 or more extreme. Whether or not effects of d = ±0.45 are 

interesting should be discussed by researchers in this field. If smaller effects are deemed 

interesting, larger studies need to be performed to draw conclusions. The Bayes factor we 

calculated for an uninformed alternative model suggest that the data provides stronger 

relative support for a null model than for a model that predicts effects up to a difference in 

proportions of 1. However, there is not enough evidence to prefer a null model over a more 

informed alternative model that predicts smaller effects2. That is, based on the best estimate 

of which effect sizes would be reasonable (based on related earlier research), the data are 

non-evidential. We would tentatively answer the question about whether an effect is absent as 

follows: We cannot reject effect sizes that are still deemed interesting (d = 0.45) and there is 

no reason to interpret the data as strong relative evidence for a null model, compared to an 

alternative model informed by previous findings. Thus, it seems prudent to suspend judgment 

about the absence of an effect until more data is available.  

 

Example 2: Comparing self-reported chronic pain in two age groups. 

Shega, Tiedt, Grant, and Dale (2014) studied the relationship between self-reported 

chronic pain and other indicators of decreased quality of life in a sample of 2902 older adults 

(from the National Social Life, Health, and Aging Project). Pain intensity was measured 

                         
2 Taking the ratio of the two Bayes factors in the current example, we see that the data were 

0.42/0.07 = 6 times more probable under the more informed hypothesis than under the less 

informed hypothesis. Bayes factors calculated for different alternative hypotheses can be 

compared in such a way when they have been calculated using the same data and against the 

same model of H0 ( BH1/H0 / BH2/H0 = BH1/H2 ). 
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using a 7-point Likert scale (0 = no pain, 6 = the most pain imaginable). They report non-

significant changes in reported pain across age groups (age 62-69: M = 2.03, SE = 0.084, n = 

1020; age 70-79: M = 1.98, SE = 0.057, n = 1015; age >79: M = 2.14, SE = 0.102, n = 554; p 

= .254). Based on the large sample size, we can assume that the effect size is accurately 

estimated to be close to zero, but to test for the absence of an effect, we need to calculate 

Bayes factors or perform equivalence tests. 

 

Bayes factors. Shega et al. (2014) do not explicitly state that they have a directional 

hypothesis (i.e., they are interested both in whether older adults experience higher or lower 

pain intensity than younger adults). Past research suggests that the experience of pain peaks 

between the age of 50-65 and then plateaus for the remaining years of life (Gibson & Lussier, 

2012). One could therefore model the alternative such that small effects around zero are 

considered most plausible, and with effects in either direction considered increasingly less 

plausible. Thus, an alternative model based on a normal distribution centered on zero would 

be appropriate. 

However, the model of the alternative hypothesis depends on what question we want 

to answer. Researchers have extensively studied the clinical importance of pain ratings (see 

e.g. Dworkin et al., 2008). Reductions in pain of approximately 10-20% were reported by 

Dworkin et al. to be noticeable, and reductions of approximately 40% were judged to be 

meaningful. Twenty percent corresponds to a difference of 1.21 points on a seven point scale. 

If the question is whether clinically important pain differences occur between different age 

groups, we can model the alternative hypothesis as a half-normal with an SD of 1.21. 

Specifying the alternative in this way allows us to ask the question if the observed data 

provide more relative evidence for a model that should be expected when a noticeable 

difference exists than for a null model.  
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For the three comparisons in Shega and colleagues, and assuming the authors were 

interested in effects around the size of noticeable pain differences, we obtain strong evidence 

for the null hypothesis when comparing participants aged 62-69 with participants aged 70-79, 

BH(0, 1.21) = 0.128, Rob. Reg. [0.454, ∞], and with participants older than 79, BH(0, 1.21)= 0.24, 

Rob. Reg. [0.878, ∞]. Here, the evidence in favour of the null hypothesis suggests that the 

data are 1 / 0.128 = 7.81 and 1 / 0.24 = 4.17 times more probable assuming the null 

hypothesis is true than assuming the alternative hypothesis is true, meaning that the Bayes 

factors provide at least some evidence for the null hypothesis relative to the alternative 

hypothesis. In contrast, we find only weak evidence for the null hypothesis when comparing 

participants aged 70-79 with those older than 79, BH(0, 1.21)= 0.37, Rob. Reg. [0, 1.361]. The 

robustness regions indicate that the Bayesian inferences are robust to a broad range of models 

that could be used to specify H1. In the one case where we find weak evidence for the null 

hypothesis, the conclusion would only change if an effect less than the minimal clinically 

relevant effect size was specified for the prior distribution. 

 

Equivalence test. In order to perform the two one-sided tests (TOST) procedure we 

need to specify equivalence bounds based on a smallest effect size of interest. When 

examining the minimal clinically important difference, researchers estimate the smallest 

change in pain ratings that leads to a noticeable change on other clinically relevant scales. For 

example, Kelly (2001) reports that the smallest effect size that leads to an individual to report 

feeling “a little better” or “a little worse” is 12 mm (95% CI [9; 12] on a 100-mm visual 

analogue scale of pain intensity (this is very similar to the 10% difference argued as just 

noticeable by Dworkin et al., 2008, cited above). To be conservative, we can use a 9 mm 

difference as the smallest effect size of interest (because smaller differences are not clinically 
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meaningful), which corresponds to a difference of approximately 0.55 points on a 7-point 

scale (used by Shega and colleagues). 

 

Figure 4. The results of Shega et al. (2014), Example 2. The 96.67% confidence 

interval (thick horizontal line, Bonferroni corrected for three comparisons) are within the 

equivalence bounds. The vague alternative model (dashed grey line) spreads the prior 

probability over the full range of the scale. Given the vague prior distribution, and the large 

amount of data, we see the posterior (solid black line) overlaps almost perfectly with the 

likelihood curve (dashed light-grey line) based only on the observed data. Note that in 

Bayesian estimation approaches the entire posterior distribution is used to draw inferences 

(for an introduction, see Kruschke, 2018). 

 

We can now perform equivalence tests for the differences in self-reported pain 

between the three age groups reported by Shega, Tiedt, Grant, and Dale (2014). Because we 
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perform three tests, we will use Bonferroni correction to control the type-I error rate and 

adjust the alpha level to 0.05/3 = .017 for each comparison (for an explanation of corrections 

for multiple comparisons, see Armstrong, 2014). We will begin with the largest difference 

reported for people in the age of 70-79 and those older than 79 (based on the means, sample 

sizes, and standard deviations reported earlier). With an alpha of 0.017 and equivalence 

bounds set to ±0.55 (expressed as a raw mean difference), both one-sided tests (against a 

difference of -0.55 and 0.55, respectively) are significant, t(904.22) = 3.30, p < .001, which 

means we can reject the presence of an effect that is large enough to be clinically meaningful 

(see Figure 4). Note that we report Welch's t-test, as indicated by the fractional degrees of 

freedom, because sample sizes are unequal, and standard deviations can be assumed to be 

unequal as well (see Delacre, Lakens, & Leys, 2017). The same conclusion holds for the 

difference between participants in the age-range of 62-69 and 70-79, t(1791.71) = -4.88, p < 

.001, and for the difference between participants in the age range of 62-69 and older than 79, 

t(1246.34) = 3.30, p < 0.001. 

 

Discussion. Shega and colleagues examined whether there were differences in self-

reported chronic pain across age groups. When we analyze their data with Bayes factors, we 

see consistent support for a null model compared to an alternative model that is specified 

based on ‘clinically important’ differences (as reported by Dworkin et al., 2008). When we 

analyze the data with equivalence tests, we find that we can reject the presence of effect sizes 

large enough to be ‘just noticeable’ (as reported by Kelley, 2001). Thus, we can conclude that 

it seems unlikely that there are substantial differences in self-reported pain across age-groups. 

Where the Bayesian model for the alternative was based on the distribution of effect sizes 

observed in Dworkin et al. (2008), the equivalence bounds were based on work by Kelley 

(2001), establishing a single effect size that represents the minimal clinically relevant 
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difference. The two justifications for the alternative model differ slightly, and illustrate how 

researchers can use different justifications when quantifying their alternative models. 

Justifications for alternative models should be transparent, and are always open for debate. 

 

Example 3: Correlating Big Five openness with Eriksonian Ego integrity.  

Westerhof, Bohlmeijer, and McAdams (2017) studied the relationship between 

concepts of ego integrity and despair from Erikson's theory of personality and the factors of 

the Big Five model of personality traits. They predicted that the Big Five trait 'openness' (as 

measured by the NEO-FFI) should be related to ego integrity (as measured by the 

Northwestern Ego Integrity Scale), and they conclude that this hypothesis is supported by a 

significant positive correlation (r = 0.14, p = .039). They also report a nonsignificant 

correlation between openness and despair (r = 0.12, p = .077). Note the diametrically opposed 

conclusions drawn from these results, although the difference between the two correlations is 

very small (r = 0.14 and r = 0.12). Can the conclusion that there is no relationship between 

openness and despair be statistically justified? 

 

Bayes Factors. The authors’ willingness to interpret r = .14 as evidence for a 

relationship between openness and ego integrity provides an approximate scale of the effect 

size that they would count as evidence for a relationship between openness and despair. Since 

it is preferable to define models in raw effect sizes, we transform these values into raw effects 

by calculating r x SD1/SD2 and obtain b = 0.19 for r = .14 and b = 0.20 for r = .12, 

respectively (SDopenness = 0.6, SDego integrity = 0.8, SDdespair = 1.0). We can model the alternative 

hypothesis for a correlation between openness and despair using a half-normal distribution 

with a standard deviation of b = .19 (r = .14) (see Figure 5). A Bayes factor for the observed 

correlation of b = .20 (r = .12) yields weak support for the alternative hypothesis, BH(0, .19) = 
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2.98, Rob. Reg. [0, 3.024]. We should not be too quick to interpret the nonsignificant result as 

evidence for the null hypothesis. In fact, the data offer weak evidence for an alternative 

model similar to an expected distribution for significant effects that are reported by the 

authors. The appropriate response would be to suspend judgment and recruit more 

participants. 

Figure 5. The results of Westerhof et al. (2015), Example 3. The Bayes factor of 2.98 equals 

the ratio of the density of the prior distribution at zero (dark grey dot) and the posterior 

distribution at zero (black dot), which is known as the Savage–Dickey density ratio method 

(Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010). Because the Bayes factor is 

calculated in raw units (beta), and the equivalence test is performed on the correlation (r), the 

TOST results are not included in Figure 5. 
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Equivalence test. In this case, we know that the authors are willing to treat a 

significant correlation of r = .14 as support for their theoretical prediction, so we might 

assume the authors consider correlations of r = .14 large enough to be meaningful. Note that 

we again draw inferences about researchers’ theoretical predictions based on the results and 

conclusions they report. It would be a great improvement to current research practices if 

authors would explicitly state which effect sizes they consider to be too small to be 

meaningful (and provide a good reason for that judgment). We can perform the two one-sided 

tests procedure for correlations (which relies on Fisher’s z transformation), to formally test 

whether we can reject the presence of an effect as large as or larger than r = .14 for the 

correlation between openness and despair. Not surprisingly given the observed correlation of 

r = .12, we cannot reject the presence of effect sizes as large of larger than r = .14: The 

equivalence test is not significant, z = -0.30, p = 0.38. We cannot conclude the absence of 

meaningful effects if we consider effects of r = 0.14 meaningful. Note that it is possible to 

observe an effect of r = 0.12 and reject effects of r = 0.14, but the required sample size to 

detect such small differences would be extremely large (to achieve 80% power for such a test, 

more than 10,000 observations are required). To reject the presence of small effects, large 

samples are needed, such that the 90% confidence interval around the observed effect 

becomes extremely narrow. 

Discussion. The Bayes factor suggests there is no reason to treat a correlation of r = 

.12 as evidence for the absence of an effect. As the current data provides inconclusive 

evidence for either hypothesis, more data are needed to reach a conclusion. The equivalence 

test shows that we can certainly not reject effect sizes of r = .14, which had been interpreted 

as evidence for the presence of an effect for other correlations. Given that we can neither 

reject the null nor the smallest effect size of interest, the results are inconclusive.  
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Example 4. No Short-Term Differences in Memory After Reward Cues 

Spaniol, Schain, and Bowen (2013) examined whether anticipating a reward would 

enhance long-term memory formation equally well in older and younger individuals. They 

found support for this prediction in two studies. They also tested the hypothesis that an effect 

of reward cues should be absent when a recognition task was presented after only a short 

delay. They concluded in Experiment 2: “Second, neither age group showed an effect of 

reward on memory at the short delay.” There was no statistically significant difference in the 

recognition hit rate in the short delay condition for trials where low reward or high reward 

stimuli were presented for younger participants (n = 32, M = 0.76, SD = 0.17, and M = 0.77, 

SD = 0.14, respectively) or older participants (n = 32, M = 0.75, SD = 0.12, and M = 0.76, SD 

= 0.12, respectively). 

The authors were fully aware that a non-significant result does not allow one to 

conclude the absence of an effect. Therefore, in Experiment 1, Spaniol and colleagues (2013, 

p. 731) write how an interaction effect “failed to reach significance […] even though the 

power to detect a medium-sized interaction was high”. The authors rely on what is known as 

the ‘power approach’ to conclude a meaningful effect was absent. In the power approach, a 

non-significant p-value is used to argue for the absence of an effect that a study had high 

power to detect. For example, if a study had 99% power to detect a medium effect size, and 

no significant test result is observed, researchers using the power approach would feel 

justified in concluding the absence of a medium effect, because a population effect of 

medium size would almost certainly have yielded a significant p-value in the experiment. 

Meyners (2012) explains that this approach, although it was common and even recommended 

by the Food and Drug Administration in the 1980s, should no longer be used. One important 

reason why equivalence tests are preferable is that even practically insignificant differences 
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will be statistically significant in very large samples. When using equivalence tests, 

researchers can instead conclude that such effects are significant and equivalent (i.e., 

statistically different from zero, but also too small to matter). In addition, Bayes factors can 

show that a study with low statistical power for interesting effect sizes provides evidence for 

H0 relative to H1, or that a high-powered non-significant result provides no evidence for H0 

relative to H1 (Dienes & McLatchie, 2018). 

 

Bayes factor. We can compare the difference scores for hit rates in the memory task 

between low- and high-reward trials for older and younger people (i.e., we are examining the 

interaction effect between reward and age). The scale of the effect expected under the 

alternative hypothesis when assessing the impact of high versus low rewards on recognition 

following long and short delays can be inferred from Spaniol et al.’s first experiment. In 

Experiment 1, low-reward or high-reward stimuli were presented for younger participants (M 

= 0.54, SD = 0.18, and M = 0.61, SD = 0.16, respectively) and older participants (M = 0.61, 

SD = 0.15, and M = 0.64, SD = 0.14, respectively). Thus, the obtained difference between 

high and low reward stimuli between younger and older adults in Experiment 1 was: (0.61 - 

0.54) - (0.64 - 0.61) = 0.04. This provides an approximate scale of effect size that is expected 

under the alternative hypothesis fo r Experiment 2. For the short delay conditions, the 

resulting Bayes factor provides only weak evidence for the null hypothesis, BH(0, 0.04) = 0.44, 

Rob. Reg. [0, 0.054]. 

 

Equivalence test. When presenting a non-significant result, the authors discuss the 

statistical power they had to detect a medium effect size (Cohen’s d = 0.50), which 

corresponds to a raw score of 0.039. If we assume that this is the smallest effect size they 

considered interesting, we can set the equivalence bounds to d = ±0.5, or mean differences of 
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-0.039 and 0.039. When we calculate a 90% confidence interval around the mean difference 

for hit rates in the memory task between low and high reward trials for older and younger 

people, it ranges from -0.033 to 0.033, which does not overlap with the equivalence bounds 

(see Figure 6).  

 

Figure 6. The results of Spaniol et al. (2013), Example 4. The 90% confidence interval (thick 

horizontal line) falls within the equivalence bounds (vertical dashed lines). The prior model 

(dark- grey dashed line) is specified with a half-normal distribution. The model of the data is 

represented by the likelihood distribution (dotted grey line). The posterior distribution (solid 

black line) is the updated estimate of the population effect size based on the prior and 

collected data.  



 

29 

We can thus conclude that the difference scores for younger and older participants do 

not themselves differ more than what we consider a 'medium' effect size. The two one-sided 

tests against the equivalence bounds both give t(62) = 1.98, p = 0.026 (the tests are identical 

when symmetrical bounds are used and the observed effect is exactly zero). It should be 

noted that setting equivalence bounds based on the benchmarks proposed by Cohen (1988) is 

not considered best practice in equivalence testing (see Lakens et al., 2018). While in this 

example we have assessed equivalence with respect to what the authors claim to be interested 

in, we recommend that researchers specify equivalence bounds based on theoretical 

predictions or practical importance, where possible, and only use benchmarks as a last resort. 

 

Discussion. The reanalysis of the present results using a Bayes factor and the two 

one-sided tests approach supports the conclusions of Spaniol, Schain, and Bowen (2013). The 

Bayes factor suggests that the data offers only weak, inconclusive evidence for the null 

hypothesis, whereas the equivalence test allows us to reject the presence of effects as large or 

larger than a 'medium' effect. 

 

General discussion 

We have provided several detailed examples to illustrate how researchers in the field 

of gerontology could improve inferences about null effects with Bayes factors and 

equivalence tests. As we mentioned in the beginning, these calculations can be performed 

based on summary statistics using free and easy to use software solutions (see 

https://osf.io/67znq/ for instructions), which in recent years have substantially lowered the 

barriers to making use of the two methods. 

To restrict analytic flexibility and preserve the validity of confirmatory hypothesis 

tests, it is important to specify the alternative model before looking at the data. We 

https://osf.io/67znq/
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recommend that researchers preregister their hypotheses (preregistration can be done 

independently of the publication format of an article; for further resources see 

https://cos.io/prereg/), and we especially recommend the Registered Reports format 

(Chambers, Feredoes, Muthukumaraswamy, & Etchells, 2014), where the study design is 

peer-reviewed before the data are collected. It is an excellent way to receive feedback from 

peers about the justification for the alternative model, and whether the question that is asked 

by calculating a Bayes factor or by performing an equivalence test is considered interesting. 

Specifying the alternative model before collecting data for hypothesis tests is also important 

because the sample size required to design an informative study depends, in part, on the 

alternative model. When testing theories, the values used to specify the alternative model for 

a Bayes factor, or the smallest effect size of interest for an equivalence test, should be chosen 

based on reasons internal to the theory, such as effect sizes that are theoretically deemed 

similar. When the smallest effect size of interest is chosen simply on the basis of resources 

(i.e., available funds to pay subjects) the statistical inference does not provide grounds for 

theory testing (for a more detailed discussion, see Lakens et al., 2018). 

 

Justifying sample sizes for equivalence tests and Bayes factors 

Researchers should aim to design studies that yield informative results about the 

presence, and absence, of meaningful effects. It is important that the sample size justification 

for studies reflects both the possibility that the alternative hypothesis is true, and the 

possibility that the null hypothesis is true. When designing studies in which one plans to draw 

inferences based on equivalence tests, one can perform an a-priori power analysis to make 

sure a study has high statistical power to reject the smallest effect size of interest. When using 

Bayes factors, one can design informative studies by using the results from previous research 

to determine the minimum sample size required to obtain sufficient evidence. 

https://cos.io/prereg/
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Bayes factors. For Bayes factors, one could estimate the sample size required to 

provide noteworthy evidence for both the null and the alternative hypothesis, where 

'noteworthy' depends on the Bayes factor you would like to observe (i.e., Bayes factors larger 

than three, six, or ten have been recommended as noteworthy evidence; see Jeffreys, 1939; 

Schönbrodt & Wagenmakers, 2017). The value of such an estimate would be to allow 

researchers to make an informed decision regarding how many participants might be required 

for a given study. However, after the data have been collected, inferences depend only on the 

obtained Bayes factor and not on prior sample size calculations. 

Consider a researcher who aims to determine whether frail older adults demonstrate 

cognitive deficits relative to non-frail older adults. A recent study by Bunce, Batterham, and 

Mackinnon (2018) measured verbal fluency across frail and non-frail adults with an animal 

naming task and reported that non-frail adults recalled significantly more names of animals 

(M = 11.53, SD = 3.52, n = 304) than did frail adults (M = 10.11, SD = 3.20, n = 154), t(456) 

= 4.20, p < .001. The mean difference reported by Bunce and colleagues can be used to 

provide a model of the alternative hypothesis, as the original study provides a rough scale of 

effect. Thus, the alternative hypothesis can be modeled with a half-normal distribution with a 

mode of zero and a standard deviation of 11.53 - 10.42 = 1.42. The standard error reported by 

Bunce and colleagues provides an estimate of the level of noise in the measurement, SE = 

(M1-M2)/t = 0.338. Given that we have a model of the alternative hypothesis, how many 

participants would we need to recruit in order to meet the desired level of evidence if the 

study were to (1) obtain evidence for the alternative (e.g., obtain a mean difference of 1.42) 

or (2) obtain evidence for the null (e.g., obtain a mean difference of 0)? One can calculate a 

series of Bayes factors in which the number of participants is varied from 1 to as many 

participants as the researcher has the resources to recruit. By adjusting the standard error of 
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the data obtained by Bunce and colleagues (which varies as a function of sample size) it is 

possible to calculate the number of participants required to achieve a desired level of 

evidence. Based on the alternative model specified above, one would need to collect a total of 

82 participants to provide noteworthy evidence for the alternative hypothesis (here taken to 

be a Bayes factor larger than 3), and 207 participants to provide noteworthy evidence for the 

null (here taken to be a Bayes factor smaller than 0.33). In practice, one can also test 

sequentially by adding additional data to guarantee sufficient evidence (for a discussion, see 

de Heide & Grunwald, 2018; Dienes, 2016; Schönbrodt & Wagenmakers, 2017). 

 

Equivalence tests. For equivalence tests, a researcher can perform a-priori power 

analyses to calculate the number of participants that are required to achieve a desired 

probability of finding an statistically equivalent result, given certain equivalence bounds, the 

alpha level, and the true effect size (e.g. an effect size of 0). This can be done in R, using the 

power analysis functions of the TOSTER package (Lakens, 2017), or in an online calculator 

(http://powerandsamplesize.com/Calculators/). Imagine a researcher who wants to test if a 

reaction time game improves elderly adults’ choice reaction time in a driving simulator. They 

determine that the smallest reaction time difference they would be interested in is the time it 

takes a car to travel 1 meter at a speed of 20 mph (32.1869 km/h), which is 1 𝑚 / 
32186.9 𝑚

3600 𝑠
=

 0.1118 𝑠. Roenker and colleagues (2003) report an average standard deviation of 0.268 

seconds for choice reaction times in a driving simulator task in a sample of 55– to 86-year-

olds (calculated as the mean of the nine standard deviations for Choice RTs in Table 1 in 

Roenker et al., 2003). Based on these data, 0.1118 seconds would correspond to a 

standardized mean difference of d = 
0.1118 𝑠

0.268 𝑠
= 0.42. To be a bit more conservative, the 

researcher decides to set equivalence bounds at d = ±0.4. Assuming a true effect of d = 0, the 

TOSTER power analysis for a two-sample t-test shows that 272 participants (136 per group) 

http://powerandsamplesize.com/Calculators/
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would be needed to reject these bounds with 90% power at an alpha level of 5%. Equivalence 

tests to reject effects of a specific size require slightly larger sample sizes than would be 

required to have the same power to to detect these effect sizes in a null hypothesis test 

(Lakens, 2017) and the closer the equivalence bounds are to zero, the larger the sample size 

needed to have high power for the equivalence test.  

 

Should you use Bayes factors or equivalence tests? 

Although Bayes factors and equivalence tests ask slightly different questions, they can 

give converging answers. For example, an equivalence test can show that we can reject the 

presence of a meaningful effect, while the Bayes factor informs us that the data provide 

substantially more evidence for the null model than for the alternative model (see Example 

2). Despite often leading to similar conclusions, these two approaches differ both on a 

philosophical level (e.g., how do we define probability?) and on a practical level (e.g., do we 

want to incorporate prior information in our statistical inferences or not?). There is no reason 

to limit yourself to asking only a single question from your data: one recommendation is 'a B 

for every p'; reporting a Bayes factor alongside every significance test. If the methods lead to 

different answers, this is often informative. It can lead one to reflect on the difference 

between the two approaches, but as long as both tests are used and interpreted correctly, their 

answers should be interesting regardless of whether Bayes factors and p-values agree. 

Evidence and errors are closely related in practice, and Bayesian and frequentist statistics will 

often lead to similar conclusions (Jeffreys, 1939). All else being equal, the larger the Bayes 

factor discriminating the null and alternative model, the lower the error rates in deciding in 

favor of one or the other (for discussion, see Dienes & McLatchie, 2018). 

It is possible to choose one approach over the other. Equivalence tests follow from a 

Neyman-Pearson perspective on statistical inferences, where the main goal is to accept or 
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reject hypotheses without being wrong too often by controlling type-1 and type-2 error rates. 

If a researcher wants to use statistical tests to guide their behavior in the long run, and the 

smallest effect size of interest is theoretically or practically important, then equivalence 

testing would naturally suggest itself as a method. If on the other hand the researcher is 

interested in quantifying relative evidence for two competing models, and the most salient 

aspect of the predicted effect is its rough scale or its maximum, then the Bayes factor would 

be a natural method. If reliable prior information is available, or theories make more specific 

theoretical predictions, Bayesian approaches become increasingly interesting. Remember to 

always ask yourself if hypothesis testing is appropriate, or whether you might simply want to 

estimate the size of an effect instead (for a related approach to the TOST procedure, see the 

ROPE approach by Kruschke, 2011). Note that although we have focused on hypothesis tests 

in this article, reporting and interpreting effect size estimates is important, and should always 

accompany hypothesis tests. 

 

Conclusion 

Embracing methods that allow us to provide support for the absence of a predicted or 

meaningful effect has the potential to greatly improve our statistical inferences. It is logically 

incorrect to conclude the absence of an effect simply on the basis of a non-significant result 

(e.g., p > .05), and we should aim to prevent this common mistake. This will require 

researchers to specify not just what their data would look like when there is no effect, but also 

what their data would look like when there is an effect. Quantifying a smallest effect size of 

interest, or the predictions of a theory, can be a challenge and will require discussions among 

the researchers in a field. But being able to falsify predictions, or corroborate hypotheses that 

predict the absence of an effect, is of utmost importance for scientific progress.  
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